Recent developments in large-N s-functions
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Background



Why large N?

- For a theory with large flavour symmetry (like O(N), SU(N)...),
1/N is a good expansion parameter
- Reorganising perturbative expansion in terms of powers of
1/N can give non-perturbative information away from the
Gaussian fixed point

- Example Gross—-Neveu (GN) model in 3d
7 2(.701\2
Lon = idy + g°(vy)
- In 2d asymptotically free
- In 3d not perturbatively renormalisable
-+ But: In the large-N limit can be shown that it is
non-perturbatively renormalisable and there is a UV fixed
pOiI’lt Gawedzki & Kupiainen '85, de Calan, da Veiga, Magnen, Seneor '91

- A prototype for quantum gravity?



What about 4d (without gravity)?

- Gauge-Yukawa theories in the Veneziano limit

. O<efN—i77<<01ﬁxedforNc,Nfaoo
- Scalars needed Litim & Sannino [1406.2337]

- The large-N beta functions have singularities
= speculations about a possible UV FP

A Mann et al, [1707.02942]
— QED Pelaggi et al. [1708.00437]
* _aco Antipin & Sannino [1709.02354]
20 Molinaro, Sannino, Wang [1807.03669]

Cacciapaglia et al. [1812.04005]
Sannino, Smirnov, Wang [1902.05958]
L x Cai & Zhang [1905.04227]




In practise

- Define 't Hooft coupling K = ﬁ%’ which is kept fixed at
N — oo

- Any amplitude can then be expanded as
1 1
AK:pi) = Ao(Ki pi) + 5 A1(Ki pi) + 15 Ao (K pi) +

- For example, diagrams like

are both order 1/N° (g°N ~ K and g*N? ~ K?)

- Infinitely many diagrams contribute at each order in 1/N



In practise

- Each fixed order in 1/N contains all-orders or
non-perturbative information in the traditional
perturbation-theory sense

- 1/N expansion of g-functions convenient: at fixed order in
N, the diagrams grow polynomially only
= finite radius of convergence

- But: Need to resum an inifinite number of diagrams at each
order or use some other methods



Direct resummation: History

- The O(1/N) coefficients of gauge g-functions known

Palanques-Mestre & Pascual (1984), Gracey [hep-ph/9602214]

- The gauge S-function starts positive, but the 1/N coefficient

has a negative singularity at xqep = 15/2 (Xqcp = 3), X = &
B(x)

— QED . .
R —— - Near the singularity 1/N

coefficient exceeds 1/N° one
= speculations about
possible UV fixed point
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Direct resummation: practise

K"ng
(q2)1+ﬂ6/2

@ = Ot O
- Example: QED two-point function
- Mo(p): one-loop

O

: two-loop topologies, all orders

G

- Corresponding 1/N expansion of the s-function

- Bubble chains have net effect: q12 —

2 1
=K+ —F(K) +...
Bk 3 +N1()+



Computation

Task: compute F4(K)

- The renormalisation factor can be written as

> Kn+2 2K\ " 1
) = 1—7—+Z dlv{ ( — 36> I'Iﬁ”)(pz,e)}Jr(’) (I\IZ>

- Eventually, have to resum

n—2
ZKndv{ egpjf) <nk2>(nk)11(1)k}

k=0




Computation

Task: compute F4(K)

- The renormalisation factor can be written as

Kn+2 2K\ " 1
Zy = 1—;+Z dlv{ ( - 36> nﬁ”)(pZ,e)}w <N2>

- Eventually, have to resum

oo o) n-2
Z_; KMdiv{ > Wégpj’f) > ( ' R ’ ) (n—RY='(=1)"

j=0 k=0

- Euler’s finite difference theorem Palanques-Mestre & Pascual '84
()

n—2 n—-o , n(n—1) /=0

Z( ) — Ry =40 je(n—2)

k=0 .
anjn! J>n-=2



Computation

Task: compute F4(K)

- The renormalisation factor can be written as

> Kn+2 2K\ " 1
ZA_1—+Zd|v{ < —36> I'Iﬁ”)(pz,e)}Jr(’) (I\IZ>

- Eventually, have to resum
ZK”dw (pz,e) N
en—i-

- Finally
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2K K2 & K\ 1 1
ZA —1—5; N 2 <_3> le{€n1(n1)n7r0(€)}+O (I\I2>

- Consistency check: mo(p?, €) = mo(€) independent of p?



The dust settles

- Only the 1/e part contributes to the g-function

> kn+1

_1 (n)_T/K
7€Zn+17r0 =<, mo(€)de

1/e n=0

o¢] Kn

- Coupling K and the dimension d = 4 — ¢ are exchanged as
final outcome of the large-N resummation!

A

- Result: o

=00 —t/3) (1 +t/2)T (4 —t) )
F1(I<)—/ dt 6r2(2 —t/2)r3 —t/2)r(1+1t/2)  *

- First singularity at K =15/2 e




Revival of interest

- Gauge contribution to the Yukawa g-function

Kowalska & Sessolo [1712.06859]
- Semi-simple gauge groups Antipin et. al [1803.09770]
- a-theorem at large N Antipin et al. [1808.00482]

Full gauge-Yukawa S-functions at large N
TA & Blasi [1806.06954, 1808.03252

TA, Blasi, Dondi [1904.05751]

- Critical look at g-function singularities

TA, Blasi, Dondi [1905.08709]



Critical point method

- So how about QCD?
- Fermion bubble chains as in QED, but more basic topologies
due to non-abelian vertices (double chains)
- Direct resummation impossible, results from critical point
method
- Exploits conformal properties of the theory in arbitrary
dimension close to the Wilson-Fisher fixed point

- Developed by Vasiliev, Pismak & Honkonen in early 80's

- Universality is used to connect theories in the same class
(e.g. QCD and non-abelian Thirring Model)



Critical point method

- In arbitrary dimension d = d. — ¢, the s-function for a
one-coupling theory is

B(g) = —eg + bg* + ...
- The critical coupling, g, at the WF fixed point satisfies
B(ge)=0 < gczg—k...

- This signals a phase transition whose properties are
encoded in the critical exponents, e.g.

w=p"(9c), 1="4(9c)



Critical point method: practise

The exponents w,n are computed by:

- making a scaling ansatz for the propagators at the WF fixed
point

p B
M N T

- solving the Schwinger-Dyson equation at large N, which
yields algebraic equations for the critical exponents (d only

variable)

0=v9y' + &%, + é(j% + éé

0:A;j+m©m +m@m+%@3&}m

- using the relations among the different exponents



Critical point method: some literature

- O(N) model: n up to O(1/N3)

Vasiliev, Pismak, Honkonen 81, '82

« Gross-Neveu model, n up to O(1/N?)

Gracey '91, '92, '94, Vasiliev, Derkachov, Kivel, Stepanenko 93,
Valiliev & Stepanenko '93

- Gross-Neveu-Yukawa model, w up to O(1/N?)
Gracey '17, Manashov & Strohmaier '18

- QED & QCD, w up to O(1/N), n up to O(1/N?)
Gracey '93, '96, Ciuchini, Derkachov, Gracey, Manashov '00

- Wess-Zumino model, w up to O(1/N?)

Ferreira & Gracey '98



Large N for Yukawa models

With Simone Blasi JHEP 1808 (2018), PRD 98 (2018)
and Simone Blasi & Nicola Dondi, EPJC 79 (2019)



Gross—-Neveu-Yukawa model

- N massless fermion flavours, ¢, a massless real scalar, ¢

Loy = iy — 50,006 + 01609 + 96"

- Same universality class that describes critical properties of
the Mott transition in graphene

2
- Rescaled couplings: y = g—“, K=2yN, and A = 92
872 872

- p-functions at O(1/N)
By =(d —dc)y +y*(2N + 3 + F(yN))
B =(d — de)A +y* (=N + F2(yN))
+ X2(36 4 F3(yN)) 4+ YA(&N + F4(yN)).

- Perturbatively known up to four loops  zerf et al. [1709.0505/]



Critical exponents for two-coupling case

- Two-coupling model = two critical exponents, w4

- wy are the eigenvalues of the Jacobian [94;/dg;] at WFFP

- 9% = 0 at O(1/N) = w directly correspond to 22 and aﬁy
+ Known up to O(1/N?)

- Suggest shrinking radius of convergence 1/N — 1/N?

Gracey [1707.05275], Manashov & Strohmaier [1711.02493]



Critical exponents for two-coupling case

- Two-coupling model = two critical exponents, w4
- wy are the eigenvalues of the Jacobian [94;/dg;] at WFFP
- 9% = 0 at O(1/N) = w directly correspond to 22 and aﬁy
+ Known up to O(1/N?)
- Suggest shrinking radius of convergence 1/N — 1/N?
Gracey [1707.05275], Manashov & Strohmaier [1711.02493]

- Comparing with the B-function ansatz, we get

t,,(0) 2
Fq(t):/0 w‘eg 6)de, and

30 — 2F1(e/2) + F3(€/2) + Fu(e/2) =2

1
w(e)
€

- ) cannot be computed with the knowledge of w only
- in particular, F, is fully unconstrained



Direct resummations

- Direct resummation to get the missing information
- First the Yukawa coupling TA, Blasi [1806.06954]

cInZg = n(25'27%22)

F
© Zs = 1— div{ZsMo(p?, ZkK, €) } @

© Zp =1—div{Zo(p? ZkK,€) } ¢ %

OO - OO

- Zy =1—div{Vo(p?, ZK, €)}

= 1—n
Zs=1-— ; - ZK” {( - ) <2r|§) [z(”*” - v‘”*”] + r|<”)>}

+a new summation rule

S n-2 Syt S =0
S ey =
‘ I (n—i="1) ) j=1...,n—=1

=0 n—1

- Straight-forward extension to gauge-Yukawa system
TA, Blasi [1808.03252]



Direct resummations

- The quartic a bit more complicated

- First time resummation with three-loop basic topology!
- Possible, because the double chains can be reduced to a
single one

@O

®-00-X

o
JORS

g & o
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- We were able to compute the full systen of GNY -functions
at O(1/N)

- The closer singularity at O(1/N?) is actually already present
at O(1/N) but is cancelled in the combinations of F;

entering wy
t w(j)(ze) 100
Fi(t) = / 2 de, 50 ~ rosto
0 0 oF — F()
- — F()
30 — 2F1(e/2) + F3(e/2) + Fu(e/2) = @3 () — A0
€ -1

21



Critical look at the 5-function
singularities

With Simone Blasi & Nicola Dondi, PRL123 (2019)



The large-N S-function

- Large-N ansatz

8(g) = (d —dc)g +g° <bN+c+Z Y= )

- Option 1: Compute F, directly by resumming diagrams

(- A o

23



The large-N S-function

- Large-N ansatz

8(g) = (d —dc)g +g° <bN+c+Z Y= )

- Option 1: Compute F, directly by resumming diagrams

- - o

- Option 2: Get the slope of the g-function at WFFP

- 1/N expansion of the critical exponent, w, in arbitrary
dimensions using CFT methods Vvasiliev et al, Gracey...

()
(o) =w(d) =Y S

n=0

- Computing -function in terms of w turns out convenient

23



Shadows on the fixed point

- For QED the fermion mass anomalous dimension, vm,
diverges at the g-function singularity violating the unitarity
bound Espriu et al. (1982), Antipin & Sannino [1709.02354]

- The same for the anomalous dimension of the glueball
operator Ryttov & Tuominen (2019) [1903.09089]

- Similar arguments for 2d GN model would suggest an
infinite number of IR fixed points

- Singularity structure of higher-order contributions?
Example: O(N) model, where O(1/N?) has a different sign
nearer singularity wrt O(1/N) Gracey [hep-ph/9609409]

- Recent lattice studies suggest a Landau pole

Leino et al. [1908.04605

2%



Shadows on the fixed point

The O(1/N) critical exponent contributes to all F, and generates
a sequence of alternating—sign singularities

TA, Blasi, Dondi ( ), [1905.08709]
0.5

w1 w? w3 04F __ gm

@] 03— Ao
F1 1 5 02F — F{"roo
F | FY O F9

(M (2 £6) 00
ENRE RN R _mg\
: -0.2b . : : :
. 7.45 7.46 7.47 7.48 7.49 7.50

((dc — bt)

FO () = Fr(K) = / —at,
FO(x) = /O RO arr) + ry ()0,

FO(x) = /'X - {[z(c + F(0)) + 6bF OF (D) + [4t(c + (1)) + 2btFD (O] (1) + Ec + F1(t))2F{”(t)}dt
JOo
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Self-consistency equation

- Fixed-order w produces a closed set of contributions to all
higher-order g-function terms

n

* f-ansatz: B(g) = (d — do)g + g° (bN + c + F(x,N)), F=>_ N
n=1

- WFFP: relationship between coupling and dimension

26



Self-consistency equation

- Fixed-order w produces a closed set of contributions to all

higher-order g-function terms
- B-ansatz: f(g) = (d — d)g + ¢ (DN +C+ F(x W), F=3 o
n=1

- WFFP: relationship between coupling and dimension
- 8'(gc) = w(d) = a differential equation for F

OF (X, N) = ;iw(d) = Xl#’ (C’C - <b - CJFFN(XN)»
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Self-consistency equation

- Fixed-order w produces a closed set of contributions to all

higher-order g-function terms

* f-ansatz: B(g) = (d — do)g + g° (bN + c + F(x,N)), F=>_ N
n=1

- WFFP: relationship between coupling and dimension
- 8'(gc) = w(d) = a differential equation for F

OF (X, N) = ;iw(d) = Xlﬁ’ (dc - (b - CJFJTI\I(XI\I)»

- w only known to fixed order: O(1/N) for QED/QCD
= truncate w(d) = —(d — d¢) + fw((d)

(1
BF N N) = L <dﬁ . (b . +fN<N>>>

26



The large-N limit

(M
AFV(x,N) = Xl2w(1) (dc _x (b + C"’_}—N(X’N) ))

27



The large-N limit

) (xpy Y
9Py = L) <dc ., (b o 200y ))

Take first the limit, and then
solve the DE:

QCD, N =100

B(K)
R S S S B R

27



The large-N limit

(M
AFV(x,N) = Xl2w(1) (dc _x (b + C"’_}—N(X’N) >>

Solve the DE without taking

the N — oo limit first
‘ ‘ QC‘D,N=‘100 ‘

7E

BK)
o - M w » o o

0.0 0.5 1.0 15 2.0 25 3.0 3.5

- Includes the higher-order

terms induced by w() that
are not subleading!

- Away from the singularity

(where expansion under
control!) the two limits
agree

. ]—"‘”:N(%—b)—c, X 2 Xs

aN = —w(dc — a)
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Higher-order corrections

- When the O(1/N?) term, w®), is included, there are two
possibilites:
1. the closest singularity at x = x§2) is positive,
- The B-function clearly grows faster than before close to x§2>,
so that no zero appears if not there with w(

2. the closest singularity at x = x§2> is negative.
- Use the same procedure with w truncated at O(1/N?)

(2)

1 FO(x,N
)

- Same reasoning applies to any fixed-order w
- For qualitative picture, the exact form of w is not necessary

28



Gross—Neveu model in d =2

- The GN g-function does not have singularities, but the
same procedure applies for the wild oscillations

- Also 1/N? coefficient of the critical exponent, ), is known
= can compare the two truncations

0.0

- The solid lines: 02}
Numerical solutions to o4l
the DE for N =100

- The dotted red line is o8|
the O(1/N?) ok

~0.00 0.02 0.04 0.06 0.08 0.10

B-function. 0
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Conclusions

- We computed the full set of gauge-Yukawa S-functions at
O(1/N)

- Complementary information wrt critical exponents
- First time resummation with three-loop basic topology

- A self-consistency equation takes into account the full
available knowledge of the fixed-order critical exponents
- We applied this method to QE(C)D and GN model
- The singularity is removed and the wild oscillations tamed

- In GN also the O(1/N?) coefficient is known and taking that
into account does not change the qualitative picture

- Near the singularity all the higher-order contributions are
relevant and change the picture completely

- Should not trust computations: expansion breaks down
- No hint for a fixed point within the framework
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