Extracting top-quark mass and Yukawa coupling from the threshold scan

Kacper Nowak, Aleksander Filip Żarnecki FACULTY OF津HYSICS UWCLC

Motivation

Motivation

H.Abramowicz et al. (CLICdp Collaboration), Top-Quark Physics at the CLIC ElectronPositron Linear Collider, arXiv:1807.02441, accepted for publication in JHEP

Motivation

Dedicated study for CLIC indicates that the statistical precision of the measurement is around 20 MeV

However, this is based on a 2-D mass-width fit...
arXiv:1807.02441

Motivation

Fit method

Cross-section templates

width +0.05 width-0.05 width +0.1 width-0.1 width +0.15 width-0.15 width +0.2 width-0.2 width

Beneke, M. et al. "Near-threshold production of heavy quarks with QQbar_threshold," Comput. Phys. Commun. 209, 96-115 (2016).

Luminosity spectra

Theoretical cross section templates are convoluted with luminosity spectra New CLIC spectra for 350 GeV is scaled for different values of $\sqrt{\mathrm{s}}$
90% charge spectra used for presented results

Benchmark scenario

Assume 10 measurements at the threshold, with 1 GeV step in energy, with $10 \mathrm{fb}^{-1}$ taken at each energy point ($100 \mathrm{fb}^{-1}$ total).

Generate statistical fluctuation assuming 70.2\% event reconstruction efficiency and background level (remaining after cuts) corresponding to the 73 fb

Fit procedure

For each generated data set (pseudo-experiment) χ^{2} value is calculated for different parameter values (different templates)

Quadratic dependence of the χ^{2} value on the model parameters is fitted to find the best fit parameter values and the estimated uncertainty (corresponding to $\Delta \chi=1$)

Fits resulting in the parameter values outside the range used to generate templates are ignored.

Example of fit results

Fit with two free parameters (2D): mass vs width

Previous results

Our results are consistent with previous study

Fit results

Fit configuration

Consider overall normalization uncertainty and uncertainty of strong coupling constant 0.03 more parameters in the fit (3D alpha)

一沴 Yuw Consider top Yukawa coupling as additional free fit parameter (4D fit)

Statistical uncertainty on top-quark mass vs Yukawa and strong coupling uncertainties from earlier measurements

Background level uncertainty

Change background normalization in pseudo-experiment generation by $\pm 2 \%$

(Initial) mass uncertainty

Assumed true mass value from normal distribution

Benchmark scenario

Assume 10 measurements at the threshold, with 1 GeV step in energy, with $10 \mathrm{fb}^{-1}$ taken at each energy point ($100 \mathrm{fb}^{-1}$ total).

Generate statistical fluctuation assuming 70.2\% event reconstruction efficiency and background level (remaining after cuts) corresponding to the 73 fb

Yukawa uncertainty from 4D fit

Background level uncertainty

Change background normalization in pseudo-experiment generation by $\pm 2 \%$ Influence on Yukawa coupling determination

Scan optimization

(For fit including all parameters)

Looking for a better way

We generate random scan sequences ($10 \times 10 \mathrm{fb}^{-1}$)

Is there room for improvement?

Optimizing mass measurement

Counting measurement points form top 10% scenarios

Optimizing mass measurement

Counting measurement points form top 10% scenarios

Optimizing mass measurement

Counting measurement points form top 10% scenarios

Optimizing mass measurement

Counting measurement points form top 10% scenarios

Optimizing Yukawa measurement

Optimizing Yukawa measurement

Counting measurement points form top 10% scenarios

Conclusions

Top-quark mass
can be extracted with $\sim 20 \mathrm{MeV}$ statistical uncertainty, provided $\sigma_{\alpha}<0.0004, \sigma_{y}<0.06$ and normalization $\sim 1 \%$.
Top-quark Yukawa coupling
Contribution to the top pair-production can be observed with significance $>5 \sigma$
Systematic uncertainties very important for Yukawa determination.
Scan optimisation
Statistical uncertainty of the extracted top-quark mass can be significantly reduced if the scan procedure is optimised.
The optimal scenario depends on the asumptions made. The study is ongoing...

Validation

Fit results for different choices of template for pseudo-experiment generation

Vary scale $\mu=60-120 \mathrm{GeV}$ in pseudo-experiment generation.
Templates generated with nominal value ($\mu=80 \mathrm{GeV}$) used in the fitting procedure.

Vary scale $\mu=60-120 \mathrm{GeV}$ in pseudo-experiment generation.
Templates generated with nominal value ($\mu=80 \mathrm{GeV}$) used in the fitting procedure.

