Basics facts about TMD factorization and universality

Alessandro Bacchetta University of Pavia and INFN

Factorization

Factorization

QCD without factorization is almost useless*

*I added this sentence after this morning comments, so it might be too strong

Universality

$$
\begin{aligned}
& 45=3 \times 3 \times 5 \\
& 42=3 \times 2 \times 7 \\
& 44=2 \times 2 \times 11
\end{aligned}
$$

Universality

$e^{-} e^{+}$to pions
SIDIS
Drell--Yan

Universality

$$
\begin{aligned}
45 & =3 \times 3 \times 5 \\
42 & =3 \times 2 \times 7 \\
44 & =2 \times 2 \times 11 \\
195 & =3 \times 13 \times 5
\end{aligned}
$$

no universality!
$197=197$
no factorization!!

Why TMDs have these problems?

I.Gauge links
2.Light-cone divergences (see talk by I. Cherednikov)

Why do we need gauge links?

To make PDFs
(collinear andTMD)
gauge invariant

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under

$$
\psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)
$$

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle
$$

$$
U\left(\xi_{1}, \xi_{2}\right) \rightarrow e^{i \alpha\left(\xi_{1}\right)} U\left(\xi_{1}, \xi_{2}\right) e^{-i \alpha\left(\xi_{2}\right)}
$$

A familiar analogy

Light-cone gauge

Can any path be used?

The shape of the gauge link is fixed by the process

- Gauge links in inclusive DIS
- Gauge links in semi-inclusive DIS and Drell-Yan
- Gauge links in πp to hadrons

Gauge links in inclusive DIS

Birth of the gauge link (in Feynman gauge)

$$
\begin{aligned}
& 2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not p-\nmid}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not k-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon} \\
& \text { eikonal approximation } \\
& \left.2 M W_{\mu \nu}^{(a)} \sim \int \frac{d \eta^{-}}{2 \pi} \int d l^{+} e^{i l^{+}\left(\eta^{-}-\xi^{-}\right)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(i g) \frac{A^{+}(\eta)}{-l^{+}+i \epsilon} \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\
\boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}} \\
& 2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle \left\lvert\, \begin{array}{l}
\eta^{+}=\xi^{+}=0 \\
\boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}=0
\end{array}\right.
\end{aligned}
$$

Birth of the gauge link

$2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle$
compare with:

$$
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
$$

$$
\Phi^{(a)}(x, S) \sim\langle P, S| \bar{\psi}(0)(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle
$$

Back to familiar analogy

Light-cone gauge

(c)

(d)

Shape of the gauge link

$$
\Phi(x, S) \sim\langle P, S| \bar{\psi}(0) U_{\left[0, \infty^{-}\right]} U_{\left[\infty^{-}, \xi^{-}\right]} \psi(\xi)|P, S\rangle
$$

Gauge link

Gauge link

Gauge link

Gauge links in semi-inclusive DIS, Drell-Yan, and $\mathrm{e}^{-} \mathrm{e}^{+}$annihilation

First step to prove
factorization

First step to prove factorization

Inclusive DIS

$$
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+}=0 \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}=0}}
$$

Semi-inclusive DIS

$$
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+}=0 \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
$$

Shape of gauge links

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

SIDIS

P_{T} integration

The "staple" gauge link

Light-cone divergences problems

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}, \zeta\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]}^{\zeta} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

Final/initial state interactions

SIDIS
Drell-Yan

Gauge link in Drell-Yan

$$
\begin{gathered}
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not p-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
i \frac{\not \beta-l+m}{(k-l)^{2}-m^{2}+i \epsilon} \approx i \frac{-(-k)^{-} \gamma^{+}}{2 l^{+}(-k)^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}-i \epsilon} \\
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{-\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\eta^{+}=0 ; \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}
\end{gathered}
$$

Collins, PLB 536 (02)

Shapes of gauge links

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

SIDIS

PT integration

Drell-Yan

Collins, PLB 536 (02)

Gauge links are not always identical

Generalized Factorization (factorization without universality)

Collins, PLB 536 (02)
Bomhof, Mulders, Pijlman, PLB 596 (04)
A.B., Bomhof, Mulders, Pijlman, PRD 72 (05) Collins, Qiu, PRD 75 (07)
Vogelsang, Yuan, PRD76 (07)

Phenomenological consequences

$$
\left.\left.\frac{1}{-l^{+}+i \epsilon}\right|_{\mathrm{SIDIS}} \quad \frac{1}{-l^{+}-i \epsilon}\right|_{\mathrm{DY}}
$$

$$
\begin{aligned}
\left.f_{1 T}^{\perp}\right|_{\text {SIDIS }} & =-\left.f_{1 T}^{\perp}\right|_{\mathrm{DY}} \\
\left.h_{1}^{\perp}\right|_{\mathrm{SIDIS}} & =-\left.h_{1}^{\perp}\right|_{\mathrm{DY}}
\end{aligned}
$$

[The experimental check of the change of sign] would crucially test the factorization approach to the description of processes sensitive to transverse parton momenta. 88

Efremov, Goeke, Menzel, Metz, Schweitzer, PLB 6 I2 (05)

6 It is a remarkable and fundamental QCD prediction that really tests all concepts we know of for analyzing hardscattering reactions in strong interactions, and it awaits experimental verification.

Bomhof, Mulders, Vogelsang, Yuan, PRD 75 (07)

66
Its experimental verification would be crucial to confirm the validity of our present conceptual framework for analyzing hard hadronic reactions.

A.B., Bomhof, D'Alesio, Mulders, Murgia, PRL 99 (07)

Phenomenological consequences

$\mathbf{A}_{\mathbf{U T}}^{\sin }\left(\phi_{\mathbf{h}}-\phi_{\mathbf{S}}\right) \mathbf{q}_{\mathrm{L}} / \mathbf{M}_{\mathbf{N}}$

Efremov, Goeke, Menzel, Metz, Schweitzer, PLB 6 I 2 (05)

Phenomenological consequences

See talks by S. Melis and Round Table

What happens if we don't find

 the sign change?Good tests kill flawed theories. We remain alive to guess again.
-TMD factorization cannot be used (bad and farreaching conclusion)

- SSA must have a different origin probably not factorized. Still puts serious doubts on TMD factorization.

Gauge links in πp to hadrons

πp to hadrons

Generalized factorization

SIDIS

Drell-Yan

πp to hadrons

+ several others

Example of πp to photon-jet

Phenomenological consequences

$$
\left.f_{1 T}^{\perp(1)}\right|_{\gamma \text { jet }}=-\left.\frac{N_{c}^{2}+1}{N_{c}^{2}-1} f_{1 T}^{\perp(1)}\right|_{\text {SIDIS }}
$$

Phenomenological consequences

A.B., D’Alesio, Bomhof, Mulders, Murgia,PRL99 (07)

Phenomenological consequences

Standard universality

Generalized universality
A.B., D’Alesio, Bomhof, Mulders, Murgia,PRL99 (07)

66 Things should be made as simple as possible...

66 Things should be made as simple as possible, but not any simpler

πp to hadrons

NoTMD
 factorization!

Rogers, Mulders, arXiv:1001.2977

Impact on LHC physics?

Description of pp to jets

 by Monte Carlo event generators

Tasks for COMPASS

Check effects of generalized factorization in Drell-Yan (i.e., change of sign in Sivers asymmetry) and breaking of TMD factorization in πp to jets

