

Long-lived particles at CLIC

Ulrike Schnoor

Erica Brondolin, Cecilia Ferrari, Emilia Leogrande on behalf of the CLICdp collaboration

LCWS 2019

Introduction

LLPs in theory

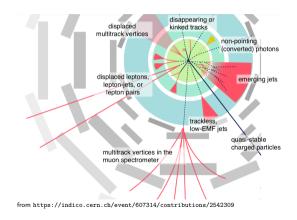
LLPs in CLIC

Stub track analysis

Track reconstruction

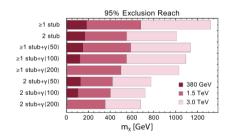
Stub track definition

Background


Conclusions

Long-lived particles in theory

- ► Various new physics models predict particles with macroscopic lifetimes
- Example: Small mass splitting/compressed spectra
- "Standard" analyses lack sensitivity
- Variety of signatures in detectors depending on the model (mass, lifetime, boost)
- ► LHC long-lived particles overview report: 1903.04497
- Many ongoing analyses at the LHC (ATLAS, CMS, LHCb), and dedicated experiments (FASER)

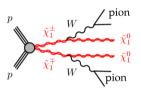


Long-lived particles at CLIC

- ► Hidden valley searches in Higgs boson decay
 - displaced multi-track vertices
 - ► full simulation study with CLIC_ILD CLICdp-Note-2018-001
- Degenerate Higgsino Dark Matter
 - Theory-level study for the CLIC Potential for New Physics yellow report [1812.02093] by N. Craig and S. Alipour-Fard
 - Process: chargino pair production
 - Stub tracks from charged Higgsino with a lifetime of 6.9 mm
 - Decay to pion and neutralino
 - Using geometrical detector acceptance and requirement of at least 4 hits in the CLIC vertex & tracker for the efficiency of reconstructing the stub tracks

- Analysis with 1 or 2 stubs and possibly additional photon at 3 TeV
- Resulting exclusion limits assuming no background:

(Fig. 74 from the YR)


Reach thermal DM mass of $\approx 1 \, \text{TeV}$

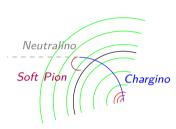
Full simulation of LLP chargino pair production

- Process: chargino pair production, i.e. $e^+e^- \to \chi_1^\pm \chi_1^\pm$ where the χ_1^\pm decay to a neutralino and a pion: $e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \pi^+ \tilde{\chi}_1^0 \pi^-$
- > Small mass difference between chargino and neutralino: Chargino mass $m_{\tilde{\chi}_1^\pm}=1050\,{
 m GeV}$, neutralino mass $m_{\tilde{\chi}_1^0}=1049.8\,{
 m GeV}$

- Production chain:
 - Chargino pair production and decay in Whizard
 - Parton shower and hadronization in Pythia
 - ▶ Displacement of the decay vertex in Geant4

chargino mixing	thermal limit mass	mass difference	lifetime	c au	Γ
pure higgsino	pprox 1 TeV	355 MeV	0.023 ns	6.9 mm	$2.86 imes 10^{-14} \text{ eV}$

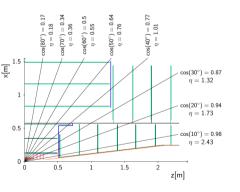
➤ Sample produced for the studies shown here uses lifetime of 600 mm in order to increase the statistics of reconstructable charginos



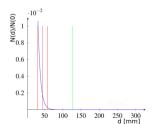
Analysis strategy

Signal selection

- Stub track candidate definition:
 - ▶ at least four hits in the tracking system
 - disappearing within the tracking system volume
 - no energy deposition in the calorimeter
 - ▶ isolated track
 - minimum transverse momentum
 - possibly: dE/dx requirement
- ► At least one stub candidate per event
- ► Possibly: Requirements on soft displaced pion(s)
- ► Possibly: Requirements on additional photons

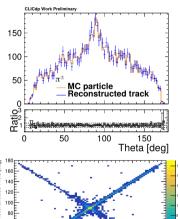

Backgrounds:

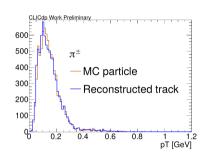
- ▶ Beam-induced $\gamma \gamma \rightarrow$ hadrons:
 - algorithmic
 - split tracks
 - conversion
- final states with low multiplicity of isolated leptons


Track reconstruction for the analysis

2 challenging types of objects for track reconstruction:

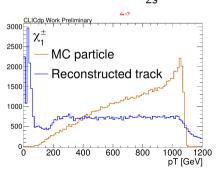
- Stub track reconstruction
 - in many cases too short to be reconstructable
 - ▶ at CLIC 3 TeV: E = 1.5 TeV, m = 1.05 TeV $\Rightarrow p = 1.07$ TeV
 - ⇒ chargino gives very straight and short track ⇒ difficult to reconstruct track parameters
- Displaced pions
 - very soft
 - displaced



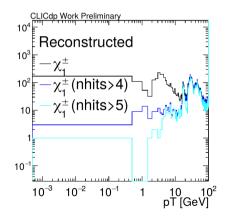

chargino lifetime distribution:

Track reconstruction of soft displaced pions

- Soft displaced pions are well reconstructed (pT)
- ▶ Reconstruction efficiency is $\approx 60\%$
- Polar angle:
 - ightharpoonup significant contribution of flipped θ due to helix fit of the central soft objects
 - excess in central region

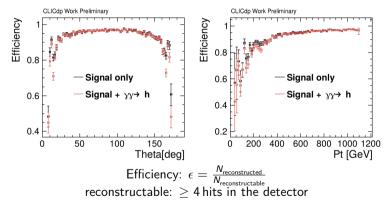


Track reconstruction of stub tracks

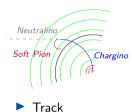


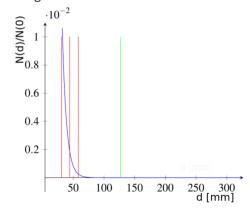
 Sensitivity to the curvature of a particle in a given magnetic field depends on the length of the track (d) and the sagitta (s)

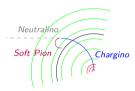
$$p_T = 0.3B \frac{\left(\frac{d}{2}\right)^2 + s^2}{2s}$$


 \Rightarrow pT reconstruction of short, straight tracks is limited by the single point resolution

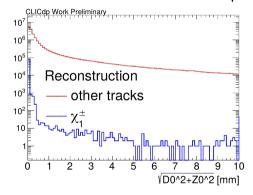
Efficiency for stub tracks

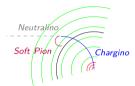



► Efficiency decreases slightly at low pT and in the detector very forward regions when the overlay is introduced

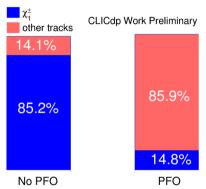


reconstructable: at least 4 hits chargino lifetime distribution:

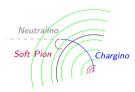



- ► Track
- ► Prompt

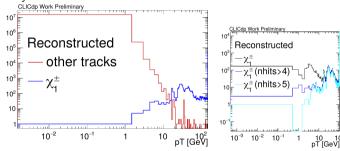
stub tracks are prompt ightarrow possible cut $\sqrt{d_0^2+z_0^2}<0.5\,\mathrm{mm}$



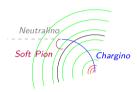
- ► Track
- Prompt
- No PFO association


Stub tracks are not associated to a PFO

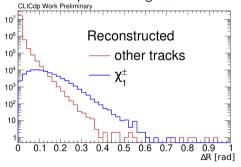
(the 14.8% include PFOs below $1.5\,\text{GeV}$ which are standalone tracks, as well as the overestimate of the lifetime in the given sample)



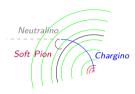
- ► Track
- Prompt
- ► No PFO association
- $\triangleright p_T$ requirement


Charginos have higher pT than background tracks \rightarrow preliminary cut at 10 GeV

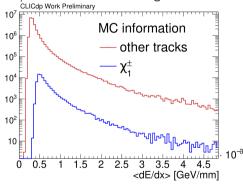
Note that this removes shorter tracks \rightarrow under investigation



- Track
- Prompt
- ► No PFO association
- $\triangleright p_T$ requirement
- Isolation requirement

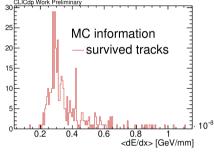

Chargino stub tracks are isolated tracks, their $\Delta R_{\text{nearest track}}$ distribution is peaked at higher values.

Other isolation criteria are under investigation, e.g. pT sum in a cone.



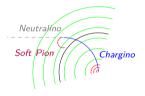
- ► Track
- Prompt
- ► No PFO association
- $\triangleright p_T$ requirement
- ► Isolation requirement
- ► dE/dx requirement

dE/dx distribution for charginos is shifted to higher values



Preliminary background study

- $ightharpoonup \gamma \gamma
 ightarrow$ hadrons-only sample is used to study the main background
- ► Efficiency of 0.32 % by requiring at least on stub candidate with
 - $\sqrt{d_0^2 + z_0^2} < 0.5 \,\mathrm{mm}$
 - $p_{\rm T} > 10 \, {\rm GeV}$
 - ► No PFO association
- ▶ Additional cut could be on dE/dx \longrightarrow \longrightarrow


- ⇒ ongoing study to further understand and suppress the background
 - ► dE/dx resolution
 - additional requirement on pions
 - possibility to add photons

Conclusions and outlook

- ► Long-lived particles signatures = unexplored avenues for searches for new physics
- ► Charged long-lived particles at CLIC benefit from clean environment and high precision of the track reconstruction
- ▶ Investigated a sample of long-lived chargino pair production
- ▶ Track reconstruction of stub tracks quite efficient, p_T reconstruction limited by length of the track
- Preliminary background study shows handle on $\gamma\gamma\to$ hadrons by optimizing stub track definition and dE/dx criterion
 - ⇒ to be continued

Thanks to my collaborators: Cecilia Ferrari, Erica Brondolin, Emilia Leogrande