QCD corrections for the Drell-Yan process

> Werner Vogelsang Tübingen Univ.

> > CERN, 26/04/10

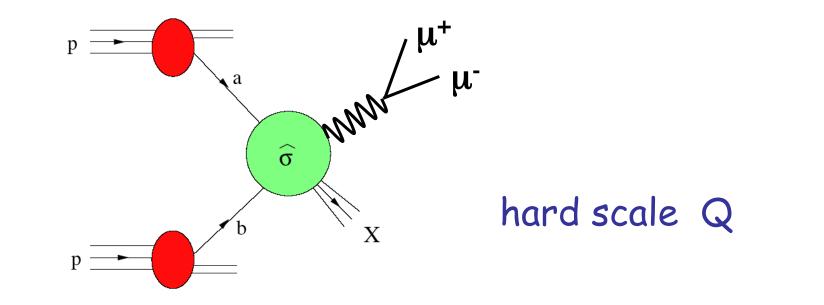
Drell-Yan is probably theoretically best explored process in hadronic scattering:

- in pp, pN: probe of anti-quark distributions
- in πN : probe of pion structure
- important spin phenomena
- interface of QCD and QED/el.weak interactions
- LO is color-singlet annihilation $\,q\bar{q} \to \gamma^*$
 - higher-orders under control
 - higher-order computations "easier"
- techniques relevant for $\ gg \to H$

Outline:

- Introduction: Factorized hadronic scattering
- Fixed-order calculations
- Resummation
- Threshold resummation: some phenomenology for COMPASS
- Conclusions

Introduction: Factorized hadronic scattering

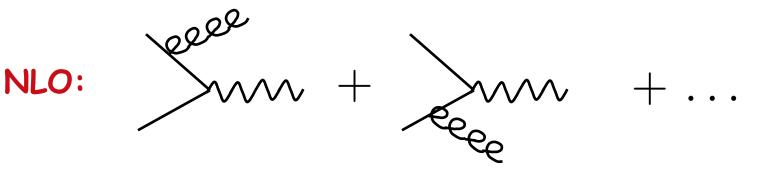


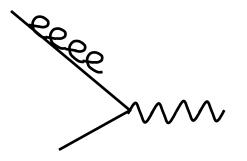
$$d\sigma = \sum_{ab} \int dx_a \int dx_b f_a(x_a, \mu) f_b(x_b, \mu) d\hat{\sigma}_{ab}(x_a P_a, x_b P_b, Q, \alpha_s(\mu), \mu)$$

universal pdfs partonic hard scatt.
perturbative QCD
$$\mu \sim Q \quad \text{factorization scale} \qquad d\hat{\sigma}_{ab} = d\hat{\sigma}_{ab}^{\text{LO}} + \alpha_s d\hat{\sigma}_{ab}^{\text{NLO}} + \dots$$

up to power corrections $1/Q^2$

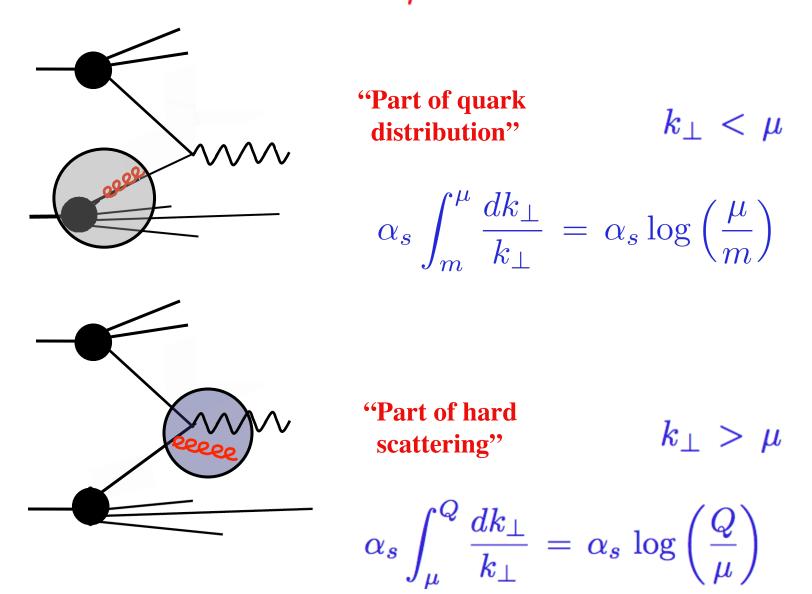
LO:





Collinear singularity

• introduce "factorization" scale μ



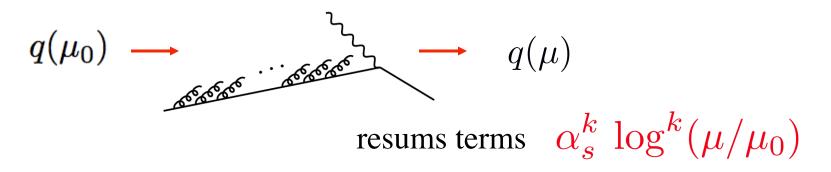
• factorization allows to systematically do this to all orders in α_s :

$$d\sigma = q\left(\frac{\mu}{m}, \alpha_s(\mu)\right) \otimes d\hat{\sigma}\left(\frac{Q}{\mu}, \alpha_s(\mu)\right) \otimes \bar{q}\left(\frac{\mu}{m}, \alpha_s(\mu)\right)$$

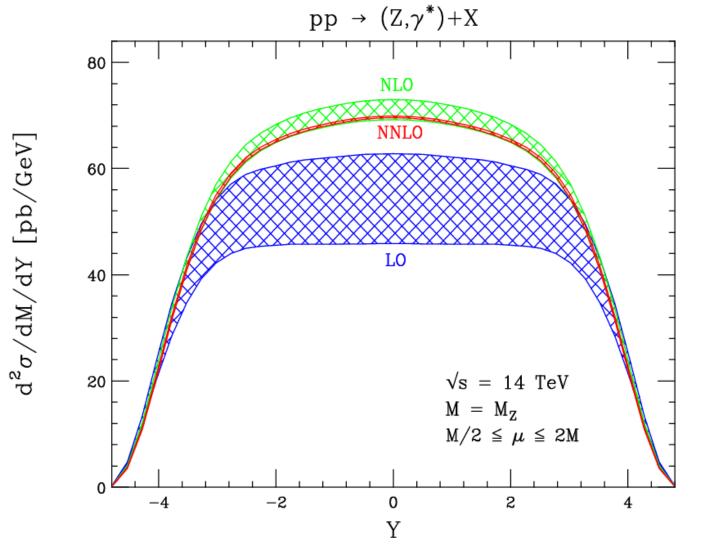
• $d\sigma$ is physical :

$$\mu \frac{d\sigma}{d\mu} = 0$$

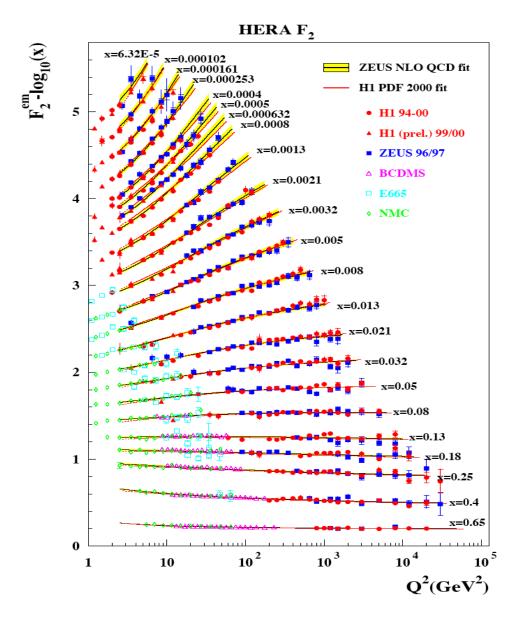
• gives evolution equations for parton distribution functions

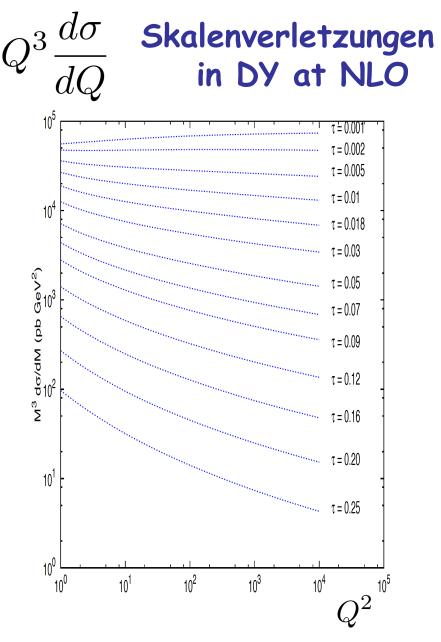


• choose $\mu \sim Q$. Dependence on scale μ decreases order by order



Anastasiou et al.





(M. Aicher)

Fixed-order calculations

$$d\hat{\sigma}_{ab} = d\hat{\sigma}_{ab}^{\rm LO} + \alpha_s \, d\hat{\sigma}_{ab}^{\rm NLO} + \alpha_s^2 \, d\hat{\sigma}_{ab}^{\rm NNLO} + \dots$$

	Unpol.	Long. pol.	Trans. pol.
NLO	Kubar et al. Altarelli, Ellis,Martinelli Harada et al.	Ratcliffe Weber Gehrmann Kamal de Florian, WV	Weber, WV WV Contogouris et al. Barone et al.
NNLO	Hamberg, van Neerven, Matsuura Harlander, Kilgore Anastasiou, Dixon, Melnikov, Petriello Catani et al.	Smith, v.Neerven Ravindran	

NLO:

$$\frac{d\hat{\sigma}}{dQ^2} \sim C_F \left[4(1+z^2) \left(\frac{\ln(1-z)}{1-z}\right)_+ - 2\frac{1+z^2}{1-z} \ln z + \left(\frac{2}{3}\pi^2 - 8\right) \delta(1-z) + 2P_{qq}(z) \ln \frac{Q^2}{\mu^2} \right]$$
$$z = \frac{Q^2}{\hat{s}}$$

• DGLAP evolution:

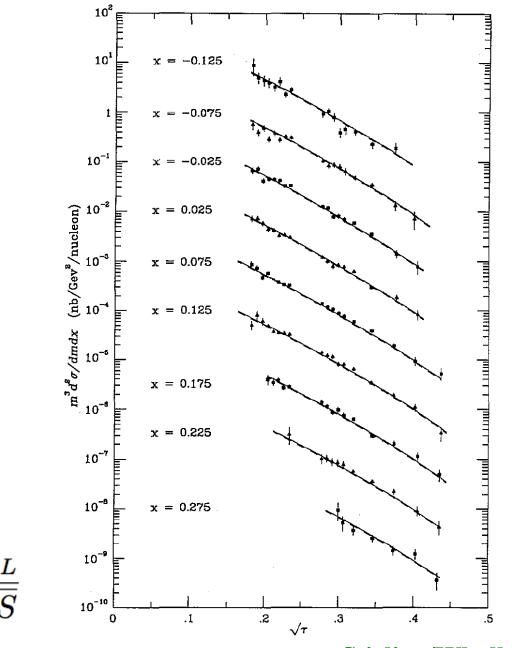
$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \begin{pmatrix} q(x,\mu^2) \\ g(x,\mu^2) \end{pmatrix} = \int_x^1 \frac{\mathrm{d}z}{z} \begin{pmatrix} \mathcal{P}_{qq} & \mathcal{P}_{qg} \\ \mathcal{P}_{gq} & \mathcal{P}_{gg} \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} \begin{pmatrix} \frac{x}{z}, \mu^2 \end{pmatrix}$$

$$\mathcal{P}_{ij} = \frac{\alpha_s}{2\pi} \quad \mathcal{P}_{ij}^{\mathrm{LO}} + \left(\frac{\alpha_s}{2\pi}\right)^2 \quad \mathcal{P}_{ij}^{\mathrm{NLO}} + \left(\frac{\alpha_s}{2\pi}\right)^3 \quad \mathcal{P}_{ij}^{\mathrm{NNLO}} + \dots$$
Ahmed,Ross
Altarelli,Parisi,...
Petronzio
Antoniadis,Kounnas,
Lacaze
Mertig, van Neerven
WV
Kumano et al.
Koike et al.
WV

NLO quite successful overall for inclusive DY:

E605 (800 GeV pC)

NLO scaled by 1.071

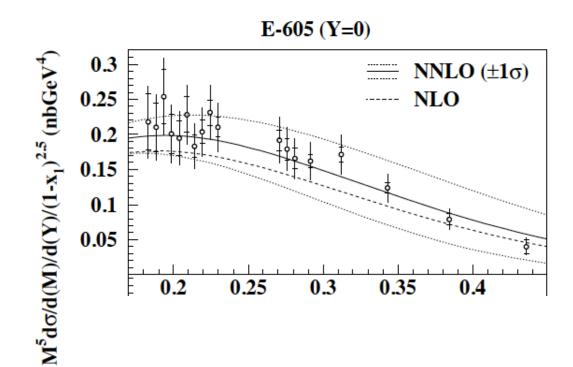


 $x = \frac{2p_L}{\sqrt{S}}$

Stirling/Whalley

Alekhin, Melnikov, Petriello:

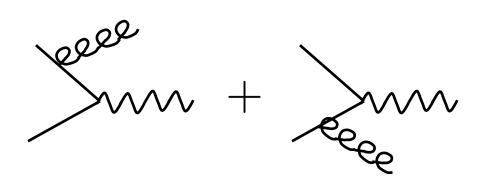
NNLO important for improving precision of sea quark distributions in pdf fits:



Note: also a lot of interest in DY process with measured photon transverse momentum q_T

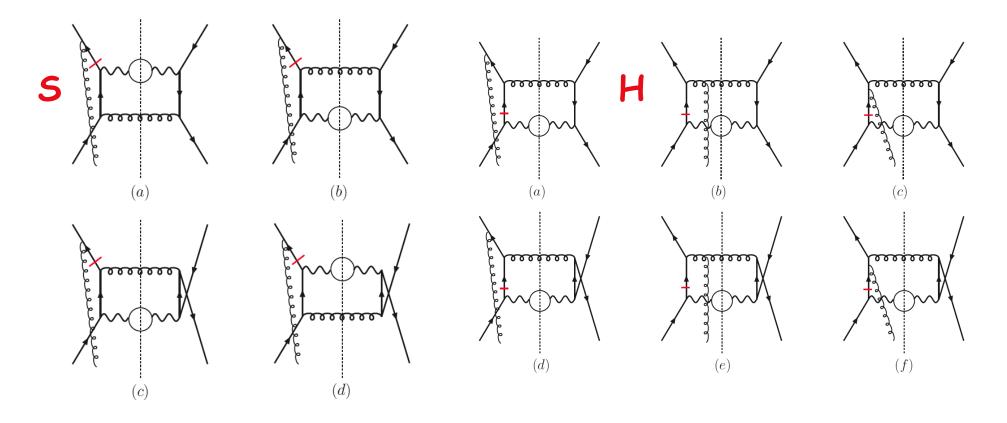
Here LO already has one gluon:

LO:



NLO: Gonzalves, Pawlowski, Wai; Mirkes, Ohnemus Berger, Coriano, Gordon de Florian et al. also: NLO correction to DY single-spin asymmetry Yuan, WV

Real emission:



Plus virtual

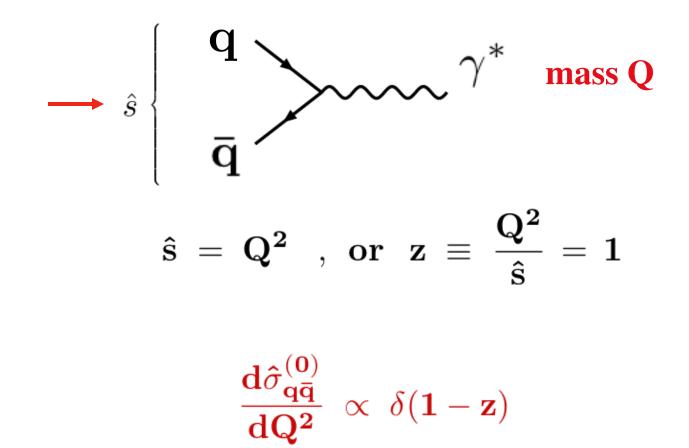
Final finite result ...

WV,Yuan

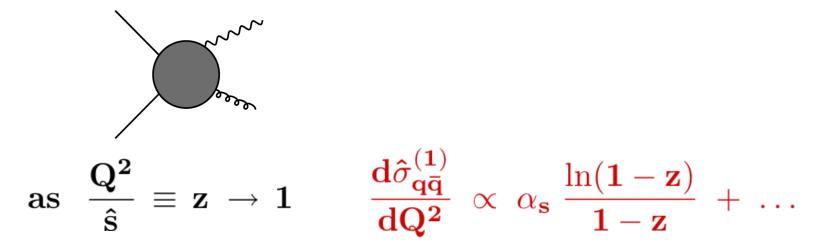
$$\begin{aligned} \frac{d\langle q_{\perp} \Delta \sigma(S_{\perp}) \rangle}{dQ^2} &= \sigma_0 \int \frac{dx}{x} \frac{dx'}{x'} T_F(x, x; \mu) \bar{q}(x'; \mu) \\ &+ \sigma_0 \frac{\alpha_s}{2\pi} \int \frac{dx}{x} \frac{dx'}{x'} \left\{ \bar{q}(x') \left[\ln \frac{Q^2}{\mu^2} \left(C_F \mathcal{P}_{qq} + \mathcal{P}_{qg \to qg} \otimes T_F(x, xz) \right) \right. \\ &+ \frac{1}{2N_c} \left(x \frac{\partial}{\partial x} T_F(x, x) \right) (1 + z^2) \ln \frac{(1 - z)^2}{z} + \left(2 \left(\frac{\ln(1 - z)}{1 - z} \right)_+ - \frac{\ln z}{1 - z} \right) \right. \\ &\times \left(\left(C_F(1 + z^2) + \frac{2z^3 - 3z^2 - 1}{2N_c} \right) T_F(x, x) + \left(\frac{1}{2N_c} + C_F \right) (1 + z) T_F(x, xz) \right) \\ &+ T_F(x, x) \left(\left(C_F + \frac{z}{2N_c} \right) (1 - z) + C_F \left(\frac{2\pi^2}{3} - 8 \right) \delta(1 - z) \right) \right] \\ &+ \int \frac{dv}{1 - z} \left(\frac{1}{v_+} + \frac{1}{(1 - v)_+} \right) T_F(x, x \frac{z}{1 - v(1 - z)}) \bar{q}(x') \\ &\times \left[(1 - v(1 - z))^3 + z \right] \left(\frac{1}{2N_c} + C_F \frac{1}{1 - v(1 - z)} \right) \end{aligned}$$

+ gluon terms + \tilde{T}_F terms

• LO partonic cross section :

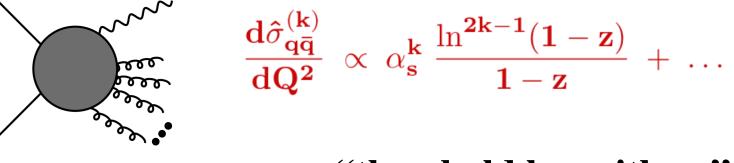


• NLO correction:



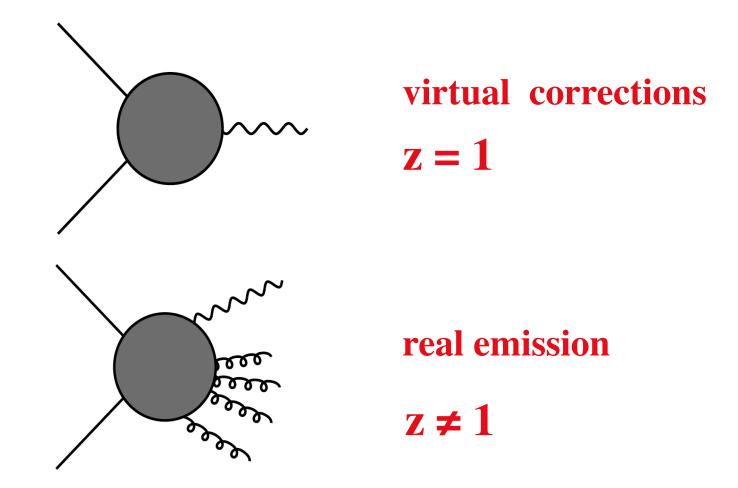
(same for unpolarized, long. & transv. polarized)

• higher orders :



"threshold logarithms"

What's the origin of the logarithms?



For z→1 real radiation is inhibited, only soft emission is allowed: affects IR cancellations

- of course, one doesn't really measure partonic energy
- nevertheless :

 $au = \mathbf{Q^2}/\mathbf{S}$

$$\sigma^{\mathbf{DY}} \propto \sum_{\mathbf{a},\mathbf{b}} \int_{\tau}^{1} \frac{d\mathbf{x}_{\mathbf{a}}}{\mathbf{x}_{\mathbf{a}}} \mathbf{f}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}) \int_{\tau/\mathbf{x}_{\mathbf{a}}}^{1} \frac{d\mathbf{x}_{\mathbf{b}}}{\mathbf{x}_{\mathbf{b}}} \mathbf{f}_{\mathbf{b}}(\mathbf{x}_{\mathbf{b}}) \hat{\sigma}_{\mathbf{ab}}(\mathbf{z} = \tau/\mathbf{x}_{\mathbf{a}}\mathbf{x}_{\mathbf{b}})$$

$$= \sum_{\mathbf{a},\mathbf{b}} \int_{\tau}^{1} \frac{d\mathbf{z}}{\mathbf{z}} \mathcal{L}_{\mathbf{ab}} \left(\frac{\tau}{\mathbf{z}}\right) \hat{\sigma}_{\mathbf{ab}}(\mathbf{z})$$

$$\mathbf{z} \sim 1 \text{ emphasized, in particular as } \tau \rightarrow 1$$

- large logs will spoil perturbative series, unless taken into account to all orders
 - = (Threshold) Resummation !
- particularly relevant for fixed-target regime
- work began in the '80s with Drell-Yan process
 Sterman; Catani, Trentadue
 various new techniques: Forte, Ridolfi; Becher, Neubert
 van Neerven, Smith, Ravindran
 Laenen, Magnea

Resummation relies on two things:

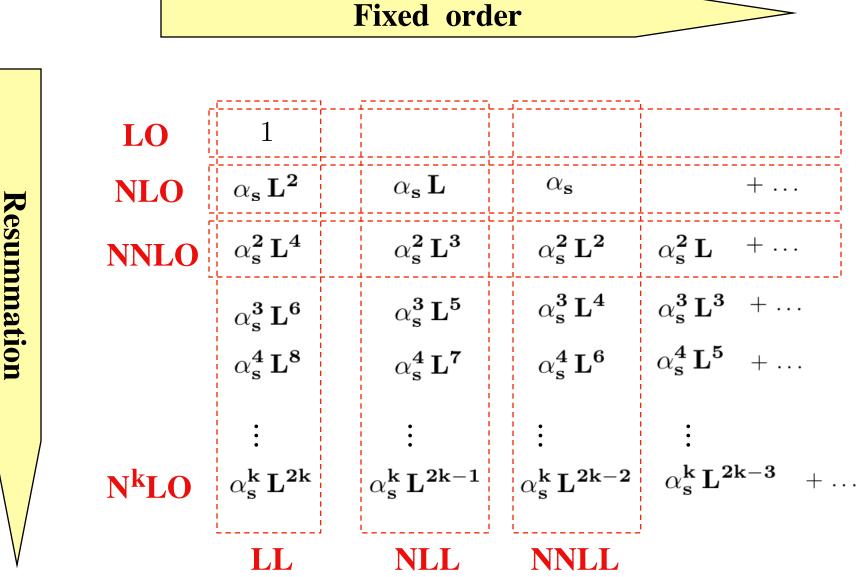
- simplification of QCD matrix elements in soft/collinear limits
- factorization of phase space when integral transform is taken:

sc. variable of the process

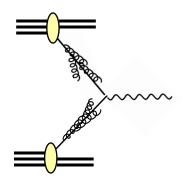
$$\int \int \int \frac{z_{1}}{z_{1}} \int \int \frac{z_{1}}{z_{2}} = \frac{1}{z_{1}} \int \frac{1}{2\pi i} \int \frac{1}{2\pi i} \int \frac{1}{z_{1}} \int \frac{1}{z_{1}} \int \frac{z_{1}}{z_{1}} \int \frac{1}{z_{1}} \int \frac{1}{z_{1}} \int \frac{z_{1}}{z_{1}} \int \frac{1}{z_{1}} \int \frac{1}{z$$

• typically leads to exponentiation of large logs

• General structure ?



Drell-Yan:

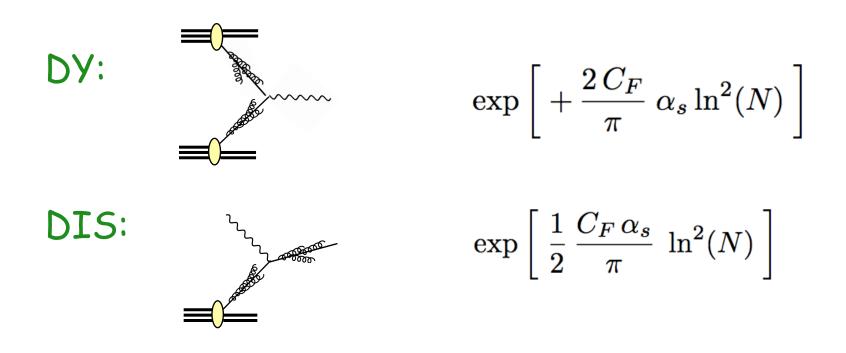


MS scheme:

$$\hat{\sigma}_{q\bar{q}} \propto \exp\left[2\int_{0}^{1} dy \, \frac{y^{N} - 1}{1 - y} \int_{\mu_{F}^{2}}^{Q^{2}(1 - y)^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A_{q}\left(\alpha_{s}(k_{\perp}^{2})\right) + \dots\right]$$
$$A_{q}(\alpha_{s}) = \frac{\alpha_{s}}{\pi} A_{q}^{(1)} + \left(\frac{\alpha_{s}}{\pi}\right)^{2} A_{q}^{(2)} + \dots$$
$$A_{q}^{(1)} = C_{F} \qquad A_{q}^{(2)} = \frac{1}{2} C_{F} \left[C_{A}\left(\frac{67}{18} - \zeta(2)\right) - \frac{10}{9} T_{R} N_{f}\right]$$

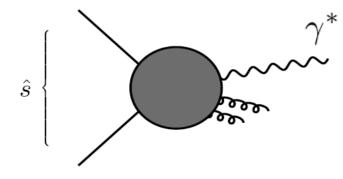
Leading logs:
$$\hat{\sigma}_{q\bar{q}} \propto \exp\left[+\frac{2C_F}{\pi}\alpha_s\ln^2(N)\right] > 1$$

 role of parton distribution functions and factorization scheme:



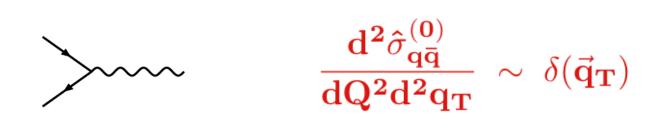
• would in principle need "resummed" parton distributions, but effects in DIS smaller

Large logarithms also appear in transverse-momentum distribution:

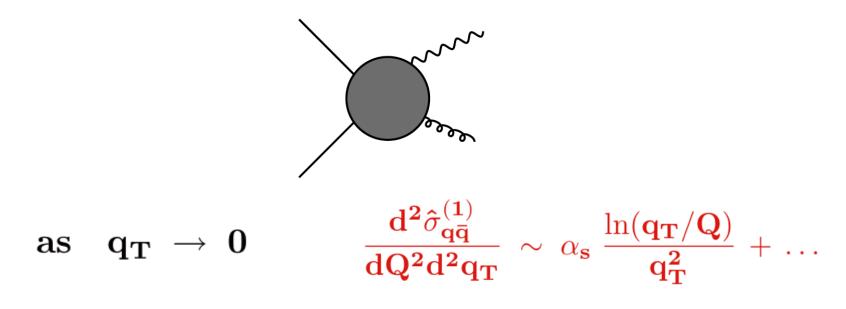


mass Q, transv. momentum q_T

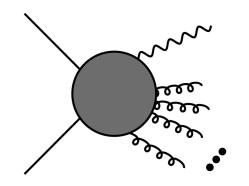
• LO partonic cross section :



• first-order correction :



higher orders :



$$\frac{d^2 \hat{\sigma}_{q\bar{q}}^{(k)}}{dQ^2 d^2 q_T} \sim \alpha_s^k \frac{\ln^{2k-1}(q_T/Q)}{q_T^2} + \dots$$

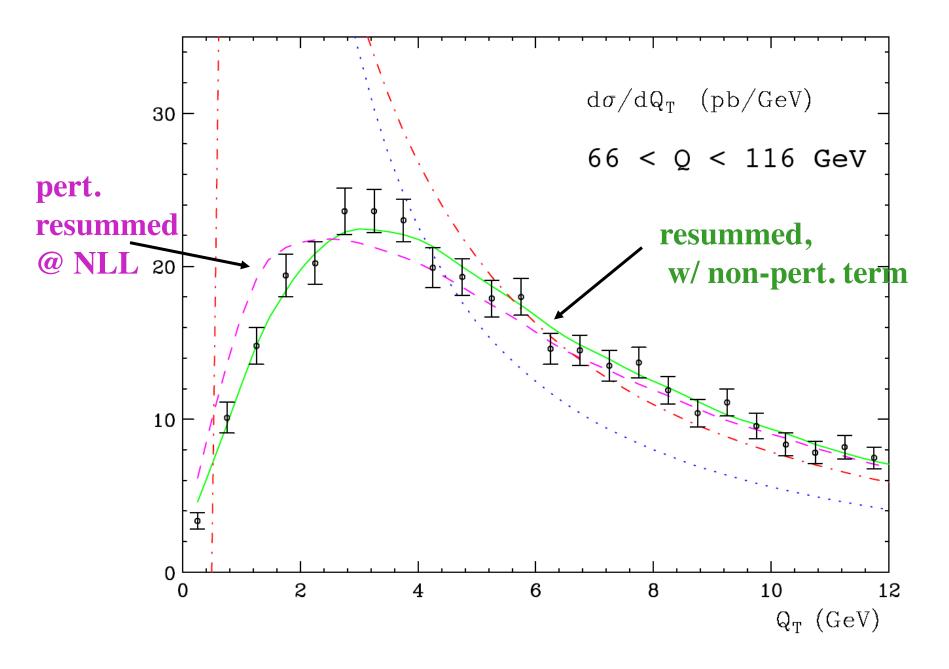
"recoil logarithms"

• can be resummed with similar techniques:

$$\delta^{2} \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right) = \frac{1}{(2\pi)^{2}} \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{q}}_{T} + \sum_{i} \vec{k}_{T}^{i} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)} \\ \int d^{2} \mathbf{b} \, e^{-i\vec{\mathbf{b}} \cdot \left(\vec{\mathbf{b}} \right)}$$

Collins, Soper, Sterman; Altarelli,Ellis,Greco,Martinelli; Davies, Stirling;... Weber; Kawamura,Kodaira,Tanaka;...

Kulesza, Sterman, WV



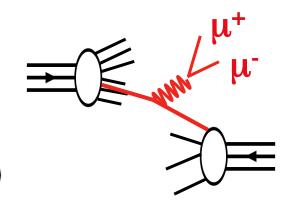
Why non-perturbative piece ?

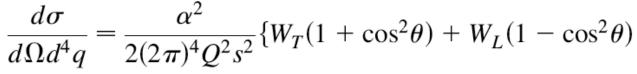
$$\exp\left[\int_{0}^{\mathbf{Q}^{2}} \frac{d\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2}} \left(\mathbf{J}_{0}(\mathbf{b}\mathbf{k}_{\perp}) - \mathbf{1}\right) \left\{\frac{2\mathbf{C}_{\mathbf{F}}}{\pi} \alpha_{\mathbf{s}}(\mathbf{k}_{\perp}^{2}) \ln\left(\frac{\mathbf{Q}^{2}}{\mathbf{k}_{\perp}^{2}}\right) + \dots\right\}\right]$$

Contribution from very low $k_{\!\perp}$

$$\exp\left[-\mathbf{b^2} \frac{\mathbf{C_F}}{\pi} \int d\mathbf{k}_{\perp}^2 \,\alpha_{\mathbf{s}}(\mathbf{k}_{\perp}^2) \ln\left(\frac{\mathbf{Q}}{\mathbf{k}_{\perp}}\right)\right]$$
$$\mathbf{g_1} + \mathbf{g_2} \ln(\mathbf{Q^2}/\mathbf{Q_0^2})$$

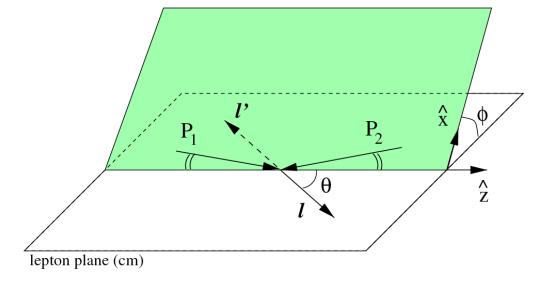
Relevant for TMD studies !



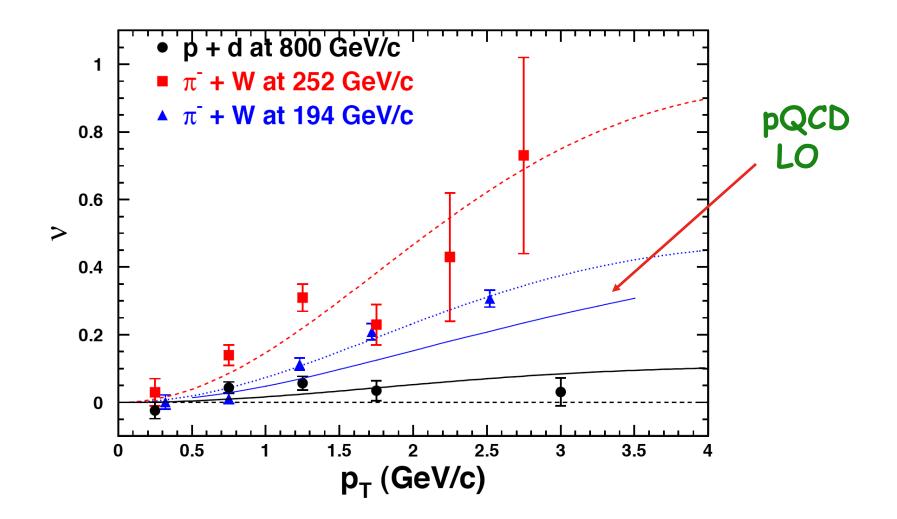


+ $W_{\Delta} \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi$ }

Lam, Tung; Collins

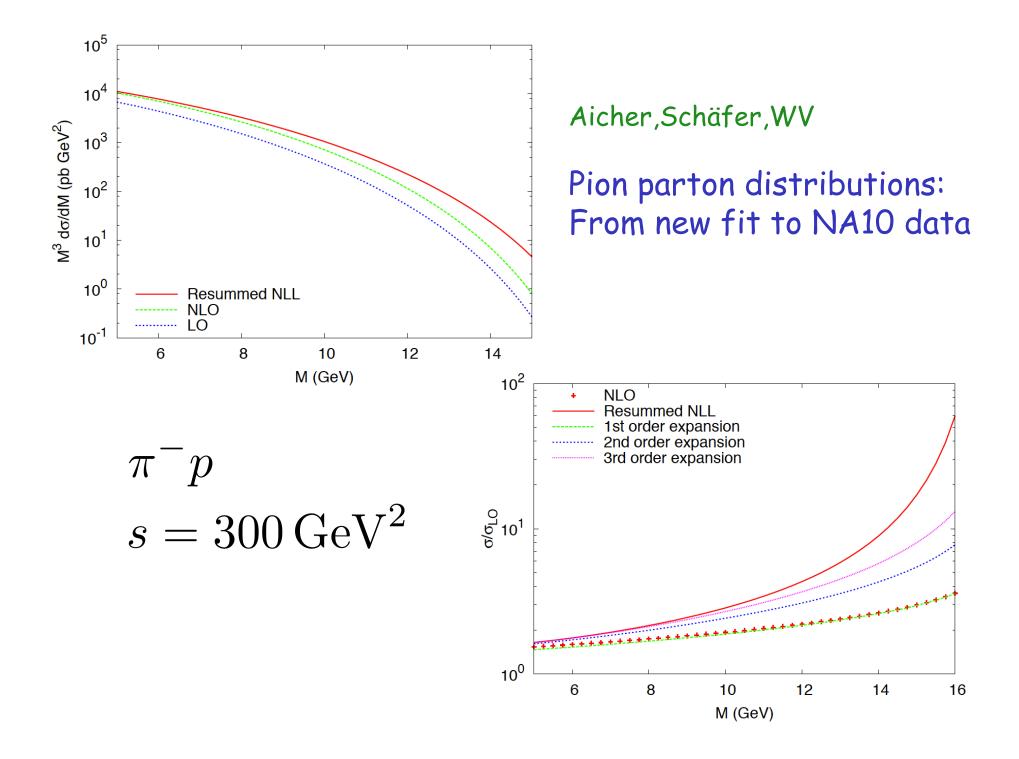


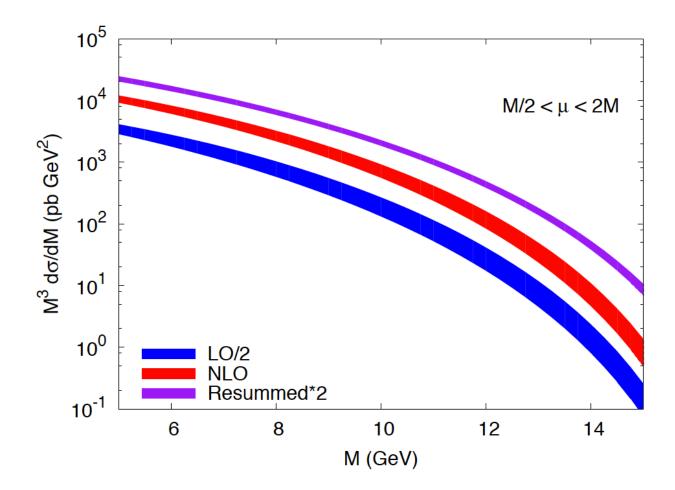
 $1 - \lambda - 2\nu = 0$ Lam-Tung relation

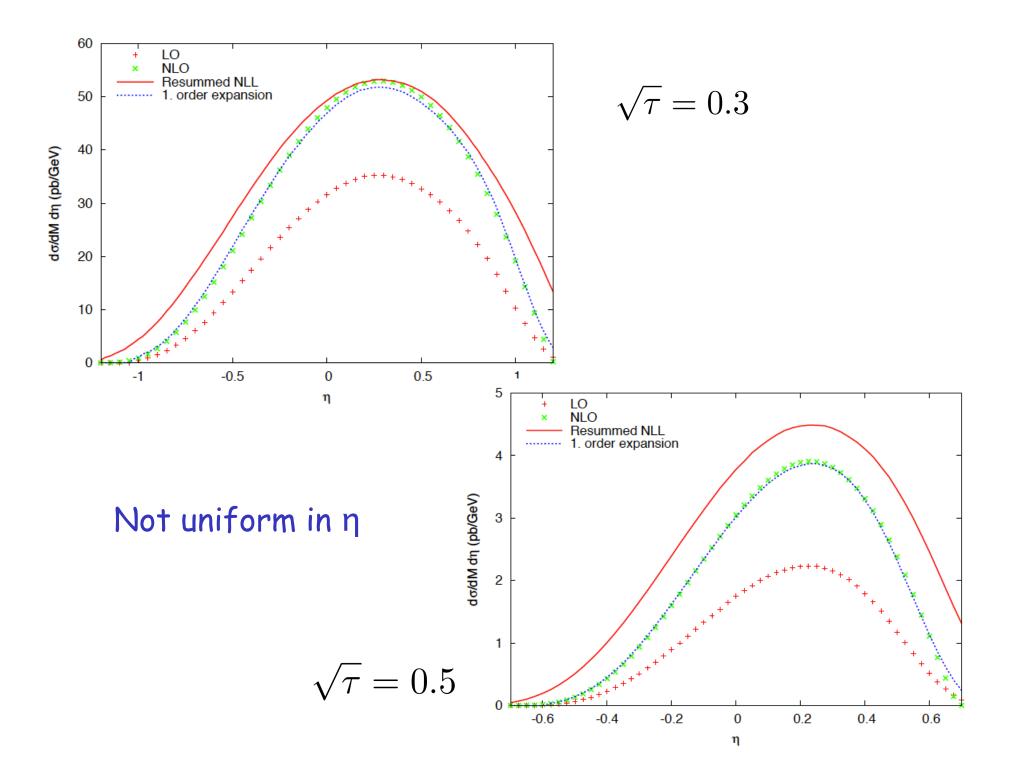


• large Sudakov logs $\alpha_s^k \ln^{2k-1}(p_T^2/Q^2)$ in numerator and denominator of v (same LL resummation) Boer, WV; Berger, Qiu, Rodriguez-Pedraza

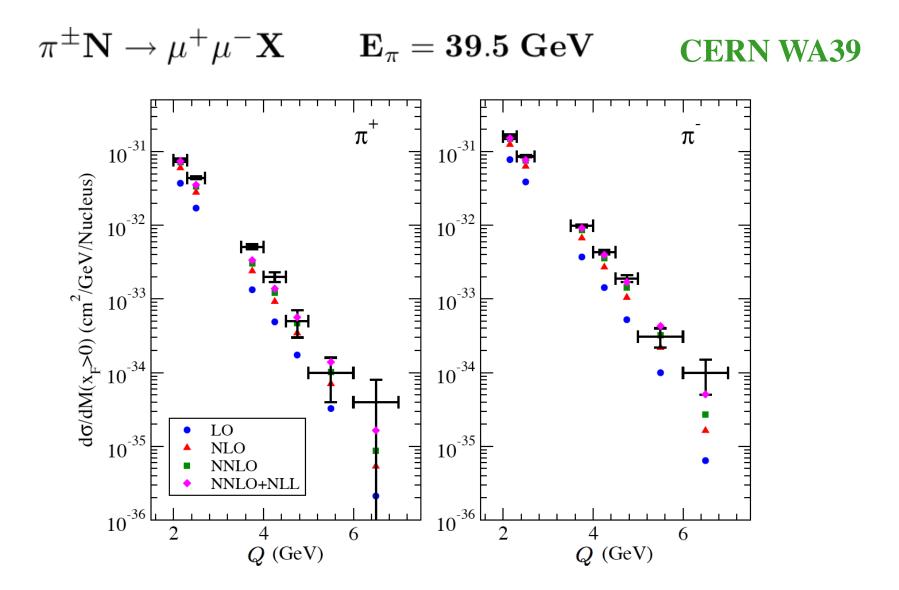
Threshold resummation: some phenomenology for COMPASS







Any evidence for large effects in Drell-Yan?



Shimizu, Sterman, Yokoya, WV

- understanding of higher-order QCD corrections in Drell-Yan cross section very advanced: NLO, NNLO, resummations to NLL, NNLL
- QCD corrections important, in particular in fixed-target regime
- some open ends: resummation for angular dependence <-> TMDs
- many opportunities for fixed-target DY experiments: pion structure nuclear pdfs? test of higher orders in pert. Theory TMDs