

Measurement of the Standard Model Higgs boson produced in association with a vector boson and decaying to a pair of b-quarks in pp collisions at 13 TeV using full Run-2 data with the ATLAS detector

CONF note: ATLAS-CONF-2020-006

Introduction

H→bb decay mode with the highest branching ratio

- Allows the coupling to *d*-type quarks to be measured
- Constrains the Higgs boson decay width
- VH(V = W or Z) production with leptonic V decays
 - Efficient trigger and multi-jet suppression
 - Improved sensitivity at high V transverse momentum (p_TV)
 - The most sensitive channel to measure $H\rightarrow bb$

- Three sub-channels depending on charged lepton multiplicity
 - ► $Z\rightarrow vv$, $W\rightarrow lv$ and $Z\rightarrow ll$ decays targeted (l=e or μ)
- In the final state: at least 2 jets and exactly 2 b-tagged jets
 - ▶ 70% b-jet efficiency, rejection rate of ~8 for c-jets and ~300 for light jets

Event Categorisation

- Events are categorised dependent on:
 - Number of jets: 2-jet or 3-jet (≥3-jet in 2-lepton)
 - ▶ p_T^V : 75 GeV < p_T^V < 150 GeV (2-lepton only), 150 GeV < p_T V< 250 GeV and p_T V > 250 GeV
- ΔR_{bb} between the two Higgs candidate jets: defines signal regions (SRs) and low/high ΔR_{bb} control regions (CRs)
 - Continuous ΔR_{bb} selection as a function of p_T^V
 - CRs provide better control of dominant backgrounds

Background Modelling

- Use state-of-the-art Monte-Carlo generators to model dominant backgrounds:
 - Single top and top-pair production
 - Vector boson production in association with jets
 - Diboson production
- Data-driven method used for estimation of:
 - Multi-jet background in 1-lepton using template fit
- Top background in 2-lepton using eµ CR data Normalisation and shape uncertainties assigned to the
- background predictions Multi-dimensional reweighting used to extract shape
 - uncertainties on top-pair and W+jets backgrounds

Multivariate Analysis

- Boosted Decision Tree (BDT) increases sensitivity in the SR
 - Discriminant constructed from variables that distinguish between VH signal and backgrounds
 - Trained individually in each category and channel

Results

Simultaneous binned likelihood fit in the 3-lepton channels uses yields in the CRs and BDT distributions in SRs

- The VH, H→bb signal strength defined as the ratio of the observed signal yield to the expected yield: $\mu_{VH}^{bb} = 1.02 \pm 0.18$
- Observation of VH with 6.7σ
- Observation of ZH with 5.3σ and strong evidence of WH with 4.0σ Simplified template cross-section measurement in 5 p_T^V bins
 - Good agreement with the SM

- Validated with diboson (VZ, $Z \rightarrow bb$) analysis: $\mu_{VZ}^{bb} = 0.93 \pm 0.15$
- Cross-checked using di-jet mass (m_{bb}) instead of the BDT discriminant in the SR:
 - $\mu_{VH}^{bb} = 1.17 \pm 0.24$
 - Observation of VH with 5.5σ

