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I

Background



Why large N?

• For a theory with large flavour symmetry (like O(N), SU(N)…),
1/N is a good expansion parameter

• Reorganising perturbative expansion in terms of powers of
1/N can give non-perturbative information away from the
Gaussian fixed point

• Example Gross–Neveu (GN) model in 3d

LGN = ψ̄i/∂ψ + g2(ψ̄ψ)2

• In 2d asymptotically free
• In 3d not perturbatively renormalisable
• But: In the large-N limit can be shown that it is
non-perturbatively renormalisable and there is a UV fixed
point Gawedzki & Kupiainen ’85, de Calan, da Veiga, Magnen, Seneor ’91

• A prototype for quantum gravity?
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What about 4d (without gravity)?

• Gauge-Yukawa theories in the Veneziano limit
• 0 < ε ≡ Nf

Nc −
11
2 � 0.1 fixed for Nc,Nf → ∞

• Scalars needed Litim & Sannino [1406.2337]

• The large-N beta functions have singularities
⇒ speculations about a possible UV FP
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In practise

• Define ’t Hooft coupling K = g2N
4π2 which is kept fixed at

N→ ∞
• Any amplitude can then be expanded as

A(K;pi) = A0(K;pi) +
1
N
A1(K;pi) +

1
N2

A2(K;pi) + . . .

• For example, diagrams like

and

are both order 1/N0 (g2N ∼ K and g4N2 ∼ K2)

• Infinitely many diagrams contribute at each order in 1/N
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In practise

• Each fixed order in 1/N contains all-orders or
non-perturbative information in the traditional
perturbation-theory sense

• 1/N expansion of β-functions convenient: at fixed order in
N, the diagrams grow polynomially only
⇒ finite radius of convergence

• But: Need to resum an inifinite number of diagrams at each
order or use some other methods
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Direct resummation: History

• The O(1/N) coefficients of gauge β-functions known
Palanques-Mestre & Pascual (1984), Gracey [hep-ph/9602214]

• The gauge β-function starts positive, but the 1/N coefficient
has a negative singularity at xQED = 15/2 (xQCD = 3), x ≡ α

πN
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• Near the singularity 1/N
coefficient exceeds 1/N0 one
⇒ speculations about
possible UV fixed point
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Direct resummation: practise

• Bubble chains have net effect: 1
q2

→
KnΠn0

(q2)1+nε/2

n = …n

• Example: QED two-point function
• Π0(p): one-loop

• Π1(p): two-loop topologies, all orders

n +

n
+

n

• Corresponding 1/N expansion of the β-function

βK =
2
3
K2 + 1

N
F1(K) + . . .
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Computation

Task: compute F1(K)

• The renormalisation factor can be written as

ZA = 1−2
3
K
ε
+

∞∑
n=0

div
{
Kn+2

N

(
1− 2

3
K
ε

)−n
Π
(n)
1 (p2, ε)

}
+O

(
1
N2

)
• Eventually, have to resum

∞∑
n=2

Kndiv


∞∑
j=0

πj(p2, ε)
εn−j−1

n−2∑
k=0

(
n− 2
k

)
(n− k)j−1(−1)k



• Finally

ZA = 1−2
3
K
ε
+
K2

N

∞∑
n=2

(
−K
3

)n−2
div
{

1
εn−1(n− 1)n

π0(ε)

}
+O

(
1
N2

)
• Consistency check: π0(p2, ε) ≡ π0(ε) independent of p2
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n−2∑
k=0

(
n− 2
k

)
(n− k)j−1(−1)k =


(−1)n
n(n−1) j = 0

0 j ∈ (1,n− 2)

an,jn! j > n− 2
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∞∑
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The dust settles

• Only the 1/ε part contributes to the β-function

∞∑
n=1

Kn

nεn
π0(ε)

∣∣∣∣
1/ε

=
1
ε

∞∑
n=0

Kn+1

n+ 1
π
(n)
0 =

1
ε

∫ K

0
π0(ε)dε

• Coupling K and the dimension d = 4− ε are exchanged as
final outcome of the large-N resummation!

• Result:

F1(K) =
∫ K

0
dt

(1− t)(1− t/3)(1+ t/2)Γ(4− t)
6Γ2(2− t/2)Γ(3− t/2)Γ(1+ t/2)

• First singularity at K = 15/2 1 2 3 4 5 6 7

K

-0.1

0.1

0.2

0.3

F1
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Revival of interest

• Gauge contribution to the Yukawa β-function
Kowalska & Sessolo [1712.06859]

• Semi-simple gauge groups Antipin et. al [1803.09770]

• a-theorem at large N Antipin et al. [1808.00482]

• Full gauge-Yukawa β-functions at large N
TA & Blasi [1806.06954, 1808.03252]

TA, Blasi, Dondi [1904.05751]

• Critical look at β-function singularities
TA, Blasi, Dondi [1905.08709]
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Critical point method

• So how about QCD?
• Fermion bubble chains as in QED, but more basic topologies
due to non-abelian vertices (double chains)

• Direct resummation impossible, results from critical point
method

• Exploits conformal properties of the theory in arbitrary
dimension close to the Wilson–Fisher fixed point

• Developed by Vasiliev, Pismak & Honkonen in early 80’s
• Universality is used to connect theories in the same class
(e.g. QCD and non-abelian Thirring Model)
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Critical point method

• In arbitrary dimension d = dc − ε, the β-function for a
one-coupling theory is

β(g) = −εg+ bg2 + . . .

• The critical coupling, gc, at the WF fixed point satisfies

β(gc) = 0 ⇔ gc =
ε

b
+ . . .

• This signals a phase transition whose properties are
encoded in the critical exponents, e.g.

ω = β′(gc), η = γφ(gc)
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Critical point method: practise

The exponents ω, η are computed by:

• making a scaling ansatz for the propagators at the WF fixed
point

ψ ∼ A /p
(p2)d/2−α+1 , Aνσ ∼ B

(p2)µ−β

• solving the Schwinger-Dyson equation at large N, which
yields algebraic equations for the critical exponents (d only
variable)

• using the relations among the different exponents
14



Critical point method: some literature

• O(N) model: η up to O(1/N3)
Vasiliev, Pismak, Honkonen ’81, ’82

• Gross–Neveu model, η up to O(1/N3)
Gracey ’91, ’92, ’94, Vasiliev, Derkachov, Kivel, Stepanenko ’93,

Valiliev & Stepanenko ’93

• Gross–Neveu–Yukawa model, ω up to O(1/N2)
Gracey ’17, Manashov & Strohmaier ’18

• QED & QCD, ω up to O(1/N), η up to O(1/N2)
Gracey ’93, ’96, Ciuchini, Derkachov, Gracey, Manashov ’00

• Wess–Zumino model, ω up to O(1/N2)
Ferreira & Gracey ’98
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II

Large N for Yukawa models

With Simone Blasi JHEP 1808 (2018), PRD 98 (2018)

and Simone Blasi & Nicola Dondi, EPJC 79 (2019)



Gross–Neveu–Yukawa model

• N massless fermion flavours, ψ, a massless real scalar, φ

LGNY = ψ̄i/∂ψ − 1
2
∂µφ∂

µφ+ g1φψ̄ψ + g2φ4.

• Same universality class that describes critical properties of
the Mott transition in graphene

• Rescaled couplings: y ≡ g21
8π2

, K ≡ 2yN, and λ ≡ g2
8π2

• β-functions at O(1/N)

βy =(d− dc)y + y2(2N+ 3+ F1(yN))

βλ =(d− dc)λ+ y2(−N+ F2(yN))
+ λ2(36+ F3(yN)) + yλ(4N+ F4(yN)).

• Perturbatively known up to four loops Zerf et al. [1709.05057]
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Critical exponents for two-coupling case

• Two-coupling model⇒ two critical exponents, ω±

• ω± are the eigenvalues of the Jacobian [∂βi/∂gi] at WFFP
• ∂βy

∂λ ≡ 0 at O(1/N) ⇒ ω± directly correspond to ∂βλ

∂λ and ∂βy
∂y

• Known up to O(1/N2)
• Suggest shrinking radius of convergence 1/N→ 1/N2

Gracey [1707.05275], Manashov & Strohmaier [1711.02493]

• Comparing with the β-function ansatz, we get

F1(t) =
∫ t

0

ω
(1)
− (2ε)
ε2

dε, and

30− 2F1(ε/2) + F3(ε/2) + F4(ε/2) = 2
ω

(1)
+ (ε)

ε

• βλ cannot be computed with the knowledge of ω± only
• in particular, F2 is fully unconstrained
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Direct resummations

• Direct resummation to get the missing information
• First the Yukawa coupling TA, Blasi [1806.06954]

• ln ZK ≡ ln (Z−1
S Z−2

F Z2V)

• ZS = 1− div{ZSΠ0(p2, ZKK, ε)}

• ZF = 1− div
{
Σ0(p2, ZKK, ε)

}
• ZV = 1− div

{
V0(p2, ZKK, ε)

}
⇒
ZS = 1−

K
ε
−

1
Nf

∞∑
n=2

Kn
{(

1−
K
ε

)1−n (
2Π(1)

F

[
Σ(n−1) − V(n−1)

]
+Π(n)

)}
+ a new summation rule

n−2∑
i=0

(
n− 2
i

)
(−1)i

(n− i)j−1

(n− i− 1)
=

{
(−1)n
n j = 0

(−1)n
n−1 j = 1, . . . , n− 1

• Straight-forward extension to gauge-Yukawa system
TA, Blasi [1808.03252]
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Direct resummations

• The quartic a bit more complicated
• First time resummation with three-loop basic topology!
• Possible, because the double chains can be reduced to a
single one
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Results

• We were able to compute the full systen of GNY β-functions
at O(1/N)

• The closer singularity at O(1/N2) is actually already present
at O(1/N) but is cancelled in the combinations of Fi
entering ω±

F1(t) =
∫ t

0

ω
(1)
− (2ε)
ε2

dε,

30− 2F1(ε/2) + F3(ε/2) + F4(ε/2) = 2
ω
(1)
+ (ε)

ε
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III

Critical look at the β-function
singularities

With Simone Blasi & Nicola Dondi, PRL123 (2019)



The large-N β-function

• Large-N ansatz

β(g) = (d− dc)g+ g2
(
bN+ c +

∞∑
n=1

Fn(gN)
Nn−1

)
• Option 1: Compute Fn directly by resumming diagrams

+ +

• Option 2: Get the slope of the β-function at WFFP
• 1/N expansion of the critical exponent, ω, in arbitrary
dimensions using CFT methods Vasiliev et al., Gracey...

β′(gc) = ω(d) ≡
∞∑
n=0

ω(n)(d)
Nn

• Computing β-function in terms of ω turns out convenient

23



The large-N β-function

• Large-N ansatz

β(g) = (d− dc)g+ g2
(
bN+ c +

∞∑
n=1

Fn(gN)
Nn−1

)
• Option 1: Compute Fn directly by resumming diagrams

+ +

• Option 2: Get the slope of the β-function at WFFP
• 1/N expansion of the critical exponent, ω, in arbitrary
dimensions using CFT methods Vasiliev et al., Gracey...

β′(gc) = ω(d) ≡
∞∑
n=0

ω(n)(d)
Nn

• Computing β-function in terms of ω turns out convenient

23



Shadows on the fixed point

• For QED the fermion mass anomalous dimension, γm,
diverges at the β-function singularity violating the unitarity
bound Espriu et al. (1982), Antipin & Sannino [1709.02354]

• The same for the anomalous dimension of the glueball
operator Ryttov & Tuominen (2019) [1903.09089]

• Similar arguments for 2d GN model would suggest an
infinite number of IR fixed points

• Singularity structure of higher-order contributions?
Example: O(N) model, where O(1/N2) has a different sign
nearer singularity wrt O(1/N) Gracey [hep-ph/9609409]

• Recent lattice studies suggest a Landau pole
Leino et al. [1908.04605]
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Shadows on the fixed point

The O(1/N) critical exponent contributes to all Fn and generates
a sequence of alternating-sign singularities
TA, Blasi, Dondi (2019), [1905.08709]

ω1 ω2 ω3 …
F1 F(1)1
F2 F(1)2 F(2)2
F3 F(1)3 F(2)3 F(3)3
... . . .

F1

(1)

F2

(1)/10

F3

(1)/100

7.45 7.46 7.47 7.48 7.49 7.50
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

x

F(1)1 (x) = F1(K) =
∫ x

0

ω(1)(dc − bt)
t2

dt,

F(1)2 (x) =
∫ x

0

c + F1(t)
b

(2F′1(t) + tF′′1 (t))dt,

F(1)3 (x) =
∫ x

0

1
2b2

{
[2(c + F1(t))2 + 4bF(1)2 (t)]F′1(t) + [4t(c + F1(t))2 + 2btF(1)2 (t)]F′′1 (t) + t2(c + F1(t))2F′′′1 (t)

}
dt
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Self-consistency equation

• Fixed-order ω produces a closed set of contributions to all
higher-order β-function terms

• β-ansatz: β(g) = (d− dc)g+ g2 (bN+ c + F(x,N)) , F ≡
∞∑
n=1

Fn
Nn−1

• WFFP: relationship between coupling and dimension

• β′(gc) = ω(d) ⇒ a differential equation for F

∂xF(x,N) = 1
x2
ω(d) = 1

x2
ω

(
dc − x

(
b+

c + F(x,N)
N

))
• ω only known to fixed order: O(1/N) for QED/QCD
⇒ truncate ω(d) = −(d− dc) + 1

Nω
(1)(d)

∂xF (1)(x,N) = 1
x2
ω(1)

(
dc − x

(
b+

c + F (1)(x,N)
N

))
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The large-N limit

∂xF (1)(x,N) = 1
x2
ω(1)

(
dc − x

(
b+

c + F (1)(x,N)
N

))

Solve the DE without taking
the N→ ∞ limit first

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

1

2

3

4

5

6

7

K

β
(K

)

QCD, N = 100

• Includes the higher-order
terms induced by ω(1) that
are not subleading!

• Away from the singularity
(where expansion under
control!) the two limits
agree

• F (1) = N
(a
x − b

)
− c, x & xs

aN = −ω(1)(dc − a)
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Higher-order corrections

• When the O(1/N2) term, ω(2), is included, there are two
possibilites:
1. the closest singularity at x = x(2)s is positive,

• The β-function clearly grows faster than before close to x(2)s ,
so that no zero appears if not there with ω(1)

2. the closest singularity at x = x(2)s is negative.
• Use the same procedure with ω truncated at O(1/N2)

∂xF (2)(x,N) = =
1
x2

[
ω(1)

(
dc − x

(
b+

c + F (2)(x,N)
N

))
+

1
Nω(2)

(
dc − x

(
b+

c + F (2)(x,N)
N

))]
• Same reasoning applies to any fixed-order ω

• For qualitative picture, the exact form of ω is not necessary
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Gross–Neveu model in d = 2

• The GN β-function does not have singularities, but the
same procedure applies for the wild oscillations

• Also 1/N2 coefficient of the critical exponent, λ, is known
⇒ can compare the two truncations

• The solid lines:
Numerical solutions to
the DE for N = 100

• The dotted red line is
the O(1/N2)
β-function.

β(2)
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β1N 2
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0.0

g
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Conclusions

• We computed the full set of gauge-Yukawa β-functions at
O(1/N)

• Complementary information wrt critical exponents
• First time resummation with three-loop basic topology

• A self-consistency equation takes into account the full
available knowledge of the fixed-order critical exponents

• We applied this method to QE(C)D and GN model
• The singularity is removed and the wild oscillations tamed
• In GN also the O(1/N2) coefficient is known and taking that
into account does not change the qualitative picture

• Near the singularity all the higher-order contributions are
relevant and change the picture completely

• Should not trust computations: expansion breaks down
• No hint for a fixed point within the framework
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