

Fakultät Physik

Dark Matter with Yukawa Interactions - feeble or not?

Fakultät Physik

Overview

Dark Matter Production

Experimental Constraints

Portals to Dark Matter: Neutrino Portal

Portals to Dark Matter: The Higgs Portal

Fakultät Physik

Dark Matter Production [Hambye et. al (2019)]

Mathias Becker

Fakultät Physik

Boltzmann Equations

Boltzmann-Equations

$$\frac{dY}{dt} \sim -\frac{\varGamma}{H} \left(\prod_{i \in I} \frac{Y_i}{Y_i^{eq}} - \prod_{f \in F} \frac{Y_f}{Y_f^{eq}} \right)$$

■ Process Efficiency? → Compare Γ to $H \sim T^2 M_{Pl}^{-1}$ → If $\Gamma \ll H$ process decouples; If $\Gamma \gg H$ process is in equilibrium

Mathias Becker

Dark Matter Production [Chu, Hambye, Tytgat (2011)] DM-Med them Log₁₀[DM-Mediator coupling] Mediator DM-SM them. Mocification -10 SMDM -15 -10 -5 0 Log₁₀[DM–SM coupling] Do not forget: We assume $(SM-DM) = (SM-Mediator) \cdot (Mediator-DM)$

Mathias Becker

Fakultät Physik

Dark Matter Production – Freeze-Out

Dark Matter Production – Freeze-Out

- DM density decreases with an increasing coupling
- $\blacksquare \ \Omega_{\rm DM} \sim <\sigma {\rm v}>^{-1} {\rm M}_{\rm DM}$
- Typically bounds DM mass from above

Dark Matter Production - Freeze-Out

Dark Matter Production

Fakultät Physik

$Dark \ Matter \ Production - Freeze-In \ {}_{[Hall \ et. \ al(2009)]}$

Mathias Becker

$Dark\ Matter\ Production\ -\ Freeze-In\ {}_{[{\rm Hall\ et.\ al(2009)}]}$

-5 Log₁₀[DM-SM coupling]

Freeze-Out 0 В Mediator Log₁₀[DM-Mediator coupling] -5-Freeze-In B SM DM Freeze-Out A Mediator -10 Freeze-In A SM DM -15

Dark Matter Production - Freeze-In

Mathias Becker

Dark Matter Production

-15

-10

Fakultät Physik

Dark Matter Production – Dark Freeze-Out

Mathias Becker

Dark Matter Production – Dark Freeze-Out

- Energy transfer into the dark sector (DS) stops before the DS self-interactions decouple.
- A larger SM-DS coupling increases $\Omega_{\rm DM}$
- A larger DS self-interaction decreases $\Omega_{\rm DM}$.

Mathias Becker

Fakultät Physik

Dark Matter Production – Reannihilation

Mathias Becker

Fakultät Physik

■ A larger DS self-interaction Dark Matter Production

Dark Matter Production – Reannihilation

Dark Matter Production

Fakultät Physik

Experimental Constraints

Mathias Becker

Fakultät Physik

Direct Detection

[1903.03026]

- Search for DM scattering with nucleons on earth.
- Looses sensitivity for $M_{\rm DM} \lesssim 10 \, {\rm GeV}.$
- Constrains the DM-SM coupling.
- Light Mediators: Even Freeze-In can be tested [Hambye et. al (2018)]

Mathias Becker

Fakultät Physik

Mathias Becker

Fakultät Physik

Collider Constraints

- Requires a sizeable SM-DM or SM-Mediator coupling.
- Large SM-DM : DM production and its signatures, e.g. missing energy.
- Large SM-Mediator can test feeble SM-DM interaction via long-lived particle searches.

Fakultät Physik

- Lines indicate correct relic density
- $\label{eq:mf} \begin{array}{l} \mbox{Hadronic model:} \\ \mbox{$m_{\rm F} \geq 1.5 \, {\rm TeV}$} \end{array}$
- A measurement of the leptonic model might rule out certain leptogenesis scenarios

Mathias Becker

technische universität dortmund

Theoretische Physik III /

Fakultät Physik

Collider Constraints

Experimental Constraints

Fakultät Physik

Astrophysical Constraints

- Tremaine-Gunn bound: Phase space-density in small halos leads to $M_{\rm DM}\gtrsim 5\,{\rm keV}$ for fermions.
- BBN constraints particles that interact strongly with e^{\pm} , γ or ν : $M_{DM} \gtrsim 10 \text{ MeV}$ (very model dependent).
- DM self-interaction is constrained to $\frac{\sigma_{\rm DM}}{M_{\rm DM}} \lesssim 1 \frac{{\rm cm}^2}{{\rm g}}$ from Bullet Cluster.
- Lyman- α measurement typically requires $M_{DM} \gtrsim 5 \text{ keV}$ for thermal DM.

Mathias Becker

Fakultät Physik

Indirect Detection

- Typically less powerful than direct detection.
- \blacksquare Concept: DM annihilates into SM particles which can be observed on earth, e.g. $\gamma\text{-rays.}$
- For feebly interacting DM: DM decay products might be observed.

U technische universität dortmund

Together

Theoretische Physik III /

Fakultät Physik

Fakultät Physik

Portals to Dark Matter

Higgs Portal $(\phi^{\dagger}\phi) \eta^2$

[Arcadi,Djouadi,Raidal (2019)]

Vector Portal

 $\mathrm{B}^{\mu
u}\mathrm{B}^{\prime}_{\mu
u}$ [Hambye et. al (2019)]

Neutrino Portal

 $\bar{L}\phi\nu_R$

Mathias Becker

Portals to Dark Matter: Neutrino Portal

Fakultät Physik

Portals to Dark Matter

Higgs Portal

Vector Portal

 $\left(\phi^{\dagger}\phi
ight)\eta^{2}$ [Arcadi,Djouadi,Raidal (2019)] $\mathrm{B}^{\mu
u}\mathrm{B}^{\prime}_{\mu
u}_{\mathrm{[Hambye et. al (2019)]}}$

Neutrino Portal $\bar{L}\phi\nu_{\rm B}$

- N itself can be a DM candidate
 - \rightarrow simplest scenario tightly constrained from Lyman- α and N $\rightarrow \nu \gamma$

Fakultät Physik

The Neutrino Portal to Dark Matter

• Dark sector: Fermion χ and scalar η , stabilized by U(1) or \mathcal{Z}_2 .

Lagrangian

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin, DS} - V_{\rm sc.} - (\bar{\nu}_{\rm R} \left[(y_{\nu} \phi L + y_{\chi} \eta \chi_{\rm L} \right] + {\rm h.c.})$

Fakultät Physik

The Neutrino Portal to Dark Matter

• Dark sector: Fermion χ and scalar η , stabilized by U(1) or \mathbb{Z}_2 .

Lagrangian

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin, DS} - V_{\rm sc.} - (\bar{\nu}_{\rm R} \left[(y_{\nu} \phi L + y_{\chi} \eta \chi_{\rm L} \right] + \text{h.c.})$

Type-I seesaw	Inverse seesaw	Type-I seesaw
Freeze-Out	Freeze-Out	Freeze-In
[Escudero,Rius,Sanz (2016)]	[Batell et. al (2017)]	[MB (2018)]
[Escudero,Rius,Sanz (2016)]	[Batell,Han,Es Haghi (2017)]	[Chianese,King (2018)]
	[González Macías et. al (2016)]	

Mathias Becker

Portals to Dark Matter: Neutrino Portal

Fakultät Physik

Vacuum Stability I

Scalar Potential

$$\mathcal{L} \supset - \mathrm{m}_{\eta}^2 \eta^2 - \lambda_2 \eta^4 - \lambda_{\phi,\eta} \left(\phi^\dagger \phi
ight) \eta^2 - \mathrm{y}_\chi ar{\chi}
u_\mathrm{R} \eta$$

Mathias Becker

Portals to Dark Matter: Neutrino Portal

Fakultät Physik

Vacuum Stability II

^{21/25}

Fakultät Physik

Neutrino Portal: Inverse Seesaw

Mathias Becker

Portals to Dark Matter: Neutrino Portal

Fakultät Physik

Fermionic Higgs Portal

Lagrangian

$$\mathcal{L} \supset \frac{1}{2} m_{\chi} \bar{\chi} \chi + \frac{\lambda_{\mathrm{H}\chi\chi}}{\Lambda} \phi^{\dagger} \phi \bar{\chi} \chi$$

- Requires UV-completion.
- Mainly constrained by direct detection and Higgs invisible decay width.

Fakultät Physik

Fermionic Higgs Portal

- Freeze-In scenarios still viable but UV-complete discussion necessary.
- Typically a 'Freeze-In A' scenario.
- Important: UV-complete discussion of freeze-out scenario can open up the parameter space again

Mathias Becker

Portals to Dark Matter: The Higgs Portal

Fakultät Physik

Conclusions

Mathias Becker

Portals to Dark Matter: The Higgs Portal

25/25