

Extra Dimensions at Colliders

Magdalena Zenglein

TU Dortmund Asymptotic Safety meets Particle Physics

December 16-19, 2019

Outline

Introduction

Real Gravitons

virtual Gravitons

Black Holes

Summary

Motivation

- Goal: Testing predictions of Asymptotically Safe Gravity (ASG)
- \blacktriangleright Problem: gravity in 4 dimensions is weak \Rightarrow hard to measure
- Chance: gravity in (large) extra dimensions
 - might be accessible at the LHC
 - ASG program works for more than 4 dimensions
 - existing implementations for (large) extra dimensions
 - Injecting ASG into existing implementations for large extra dimensions

(Large) Extra Dimensions

- Gravity weak: hard to measure
- $M_{\text{Planck}} \gg \text{all other scales} \Rightarrow \text{hierachy problem}$

compactified extra dimensions?

$$V \sim \frac{m_1 m_2}{M_{\mathsf{Planck}}^{d-2}} \frac{1}{r^{d-3}} \stackrel{\Rightarrow}{\longrightarrow} V \sim \underbrace{\frac{m_1 m_2}{(\underline{M_D \cdot R})^{d-2}}}_{M_{\mathsf{Planck}}} \frac{1}{r}$$
 (1)

Kaluza-Klein decomposition: Graviton mass spectrum

Graviton Interactions

. . .

Real Gravitons

- \blacktriangleright E_{T,miss} + γ
- ► E_{T,miss}+ jet
- $\blacktriangleright E_{T,miss} + Z$

Black Holes

- more transverse events
- production treshold
- particle multiplicity

virtual Gravitons

- inv. mass + angular dist. in
 - Drell-Yan
 - Diphotons
 - Dijets

Already provided by Pythia8!

Black Hole Generators

- CHARYBDIS
- BlackMax
- TRUENOIR
- CATFISH
- QBH3.0

Injecting Asymptotic Safety

Several papers: e.g. [arxiv:1002.0260; arxiv:0912.2653; arxiv:1101.5548; arxiv:0707.3983]

Implementation: HET department: Maximilian Demmel, Jan Philipp Dabruck, Henning Sedello, Magdalena Zenglein

Newtons Running Coupling $\rightarrow \frac{d\sigma_{m,AS}}{d\hat{t}} = \frac{d\sigma_{m,LED}}{d\hat{t}} \cdot Z^{-1}$

Monojet Mass Spectra

$E_{T,miss}$ +jet CMS

$E_{T,miss}$ +jet CMS

Kaluza-Klein Sums

▶ Kaluza-Klein-Sum S(s) and Tensorial Part Factorization

 $G^{(n)}$

$$\mathcal{A} = \frac{1}{\overline{M}_{D}^{2}} \sum_{n} \left[\frac{T_{\mu\nu} P^{\mu\nu\alpha\beta} T_{\alpha\beta}}{s - m^{2}} \right] = \underbrace{\frac{1}{\overline{M}_{D}^{2}} \sum_{n} \frac{1}{s - m^{2}}}_{\mathcal{S}(s)} \underbrace{T_{\mu\nu} T^{\mu\nu}}_{\mathcal{T}}$$

▶ Small mass splitting $\Delta m \sim rac{1}{R} : \mathcal{S} \rightarrow \mathsf{AS} ext{-dressed}$ integral

$$\mathcal{S}\left(s
ight)
ightarrowrac{S_{n-1}}{M_{\mathrm{D}}^{n+2}}\int_{0}^{\infty}\mathrm{d}mrac{m^{n-1}Z^{-1}}{s-m^{2}+i\epsilon},\quad Z^{-1}=Z^{-1}\left(\mu\left(s,m
ight),\Lambda_{\mathrm{T}}
ight)$$

Invariant Dimuon Distribution

$\ell\ell\text{-CMS},\ 13\,\text{TeV},\ 36\,\text{fb}^{-1},\ \Lambda_{eff}=6.9\,\text{TeV}$

$\gamma\gamma$ -Atlas, 13 TeV, 36.7 fb⁻¹, $\Lambda_{eff} = 7.2$ TeV

$\gamma\gamma$ -Atlas, 13 TeV, 36.7 fb⁻¹, $\Lambda_{eff} = 7.2$ TeV

Comparison of total cross section LED+SM

$|\eta|$ < 2.5, NNPDF2.3

	Drell-Yan	Diphoton	Dijet
$m_{ m inv,min}/ m TeV$		$\sigma_{ m tot}/ m mb$	
1	$5.1 imes10^{-9}$	$3.7 imes10^{-9}$	$1.0 imes10^{-4}$
3	$2.5 imes10^{-9}$	1.9×10^{-9}	$6.5 imes10^{-7}$
5	4.7×10^{-10}	3.9×10^{-10}	$1.2 imes 10^{-7}$
7	4.8×10^{-11}	4.2×10^{-11}	$1.1 imes 10^{-8}$
9	2.7×10^{-12}	2.5×10^{-12}	$2.7 imes10^{-10}$

18/31

CL_s heatmaps for CMS-Dijets

work in progress:

- fine grid for border region
- fit border region
- calc bounds for different approximatoins

AS Drell-Yan Graviton Analysis from CMS Data

Bounds!

Black Holes

Schwarzschild radius in d dimensions \rightarrow geometric cross section

$$r_{\rm S} = \frac{k(n)}{M_{\rm D}} \left(\frac{M_{\rm BH}}{M_{\rm D}}\right)^{\frac{1}{d-3}} \qquad M_{\rm BH} \to \sqrt{\hat{s}} : \quad \sigma\left(\sqrt{\hat{s}}\right) \sim \pi r_{\rm S}^2 \qquad (3)$$

AS Black Holes with Charge, Color, and Spin

QBH3.0

- Quantum Black holes in (L)ED with charge, color, spin, Greybodyfactor corrections, different M_D -conventions
- ▶ Based on Pythia → PDF, hadronization, etc

Asymptotically Save Gravity

[arxiv:0707.4644]:

$$\sigma_{\mathsf{AS}}\left(\sqrt{\hat{s}}\right) = \sigma_{\mathsf{LED}}\theta\left(\sqrt{s} - m_{\mathsf{min}}\right) \cdot Z\left(\sqrt{\hat{s}}\right)^{\frac{-1}{d-3}}$$

(4)

AS Black Holes with Charge, Color, and Spin

QBH3.0

- Quantum Black holes in (L)ED with charge, color, spin, Greybodyfactor corrections, different M_D -conventions
- Based on Pythia \rightarrow PDF, hadronization, etc

Asymptotically Save Gravity

[arxiv:1002.0260]

$$\sigma_{\mathsf{AS}}\left(\sqrt{\hat{s}}\right) = \sigma_{\mathsf{LED}}\theta\left(\sqrt{s} - m_{\mathsf{min}}\right) \cdot Z\left(M_{\mathsf{D}}\left(\frac{M_{\mathsf{D}}}{\sqrt{\hat{s}}}\right)^{\frac{1}{d-3}}\right)^{\frac{-1}{d-3}} \quad (4)$$

Minimal Black Hole Mass - Work in Progress

$$m_{\min}^2 = rac{M_{\star}^d}{\Lambda_T^{d-2}}$$

(5)

24/31

QBH Dijets: $\chi = \exp(|y_1 - y_2|), n = 6$

 $\Lambda_{\rm T} = \overline{6 \text{ TeV}, M_{\rm D}} = \overline{4 \text{ TeV}}$ 4.8 TeV < $m_{jj} < 5.4$ TeV

[arxiv:1803.08030]

QBH Dijets: $\chi = \exp(|y_1 - y_2|), n = 6$

 $M_{
m D} = 5 \, {
m TeV}$ $m_{jj} > 6 \, {
m TeV}$

Summary

- ASG could be probed at Colliders
- Real gravitons
 - give strongest bounds for small number of extra dimensions
 - cannot probe fixed point regime if transistion scale is to high
- Virutal gravitons
 - bounds are stronger with increasing number of extra dimensions
 - allways sensitive to fixed point regime
- Quantum Black Holes
 - Cannot probe full parameter space
- Spring 2020: Dijet and QBH-Bounds

Dijets: $\chi = \exp(|y_1 - y_2|)$

[arxiv:1803.08030]

28/31

Virtual Graviton Dijets: $\chi = \exp(|y_1 - y_2|)$

 $\Lambda_{\rm T} = M_{\rm D} = 2 \,{\rm TeV}$

35.9 fb⁻¹ (13 TeV)

[arxiv:1803.08030]

Virtual Graviton Dijets: $\chi = \exp(|y_1 - y_2|)$

 $\Lambda_{\rm T} = M_{\rm D} = 0 \,{\rm TeV}$

Bounds, Bounds, Bounds

Latest and strongest bounds on real Graviton emission

Search	\sqrt{s}	\mathcal{L}	$M_D/{ m TeV}$				
	TeV	${\rm fb}^{-1}$	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
G+j (CMS)	13	35.9	9.0	7.5	6.3	5.7	5.3
G+j (ATLAS)	13	36.1	7.7	6.2	5.5	5.1	4.8
$\mathit{G} + \gamma$ (CMS)	13	35.9		2.85	2.86	2.88	2.98
$G + \gamma$ (ATLAS)	13	3.2	2.3	2.5	2.6	2.7	2.8
$G + \gamma$ (ATLAS)	13	3.2	1.9	1.9	1.85	1.8	1.8
G+Z (CMS)	13	35.9	2.77	2.31	2.35	2.40	2.47

Latest and strongest bounds on virtual Graviton exchange

Search	\sqrt{s}	\mathcal{L}	K-Factor	Λ_{eff}
Scarch	TeV	fb^{-1}		TeV
ℓℓ (ATLAS)	8	20	1	4.2
$\ell\ell$ (ATLAS)	8	20	1	4.0
ℓℓ (CMS)	13	36	1.3	6.9
$\gamma\gamma$ (ATLAS)	13	36.7	1.4	7.2
$\gamma\gamma$ (CMS)	13	35.9	1	7.8
jį (CMS)	13	35.9	1	10.1

QBH: Bounds on Minimal Mass from CMS

Angular Distribution: 8.2 TeV Mass Spectrum:

$$M_{\rm D}$$
 /TeV $n = 2$ $n = 3$ $n = 4$ $n = 5$ $n = 6$

2	5.9	6.1	6.2	6.2	6.3
3	5.7	5.8	6.0	6.0	6.0
4	5.4	5.7	5.8	5.9	5.9
5	5.2	5.5	5.6	5.7	5.8

Dimensionless KK-Sum Minkowski

Dimensionless KK-Sum Euclidean

$\ell\ell$ -CMS, 13 TeV, 36 fb⁻¹, $\Lambda_{eff} = 6.9$ TeV

References I

[arxiv:0707.3983] Daniel F. Litim and Tilman Plehn. "Signatures of gravitational fixed points at the LHC". In: *Phys. Rev. Lett.* 100 (2008), p. 131301. DOI: 10.1103/PhysRevLett.100.131301. arXiv: 0707.3983 [hep-ph]. [arxiv:0707.4644] Benjamin Koch. "Renormalization group and black hole production in large extra dimensions". In: Phys. Lett. B663 (2008), pp. 334–337. DOI: 10.1016/j.physletb.2008.04.025. arXiv: 0707.4644 [hep-ph].

References II

[arxiv:0912.2653]	Erik Gerwick and Tilman Plehn. "Extra Dimensions and their Ultraviolet Completion". In: <i>PoS</i> CLAQG08 (2011), p. 009. DOI: 10.22323/1.079.0009. arXiv: 0912.2653 [hep-ph].
[arxiv:1002.0260]	Kevin Falls, Daniel F. Litim, and Aarti Raghuraman. "Black Holes and Asymptotically Safe Gravity". In: <i>Int. J. Mod.</i> <i>Phys.</i> A27 (2012), p. 1250019. DOI: 10.1142/S0217751X12500194. arXiv: 1002.0260 [hep-th].

References III

[arxiv:	11	01	.554	8]
---------	----	----	------	----

Erik Gerwick, Daniel Litim, and Tilman Plehn. "Asymptotic safety and Kaluza-Klein gravitons at the LHC". In: *Phys. Rev.* D83 (2011), p. 084048. DOI: 10.1103/PhysRevD.83.084048. arXiv: 1101.5548 [hep-ph].

[arxiv:1803.08030] Albert M Sirunyan et al. "Search for new physics in dijet angular distributions using proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter and other models". In: (2018). arXiv: 1803.08030 [hep-ex].

References IV

[Dabruck]

[Radziej]

[Sedello]

J. P. Dabruck. "Constraining Asymptotically Save Quantum Einstein Gravity in Large Extra Dimensions". Diploma Thesis. TU Dortmund, 2012.

Markus Radziej. "Search for Spatial Extra Dimensions in a Two Muon Final State with the CMS Experiment at 13 TeV". Dissertation. TU Dortmund, 2018.

H. Sedello. "Collider physics in anticipation of new TeV-scale phenomena". Dissertation. TU Dortmund, 2013.