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OUTLINE

• Transverse Single Spin effects Theory and Experiment

• “Explanations” Reaction Mechanisms

! Colinear-limit ETQS-Twist Three . . .
! ISI/FSI-Twist Two

• Color Gauge Invariance in “T -odd” TMDs Distribution & Fragmentation

• Process Dependence and Gluonic Poles in TMDs and FFs

! Gluonic Poles and TMDs and Fragmentation Functions
! Universality and Fragmentation

• Sivers, Collins, Boer-Mulders in SIDIS & Drell Yan & e+e−

f⊥1T (x,k2
⊥)

• Transverse spin Effects in TSSAs

• Gauge links-Color Gauge Inv.-“T-odd” TMDs

• Limits in using Transverse Distortion and TSSAs  

“QCD calc “  FSIs Gauge Links-Color Gauge Inv. “T-odd” TMDs 

    “Pheno” -Transverse Structure TMDs and  TSSAs-b and k  asymm

An improved dynamical approach for FSIs & model building
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For Details see extra slides and
L.G. & Marc Schlegel 

Phys.Lett.B685:95-103,2010  & Mod.Phys.Lett.A24:2960-2972,2009.



T-Odd Effects From Color Gauge Inv. via Wilson Line

∫
d4pd4kδ4(p + q − k)Tr
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T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003
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• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.
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Gauge link for TMDs
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Gauge link determined re-summing gluon interactions btwn soft and hard 
Efremov,Radyushkin Theor. Math. Phys. 1981

Belitsky, Ji, Yuan NPB 2003, 
Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 

Summing gauge link with color
LG, M. Schlegel PLB 2010
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“Generalized Universality” Fund. Prediction of  QCD

T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003
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Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02
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Φ[+]∗(x, pT ) = iγ1γ3Φ[−](x, pT )iγ1γ3

∆[+]∗(x, pT ) "= iγ1γ3∆[−](x, pT )iγ1γ3
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Compass,  JPARC,  E906-Fermi, RHIC II to test
EIC can pindown Sivers and Boer Mulders w/ 
higher luminosity
Talks of Denisov,Reimer,Abhay @ DIS 2010
talk of Alessandro CERN DY wksp



T-ODD Transverse Spin Transverse Momentum Correlations

Boer,Mulders PRD: 1998

Correlation of transversely polarized quark spin with intrinsic k⊥
⇒ isT · (k⊥ × P ) → h⊥

1 (x, k⊥)

⇒ iST · (k⊥ × P ) → f⊥
1T (x, k⊥),

f⊥
1 (x, k⊥) number density unpolarized quarks in transversely polarized nucleon

h⊥
1 (x, k⊥) number density transversely polarized quarks in unpolarized nucleons

Vrije University , Amsterdam March 13th 2008
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i

½l " vþ i0$ % ð'ieqv!Þ; (14)

where l is the loop momentum, eq is the charge of the
quark, and v is a light-cone vector representing the direc-
tion of the Wilson line. In order to evaluate the box
diagram, we need to specify the gluon-diquark coupling.
With a one-gluon exchange approximation in mind, we use
the gluon-diquark coupling for a scalar diquark, and for an
axial-vector diquark we use a general axial-vector-vector
that models the composite nature of the diquark through an
anomalous magnetic moment " [57]. In the notations of
Fig. 1 (right panel) the gluon-diquark vertices read

!#
s ¼ 'iedqðp1 þ p2Þ#; (15)

!#$1$2
ax ¼ 'iedq½g$1$2ðp1 þ p2Þ# þ ð1þ "Þ

% ðg#$2ðp2 þ qÞ$1 þ g#$1ðp1 ' qÞ$2Þ$: (16)

For " ¼ '2 the vertex !ax reduces to the standard %WW
vertex. We can now express the matrix elements including
the gauge link in the one-gluon approximation in the
following way:

hsdq;P' pjW ½1; 0; ~0Tj0$ ið0ÞjP; Sij1'gl

¼ 'ieqedq
Z d4l

ð2&Þ4 gscððlþ pÞ2ÞDscðP' p' lÞ

% ½ðp6 þ l6 þmqÞuðP; SÞ$iv " ð2P' 2p' lÞ
½l " vþ i0$½l2 þ i0$½ðlþ pÞ2 'm2

q þ i0$ ;

(17)

hadq;P'p;!jW ½1;0; ~0Tj0$ ið0ÞjP;Sij1'gl¼'ieqedq
Z d4l

ð2&Þ4
gaxððpþ lÞ2Þffiffiffi

3
p "*'ðP'p;!ÞDax
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% ½g'(v " ð2P' 2p' lÞþ ð1þ"Þðv'ðP'pþ lÞ(þv(ðP'p' 2lÞ'Þ$
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qþ i0$

%
"
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#
%)'Rg

P)

M

$
uðP;SÞ

%

i
; (18)

where the subscript 1' gl denotes ‘‘one gluon exchange.’’
In these expressionsD denotes the propagator of the scalar
and axial-vector diquark,

D scðP' p' lÞ ¼ i

½ðP' p' lÞ2 'm2
s þ i0$ ; (19)

D ax
#$ðP' p' lÞ ¼

'iðg#$ ' ðP'p'lÞ#ðP'p'lÞ$
m2
s

Þ
½ðP' p' lÞ2 'm2

s þ i0$ : (20)

The term
ðP'p'lÞ#ðP'p'lÞ$

m2
s

is a crucial difference of our
approach compared to the calculation in Ref. [41], where
the dependence on the proton and spectator momenta in-
side the loop integral is absent. It is shown below that this
leads to various complications when performing the loop
integral.

In a similar fashion as for f1 and h?1L, we extract the
Boer-Mulders function by inserting Eqs. (17) and (18) [and
the tree-matrix elements (5) and (6), i.e. the leading non-
trivial perturbative contribution is the interference term
between tree graph and box graph] into the quark-quark
correlator (3),

2*ijT p
j
Th

?
1 ðx; ~p2

TÞ ¼
M

2

Z
dp'ðTr½"unpolðp; SÞi'iþ%5$

þ Tr½"unpolðp;'SÞi'iþ%5$Þjpþ¼xPþ ;

(21)

where *ijT + *'þij and *0123 ¼ þ1.

FIG. 2. Contribution of the gauge link in the one-gluon approximation. Left panel: Box graph. Right panel: Box graph Hermitian
conjugated.
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Keeping the imaginary part of (19) in order to pursue the relation (9), the integral (20) reduces to

Wi(P, k, S) = −i(1− x)gN (k2)
[(/k + mq)u(P, S)]i

!k2
T + m̃2

− i

4P+

∫
d2qT

(2π)2
gN

(
(P − q)2

)
[(/P − q/ + mq)u(P, S)]i M(q; P − k)

[!q2
T + m̃2]

+ b.t.. (20)

Here the light cone components of the diquark momentum are determined by q+ = (1 − x)P+, and q− = !q2
T +m2

s
2(1−x)P+ ,

and m̃2 = xm2
s −x(1−x)M2 +(1−x)m2

q . Again b.t. represents the breaking terms which invalidate relations between
T-odd TMDs and GPDs.

We now use (20) to calculate the Sivers function via (2). Expressed through the amplitude W , the definition of the
Sivers function translates to (with W̄ ≡ W †γ0)

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = − M

8(2π)3(1 − x)P+

(
W̄γ+W

∣∣∣
ST

− W̄γ+W
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−ST

)
. (21)

Furthermore, we specify the form factor that we attach to the nucleon-quark-diquark vertex where we choose a dipole
and Gaussian form,

gDipole
N (k2) = gΛ2 k2 − m2

q

[k2 − Λ2]2
, (22)

gGauss
N (k2) = g exp

[
− |k2|

λ2

]
. (23)

Inserting (20) into (20) and a bit of algebra yields the following expressions for the Sivers function,

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

[!q2
T + m̃2] [!p2

T + m̃2]
×

$[M](x,!kT , !qT )
4(1 − x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., no form factor, (24)
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T f⊥,Dipole

1T (x,!k2
T ) = −g2(1 − x)3Λ4M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T[
!q2
T + Λ̃2

]2 [
!p2

T + Λ̃2
]2 ×

$[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Dipole, (25)

εij
T ki

T Sj
T f⊥,Gauss

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
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T
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×

exp
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− !q2

T +!p2
T +2m̃2−2(1−x)m2

q

λ2(1−x)

] $[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Gauss. (26)

In the following sections we calculate the scattering amplitude M(x,!kT , !qT ) in a relativistic eikonal model. One
result of the calculation is the functional dependence on the transverse momenta, M(x,!kT , !qT ) → Meik(x, |!qT +!kT |).
Already at this point we will use this property to simplify the expressions and to show a relation to the GPD E. Since
final-state interactions are believed to be irrelevant for matrix elements of light-cone operators, one can consistently
model GPDs already from tree-level diagrams in the spectator model where the effects of gluon dressings are effectively
hidden in the masses and form factors. A calculation for the GPD E in this fashion for a scalar spectator can be
found in [? ]. It is easy to generalize it for a Dipole and Gaussian form factor. We obtain

E(x, 0,−!∆2
T ) =

g2(1 − x)2

(2π)3
M(xM + mq)

∫
d2kT






1h
(!kT −1
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ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , no f.f.

(1−x)2Λ4
h
(!kT − 1

2 (1−x)!∆T )2+Λ̃2
i2h

(!kT +
1
2 (1−x)!∆T )2+Λ̃2

i2 , Dipole

exp

2

4−
2(!k2

T +
1
4 (1−x)2!∆2

T +m̃2−(1−x)m2
q)

λ2(1−x)

3

5

h
(!kT − 1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , Gauss

. (27)
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Γ

P
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P − p − l

Build the T-odd TMD PDF 
with Final State Interactions--
one gluon exchange approx of 

Gauge link

Studies FSIs in 1-gluon exchange approx. 
LG, G. Goldstein, M. Schlegel PRD 77 2008,   Bacchetta Conti Radici PRD 78, 2008

Many model calculations studying dynamics of FSIs
Brodsky, Hwang et al, 

Pasquini et al, 
Courtoy et al

....



paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),
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Keeping the imaginary part of (19) in order to pursue the relation (9), the integral (20) reduces to

Wi(P, k, S) = −i(1− x)gN (k2)
[(/k + mq)u(P, S)]i

"k2
T + m̃2

− i

4P+

∫
d2qT

(2π)2
gN

(
(P − q)2

)
[(/P − q/ + mq)u(P, S)]i M(q; P − k)

["q2
T + m̃2]

+ b.t.. (20)

Here the light cone components of the diquark momentum are determined by q+ = (1 − x)P+, and q− = !q2
T +m2

s
2(1−x)P+ ,

and m̃2 = xm2
s −x(1−x)M2 +(1−x)m2

q . Again b.t. represents the breaking terms which invalidate relations between
T-odd TMDs and GPDs.

We now use (20) to calculate the Sivers function via (2). Expressed through the amplitude W , the definition of the
Sivers function translates to (with W̄ ≡ W †γ0)

εij
T ki

T Sj
T f⊥

1T (x,"k2
T ) = − M

8(2π)3(1 − x)P+

(
W̄γ+W

∣∣∣
ST

− W̄γ+W
∣∣∣
−ST

)
. (21)

Furthermore, we specify the form factor that we attach to the nucleon-quark-diquark vertex where we choose a dipole
and Gaussian form,

gDipole
N (k2) = gΛ2 k2 − m2

q

[k2 − Λ2]2
, (22)

gGauss
N (k2) = g exp

[
− |k2|

λ2

]
. (23)

Inserting (20) into (20) and a bit of algebra yields the following expressions for the Sivers function,

εij
T ki

T Sj
T f⊥

1T (x,"k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

["q2
T + m̃2] ["p2

T + m̃2]
×

$[M](x,"kT , "qT )
4(1 − x)P+

(
(2π)2δ(2)("pT + "kT ) +

%[M](x,"kT , "pT )
4(1 − x)P+

)
+ b. t., no form factor, (24)

εij
T ki

T Sj
T f⊥,Dipole

1T (x,"k2
T ) = −g2(1 − x)3Λ4M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T[
"q2
T + Λ̃2

]2 [
"p2

T + Λ̃2
]2 ×

$[M](x,"kT , "qT )
4(1− x)P+

(
(2π)2δ(2)("pT + "kT ) +

%[M](x,"kT , "pT )
4(1 − x)P+

)
+ b. t., Dipole, (25)

εij
T ki

T Sj
T f⊥,Gauss

1T (x,"k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

["q2
T + m̃2] ["p2

T + m̃2]
×

exp
[
− !q2

T +!p2
T +2m̃2−2(1−x)m2

q

λ2(1−x)

] $[M](x,"kT , "qT )
4(1− x)P+

(
(2π)2δ(2)("pT + "kT ) +

%[M](x,"kT , "pT )
4(1 − x)P+

)
+ b. t., Gauss. (26)

In the following sections we calculate the scattering amplitude M(x,"kT , "qT ) in a relativistic eikonal model. One
result of the calculation is the functional dependence on the transverse momenta, M(x,"kT , "qT ) → Meik(x, |"qT +"kT |).
Already at this point we will use this property to simplify the expressions and to show a relation to the GPD E. Since
final-state interactions are believed to be irrelevant for matrix elements of light-cone operators, one can consistently
model GPDs already from tree-level diagrams in the spectator model where the effects of gluon dressings are effectively
hidden in the masses and form factors. A calculation for the GPD E in this fashion for a scalar spectator can be
found in [? ]. It is easy to generalize it for a Dipole and Gaussian form factor. We obtain

E(x, 0,−"∆2
T ) =

g2(1 − x)2

(2π)3
M(xM + mq)

∫
d2kT






1h
(!kT −1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , no f.f.

(1−x)2Λ4
h
(!kT − 1

2 (1−x)!∆T )2+Λ̃2
i2h

(!kT +
1
2 (1−x)!∆T )2+Λ̃2

i2 , Dipole

exp

2

4−
2(!k2

T +
1
4 (1−x)2!∆2

T +m̃2−(1−x)m2
q)

λ2(1−x)

3

5

h
(!kT − 1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , Gauss

. (27)
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Intuitive picture of the Sivers asymmetry:
Spatial distortion in the transverse plane due to polarization

M. Burkardt [Nucl.Phys. A735, 185],  [PRD66, 114005]

3

FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely
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E(x,!b2

)′!S · (P̂ × !k⊥) f⊥1T (x,!k2
⊥)



f⊥
1T represents the so-called Sivers function [9, 10], which appears for a transversely polarized

target and is supposed to be at the origin of various observed single spin phenomena in hard
semi-inclusive reactions.

There exist some trivial relations between GPDs and TMDs because of the connection
between GPDs (for ξ = t = 0) and TMDs (integrated upon "kT ) on the one hand and
ordinary parton distributions on the other. An example is given by

Hq(x, 0, 0) = f q
1 (x) =

∫

d2"kT f q
1 (x,"k2

T ) . (4)

Two additional trivial relations hold on the quark sector (involving the quark helicity and
transversity distribution) and also two for gluon distributions. In this note, however, we are
mainly interested in non-trivial relations between GPDs and TMDs.

2 Impact parameter representation of GPDs

In Ref. [1], a non-trivial relation was proposed for the first time — a connection between
the GPD E and the Sivers function f⊥

1T . In that work an important role is played by the
impact parameter representation of GPDs. For ξ = 0, GPDs in impact parameter space
have a density interpretation, and are generically given by

X (x,"b 2
T ) =

∫

d2"∆T

(2π)2
e−i!∆T ·!bT X(x, 0,−"∆2

T ) . (5)

Using this definition, the Fourier transform of the correlator in (1) (for ξ = 0) has the form

Fq(x,"bT ; S) =

∫

d2"∆T

(2π)2
e−i!∆T ·!bT F q(x, ∆T ; S) = Hq(x,"b 2

T ) +
εij
T bi

T Sj
T

M

(

Eq(x,"b 2
T )

)′

, (6)

where the derivative of Eq with respect to "b 2
T enters. The correlator Fq has the following

interpretation: it describes the distribution of unpolarized quarks carrying the longitudinal
momentum fraction x at a transverse position "bT inside a transversely polarized target.

If the second term on the r.h.s. in (6) is non-zero, Fq is not axially symmetric in b-space.
In other words, the correlator is distorted. In fact, one can show in a model-independent way
that for a nucleon target the correlator has a large distortion, where the effect for a quark
flavor q is proportional to the contribution of the corresponding flavor to the anomalous
magnetic moment of the nucleon [1]. One may now speculate that this large distortion
should have an observable effect. Indeed in [1] it was argued that it may be related to the
Sivers function. An explicit form of the relation was obtained in Ref. [3] by considering
the average transverse momentum of an unpolarized quark inside a transversely polarized
target,

〈

kq,i
T (x)

〉

UT
= −

∫

d2"kT ki
T

εjk
T kj

T Sk
T

M
f⊥q
1T (x,"k 2

T )

=

∫

d2"bT Iq,i(x,"bT )
εjk
T bj

T Sk
T

M

(

Eq(x,"b 2
T )

)′

. (7)

The result in (7) represents the first quantitative non-trivial relation between a GPD and a
TMD. It also provides an intuitive explanation of the Sivers effect. (In this context we refer

DIS 2007

To derive these relations, it is convenient to work with the GPDs in impact parameter
instead of momentum space. This representation of the GPDs can be obtained by Fourier
transforming the correlator in Eq. (1) for ξ = 0,

F q(x,"bT ; S) =
∫

d2"∆T

(2π)2
e−i!∆T ·!bT F q(x, 0, "∆T ; S) = Hq(x,"b 2

T ) +
εij
T bi

T Sj
T

M

(

Eq(x,"b 2
T )

)′

, (3)

where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.

The second set of parton distributions we are interested in are the TMDs. The leading
twist TMDs of a nucleon for unpolarized quarks are defined through

Φq(x,"kT ; S) =
1

2

∫ dz−

2π

d2"zT

(2π)2
eik·z 〈P ; S| ψ̄(− 1

2z) γ+ WTMD ψ(1
2z) |P ; S〉

∣

∣

∣

z+=0+

= f q
1 (x,"k 2

T ) −
εij
T ki

T Sj
T

M
f⊥q

1T (x,"k 2
T ) , (4)

where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:

Hq/g ↔ f
q/g
1 , H̃q/g ↔ g

q/g
1L ,

(

Hq
T −

!b 2
T

M2 ∆bH̃
q
T

)

, ↔
(

hq
1T +

!k 2
T

2M2 h⊥q
1T

)

(5)

(

Eq/g
)′

↔ −f
⊥q/g
1T ,

(

Eq
T + 2H̃q

T

)′

↔ −h⊥q
1 ,

(

Hg
T −

!b 2
T

M2 ∆bH̃
g
T

)′

↔ −1
2

(

hg
1T +

!k 2
T

2M2 h⊥g
1T

)

, (6)

(

H̃q
T

)′′

↔ 1
2h

⊥q
1T ,

(

Eg
T + 2H̃g

T

)′′

↔ 1
2h

⊥g
1 , (7)

(

H̃g
T

)′′′

↔ −1
4h

⊥g
1T . (8)
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To derive these relations, it is convenient to work with the GPDs in impact parameter
instead of momentum space. This representation of the GPDs can be obtained by Fourier
transforming the correlator in Eq. (1) for ξ = 0,

F q(x,"bT ; S) =
∫

d2"∆T

(2π)2
e−i!∆T ·!bT F q(x, 0, "∆T ; S) = Hq(x,"b 2

T ) +
εij
T bi

T Sj
T

M

(

Eq(x,"b 2
T )

)′

, (3)

where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.
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where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:
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where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.
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where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.
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they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
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ken and the impact parameter dependent PDFs no longer
need to be axially symmetric. The direction of the distortion
is perpendicular to both the spin and the momentum of the
nucleon.3 Although the distortion is mathematically de-
scribed by Eq. !2.4" in a model-independent way, it is in-
structive to consider a semi-classical picture for the effect
where the physical origin of this distortion results from a
superposition of translatory and orbital motion of the partons
when the nucleon is polarized perpendicular to its direction
of motion. If the spin of the nucleon is ‘‘up’’ !looking into
the direction of motion of the nucleon" and the orbital angu-
lar momentum of the quarks is parallel to the nucleon spin
then the orbital motion adds to the momentum on the right
side of the nucleon and subtracts on the left side, i.e. partons
on the right side get boosted to larger momentum fractions x
and on the left they get decelerated to smaller x !compared to
longitudinally polarized nucleons". Since parton distributions
decrease with x !at large momenta they drop like a power of
x and at small x they grow like an inverse power of x),
boosting all partons on one side of the nucleon results in an
increase of the number of partons at a fixed value of x on that
side, while the opposite effect occurs on the other side.
Therefore, the acceleration/deceleration due to the superpo-
sition of the orbital with the translatory motion results in an
increase of partons on the right and a decrease on the left, i.e.
the net result is that the parton distribution in the transverse
plane has been shifted or distorted to the right. Of course, for
quarks with orbital angular momentum antiparallel to the
nucleon spin the direction of the distortion is reversed !to the
left". In Ref. #8$ it has been shown that the helicity flip GPD
E is related to the angular momentum carried by the quark.
This result, together with the above semiclassical description
about the physical origin of the distortion, provides an intui-
tive explanation for the fact that this distortion is described
by E.
It should be emphasized that transverse asymmetries in

impact parameter dependent PDFs are consistent with time-

reversal invariance since b! •(p! !S! ) is invariant under T. In
contrast, k!•(p! !S! ) is not invariant under T, and therefore
transverse asymmetries in unintegrated parton densities
q(x ,k!) are only permitted if final state interaction effects
are incorporated into the definition of unintegrated parton
densities #9$.
Unfortunately, little is known about generalized parton

distributions and it is therefore in general difficult to make

predictions without making model assumptions. However, it

is possible to make a model independent statement about the

resulting transverse flavor dipole moment

dq
y%! dx! d2b!qX!x ,b!"by

"#
1

2M
! dx! d2b!by

&

&by
Eq!x ,b!"

"
1

2M
! dx! d2b!Eq!x ,b!"

"
1

2M
! dxEq!x ,0,0 ""

F2,q!0 "

2M
, !2.6"

where we used that the integral of Eq yields the Pauli form

factor F2,q for flavor q #8$. For u and d quarks, F2,q(0)

%'q/p in the proton is of the order of "'q/p"(1#2 !for a
more detailed estimate see Appendix A", i.e. the resulting
transverse flavor dipole moments are on the order of

dq
y(0.1#0.2 fm. !2.7"

In fact, using only isospin symmetry, one finds for a trans-

versely polarized proton !A4"

du
y#dd

y"
'u/p#'d/p

2M
)0.4 fm, !2.8"

i.e. the flavor center for u and d quarks gets separated in

opposite directions to the point where the separation is of the

same order as the expected size of the valence quark

distribution.4

In order to illustrate the magnitude of the distortion

graphically, we make a simple model for the !! dependence

of GPDs #4$

Hq!x ,0,#!!
2 ""q!x "e#a!!

2
(1#x)ln(1/x). !2.9"

This ansatz incorporates both the expected large x behavior

(Hq should become x-independent as x→1) and the small x

behavior !Regge behavior". Furthermore, in the forward limit
(!!"0), Hq reduces to the unpolarized PDF q(x). In im-

pact parameter space this ansatz implies

q!x ,b!
2 ""q!x "

1

4*a!1#x "ln
1

x

exp# #
b!
2

4a!1#x "ln
1

x
$ .

!2.10"

For the helicity flip distributions Eq we assume that the !!

dependence is the same as for Hq and we fix the overall

normalization by demanding that the integral of Eq(x ,0,0)

yields the anomalous magnetic moments

Eu!x ,0,t ""
1

2
'uHu!x ,0,t "

Ed!x ,0,t ""'dHd!x ,0,t ". !2.11"

We should emphasize that this is not intended to be a realis-

tic model and we only use it to illustrate the typical size of

effects that one might anticipate.

The resulting parton distributions in impact parameter

space for u and d quarks are shown in Figs. 1 and 2 respec-

tively. Note that PDFs as well as GPDs decrease significantly

3Note that S! !p! transforms like a position space vector r! under P
and T transformations.

4It should be emphasized that the transverse center of momentum

of the whole nucleon does not shift since + i"q ,g,dxxEi(x ,0,0)

"0 if one sums over the contributions from all flavors as well as

from the glue #10$.
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need to be axially symmetric. The direction of the distortion
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nucleon.3 Although the distortion is mathematically de-
scribed by Eq. !2.4" in a model-independent way, it is in-
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more detailed estimate see Appendix A", i.e. the resulting
transverse flavor dipole moments are on the order of

dq
y(0.1#0.2 fm. !2.7"

In fact, using only isospin symmetry, one finds for a trans-

versely polarized proton !A4"

du
y#dd

y"
'u/p#'d/p

2M
)0.4 fm, !2.8"

i.e. the flavor center for u and d quarks gets separated in

opposite directions to the point where the separation is of the

same order as the expected size of the valence quark

distribution.4

In order to illustrate the magnitude of the distortion

graphically, we make a simple model for the !! dependence

of GPDs #4$

Hq!x ,0,#!!
2 ""q!x "e#a!!

2
(1#x)ln(1/x). !2.9"

This ansatz incorporates both the expected large x behavior

(Hq should become x-independent as x→1) and the small x

behavior !Regge behavior". Furthermore, in the forward limit
(!!"0), Hq reduces to the unpolarized PDF q(x). In im-

pact parameter space this ansatz implies

q!x ,b!
2 ""q!x "

1

4*a!1#x "ln
1

x

exp# #
b!
2

4a!1#x "ln
1

x
$ .

!2.10"

For the helicity flip distributions Eq we assume that the !!

dependence is the same as for Hq and we fix the overall

normalization by demanding that the integral of Eq(x ,0,0)

yields the anomalous magnetic moments

Eu!x ,0,t ""
1

2
'uHu!x ,0,t "

Ed!x ,0,t ""'dHd!x ,0,t ". !2.11"

We should emphasize that this is not intended to be a realis-

tic model and we only use it to illustrate the typical size of

effects that one might anticipate.

The resulting parton distributions in impact parameter

space for u and d quarks are shown in Figs. 1 and 2 respec-

tively. Note that PDFs as well as GPDs decrease significantly

3Note that S! !p! transforms like a position space vector r! under P
and T transformations.

4It should be emphasized that the transverse center of momentum

of the whole nucleon does not shift since + i"q ,g,dxxEi(x ,0,0)

"0 if one sums over the contributions from all flavors as well as

from the glue #10$.
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ken and the impact parameter dependent PDFs no longer
need to be axially symmetric. The direction of the distortion
is perpendicular to both the spin and the momentum of the
nucleon.3 Although the distortion is mathematically de-
scribed by Eq. !2.4" in a model-independent way, it is in-
structive to consider a semi-classical picture for the effect
where the physical origin of this distortion results from a
superposition of translatory and orbital motion of the partons
when the nucleon is polarized perpendicular to its direction
of motion. If the spin of the nucleon is ‘‘up’’ !looking into
the direction of motion of the nucleon" and the orbital angu-
lar momentum of the quarks is parallel to the nucleon spin
then the orbital motion adds to the momentum on the right
side of the nucleon and subtracts on the left side, i.e. partons
on the right side get boosted to larger momentum fractions x
and on the left they get decelerated to smaller x !compared to
longitudinally polarized nucleons". Since parton distributions
decrease with x !at large momenta they drop like a power of
x and at small x they grow like an inverse power of x),
boosting all partons on one side of the nucleon results in an
increase of the number of partons at a fixed value of x on that
side, while the opposite effect occurs on the other side.
Therefore, the acceleration/deceleration due to the superpo-
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impact parameter dependent PDFs are consistent with time-

reversal invariance since b! •(p! !S! ) is invariant under T. In
contrast, k!•(p! !S! ) is not invariant under T, and therefore
transverse asymmetries in unintegrated parton densities
q(x ,k!) are only permitted if final state interaction effects
are incorporated into the definition of unintegrated parton
densities #9$.
Unfortunately, little is known about generalized parton

distributions and it is therefore in general difficult to make

predictions without making model assumptions. However, it

is possible to make a model independent statement about the

resulting transverse flavor dipole moment
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=
κ

2M

κp = 1.79 , κn = −1.91

3

FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely

−→ κu/p = 1.67 , κd/p = −2.03 w/ attractive interactions  

paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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FIG. 6 (color online). Left panel: The cos2! asymmetry for #þ and #& as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),

f⊥(u)
1T = neg & f⊥(d)

1T = pos

Used to predicting sign of TSSA-Sivers Bukardt 02,04 NPA PRD
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We present the first calculation of the transverse spin structure of the pion in lattice QCD. We
find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This
asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for
quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike.

Introduction.— Since their discovery in the late 1940s,
pions have played a central role in low- and high-energy
nuclear and particle physics. As pseudo-Goldstone
bosons of spontaneously broken chiral symmetry they are
at the core of the low-energy sector of quantum chromo-
dynamics (QCD), the fundamental theory of quarks and
gluons. Since the pion has spin zero, one might expect
that its spin structure in terms of quark and gluon de-
grees of freedom is trivial. Indeed, pion matrix elements
of quark and gluon helicity operators vanish due to par-
ity invariance, i.e., one has 〈π(P ′)|Σ3|π(P )〉 = 0, where,
e.g., for quarks Σ3 = qγ3γ5q.

An instructive quantity describing the spin structure
of hadrons is the probability density ρ(x, b⊥) of quarks
in impact parameter space [1], illustrated in Fig. 1.
Here x is the longitudinal mo-

xb

yb

!b

u

d

zP

z

zxP

FIG. 1: Illustration of
the quark distribution in
a π+ in impact parameter
space.

mentum fraction carried by
the quark, and the impact pa-
rameter b⊥ gives the distance
between the quark and the
center of momentum of the
hadron in the plane transverse
to its longitudinal motion. Be-
cause matrix elements of axial-
vector operators vanish for the
pion, the density ρ(x, b⊥, λ) of
quarks with helicity λ is deter-
mined by the unpolarized den-
sity, 2ρ(x, b⊥, λ) = ρ(x, b⊥).
The latter, in turn, is given by
the impact parameter dependent generalized quark dis-
tribution Hπ(x, ξ, b2

⊥) (see, e.g., [2]) at zero skewness ξ,
i.e., ρ(x, b⊥) = Hπ(x, ξ=0, b2

⊥) . The lattice QCD cal-
culations discussed below give access to x-moments of
quark spin densities, which we have investigated in [3] for
the case of quarks with transverse spin s⊥ in a nucleon

with transverse spin S⊥. The corresponding expression
ρ(x, b⊥, s⊥) for polarized quarks in the pion is readily
obtained by setting S⊥ = 0 in the nucleon densities of
[3, 4]. The result is considerably simpler but still con-
tains a dipole term going with si

⊥εij bj
⊥, which leads to a

dependence on the direction of b⊥ for fixed s⊥,

ρn(b⊥, s⊥) =

∫ 1

−1
dxxn−1ρ(x, b⊥, s⊥)

=
1

2

[

Aπ
n0(b

2
⊥) −

si
⊥εij bj

⊥

mπ

∂

∂b2
⊥

Bπ
Tn0(b

2
⊥)

]

. (1)

The b⊥ dependent vector and tensor generalized form
factors (GFFs) of the pion, Aπ

n0 and Bπ
Tn0, are mo-

ments of the corresponding generalized parton distribu-
tions (GPDs)

∫ 1

−1
dxxn−1Hπ(x, ξ=0, b2

⊥) = Aπ
n0(b

2
⊥) ,

∫ 1

−1
dxxn−1Eπ

T (x, ξ=0, b2
⊥) = Bπ

Tn0(b
2
⊥) . (2)

To this day, next to nothing is known about the signs
and sizes of the Bπ

Tn0. Since these GFFs determine the
dipole-like distortion of the quark density in the trans-
verse plane, non-vanishing Bπ

Tn0 would imply a rather
surprising non-trivial transverse spin structure of the
pion. A computation of the Bπ

Tn0 from first principles
in lattice QCD therefore provides crucial insight into the
pion structure.

Lattice QCD calculations give access to GFFs F (t) =
Aπ

n0(t), B
π
Tn0(t) in momentum space, which are related

to the impact parameter dependent GFFs F (b2
⊥) =

Aπ
n0(b

2
⊥), Bπ

Tn0(b
2
⊥) by a Fourier transformation

F (b2
⊥) = (2π)−2

∫

d2∆⊥ e−ib⊥·∆⊥F (t = −∆2
⊥) , (3)
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We present the first calculation of the transverse spin structure of the pion in lattice QCD. We
find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This
asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for
quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike.

Introduction.— Since their discovery in the late 1940s,
pions have played a central role in low- and high-energy
nuclear and particle physics. As pseudo-Goldstone
bosons of spontaneously broken chiral symmetry they are
at the core of the low-energy sector of quantum chromo-
dynamics (QCD), the fundamental theory of quarks and
gluons. Since the pion has spin zero, one might expect
that its spin structure in terms of quark and gluon de-
grees of freedom is trivial. Indeed, pion matrix elements
of quark and gluon helicity operators vanish due to par-
ity invariance, i.e., one has 〈π(P ′)|Σ3|π(P )〉 = 0, where,
e.g., for quarks Σ3 = qγ3γ5q.

An instructive quantity describing the spin structure
of hadrons is the probability density ρ(x, b⊥) of quarks
in impact parameter space [1], illustrated in Fig. 1.
Here x is the longitudinal mo-
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the quark distribution in
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mentum fraction carried by
the quark, and the impact pa-
rameter b⊥ gives the distance
between the quark and the
center of momentum of the
hadron in the plane transverse
to its longitudinal motion. Be-
cause matrix elements of axial-
vector operators vanish for the
pion, the density ρ(x, b⊥, λ) of
quarks with helicity λ is deter-
mined by the unpolarized den-
sity, 2ρ(x, b⊥, λ) = ρ(x, b⊥).
The latter, in turn, is given by
the impact parameter dependent generalized quark dis-
tribution Hπ(x, ξ, b2

⊥) (see, e.g., [2]) at zero skewness ξ,
i.e., ρ(x, b⊥) = Hπ(x, ξ=0, b2

⊥) . The lattice QCD cal-
culations discussed below give access to x-moments of
quark spin densities, which we have investigated in [3] for
the case of quarks with transverse spin s⊥ in a nucleon

with transverse spin S⊥. The corresponding expression
ρ(x, b⊥, s⊥) for polarized quarks in the pion is readily
obtained by setting S⊥ = 0 in the nucleon densities of
[3, 4]. The result is considerably simpler but still con-
tains a dipole term going with si

⊥εij bj
⊥, which leads to a

dependence on the direction of b⊥ for fixed s⊥,

ρn(b⊥, s⊥) =

∫ 1

−1
dxxn−1ρ(x, b⊥, s⊥)

=
1

2

[

Aπ
n0(b

2
⊥) −

si
⊥εij bj

⊥

mπ

∂

∂b2
⊥

Bπ
Tn0(b

2
⊥)

]

. (1)

The b⊥ dependent vector and tensor generalized form
factors (GFFs) of the pion, Aπ

n0 and Bπ
Tn0, are mo-

ments of the corresponding generalized parton distribu-
tions (GPDs)

∫ 1

−1
dxxn−1Hπ(x, ξ=0, b2

⊥) = Aπ
n0(b

2
⊥) ,

∫ 1

−1
dxxn−1Eπ

T (x, ξ=0, b2
⊥) = Bπ

Tn0(b
2
⊥) . (2)

To this day, next to nothing is known about the signs
and sizes of the Bπ

Tn0. Since these GFFs determine the
dipole-like distortion of the quark density in the trans-
verse plane, non-vanishing Bπ

Tn0 would imply a rather
surprising non-trivial transverse spin structure of the
pion. A computation of the Bπ

Tn0 from first principles
in lattice QCD therefore provides crucial insight into the
pion structure.

Lattice QCD calculations give access to GFFs F (t) =
Aπ

n0(t), B
π
Tn0(t) in momentum space, which are related

to the impact parameter dependent GFFs F (b2
⊥) =

Aπ
n0(b

2
⊥), Bπ

Tn0(b
2
⊥) by a Fourier transformation

F (b2
⊥) = (2π)−2

∫

d2∆⊥ e−ib⊥·∆⊥F (t = −∆2
⊥) , (3)
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FIG. 6: The lowest two moments of the impact parame-
ter densities of unpolarized (left) and transversely polarized
(right) up-quarks in a π+. The quark spin (inner arrow) is
oriented in the transverse plane as indicated.

the nucleon can be connected with the respective Boer-
Mulders functions, which describe the correlation be-
tween transverse spin and intrinsic transverse momen-
tum of quarks in an unpolarized hadron [15]. They lead,
e.g., to azimuthal asymmetries in semi-inclusive deep
inelastic scattering (SIDIS) and in Drell-Yan lepton pair
production. The density of quarks with intrinsic trans-
verse momentum k⊥ and transverse spin s⊥ in a π+ is
determined by the unpolarized distribution fπ

1 and the
Boer-Mulders function hπ,⊥

1 through

f(x, k⊥, s⊥) =
1

2

[

fπ
1 (x, k2

⊥) +
si
⊥εij kj

⊥

mπ
hπ,⊥

1 (x, k2
⊥)

]

.

(7)
We notice the close similarity between Eq. (7) and the
impact parameter density (1), but emphasize that k⊥
and b⊥ are not Fourier conjugate variables. A dynami-
cal relation between k⊥ and b⊥ dependent distributions
has been proposed in [16, 17] and implies h⊥,π

1 ∼ −Eπ
T .

With Eq. (2) and our results for Bπ
Tn0 we then predict

that the Boer-Mulders function for up-quarks in a π+ is
large and negative. Furthermore, our comparison of pion
and nucleon results provides strong support for the argu-
ments in [18], which suggest that Boer-Mulders functions
for valence quarks are negative and of similar size rela-
tive to the unpolarized distributions, independent of the
hadron under consideration. We note that h⊥,π

1 is time
reversal odd and thus enters with different sign in SIDIS
and Drell-Yan production [19]. The results just quoted
refer to the functions relevant for SIDIS.

Conclusions.— We have calculated the first two mo-
ments of the quark tensor GPD Eπ

T in the pion. We find
that the spatial distribution of quarks is strongly dis-

torted if they are transversely polarized, which reveals a
non-trivial spin structure of the pion. The effect has the
same sign and very similar magnitude as the correspond-
ing distortion for quarks in the nucleon [3]. Assuming
the relation between impact parameter and transverse
momentum densities proposed in [16, 17] this suggests
that all Boer-Mulders functions for valence quarks may
be alike, as argued in [18]. The large size of the effect
might give new insight into the mechanism responsible
for the large cos(2φ) azimuthal asymmetry observed in
unpolarized πp Drell-Yan production, which is sensitive
to the product h⊥,π

1 h⊥
1 , see, e.g., the discussion in [20]

and references therein. It also provides additional mo-
tivation for future studies of azimuthal asymmetries in
unpolarized πp and polarized πp↑ Drell-Yan production
at COMPASS, the latter giving rise to a sin(φ + φS)
asymmetry sensitive to h⊥,π

1 h1, where h1 is the quark
transversity distribution in the nucleon [21].

The numerical calculations have been performed on
the Hitachi SR8000 at LRZ (Munich), apeNEXT and
APEmille at NIC/DESY (Zeuthen) and BlueGene/Ls
at NIC/FZJ (Jülich), EPCC (Edinburgh) and KEK (by
the Kanazawa group as part of the DIK research pro-
gram). This work was supported by DFG (Forscher-
gruppe Gitter-Hadronen-Phänomenologie and Emmy-
Noether program), by HGF (contract No. VH-NG-004)
and by EU I3HP (contract No. RII3-CT-2004-506078).
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coll. “soft gluon pole” matrix element

Impact parameter representation for GPD E
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What observable to test this possible 
connection btnw TMD and Impact par. picture?    

Gluonic Pole ME

spinpol

b

∆α
G ij (x, x − x1) =

∑

X

∫
d(ξ·P )

2π

d(η·P )
2π

ei x1(η·P )ei (x−x1)(ξ·P )

× 〈0|Un
[0,η] gGnα(η)Un

[η,ξ]ψi(ξ)|P,X〉

×〈P,X |ψj(0)|0〉

∣∣∣∣∣
LC

.

. . .

Q ∼ PT >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH and
! αs → correlation function

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π Factorized co-linear QCD
Qiu & Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007, Ji,Qiu,Vogelsang,Yuan:PR

2006,2007. . .

⊗
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Non-trivial RelationsNon-trivial Relations

•  Conjecture: factorization of final state interactions and spatial distortion:

: Lensing Function =  net transverse momentum

•  Av. transv. momentum of transv. pol. partons in an unpol. hadron:

•  Quantify distortion effect !"" flavor anormalous magnetic moment ! q

                !"" Prediction of signs for u- and d-quark T-odd TMDs.
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Chiral-odd RelationChiral-odd Relation
• Av. transv. momentum of transv. pol. partons in an unpol. hadron:

• Spatial distortion in transv. plane of transv. pol. quarks quantified by

• Lattice QCD, const. quark model: and

Boer-Mulders function negative for u- and d-quarks!
[in agreement with large-N

c
, models.]
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Beyond the One-Loop Approximation Beyond the One-Loop Approximation 
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So far: Most phenomenological approaches to T-odd TMDs
! Final state interactions modeled by a one-gluon exchange

Sivers-effect ~5%, 

e.g. Diquark-model, MIT-Bag model etc.

!
!!!"#"!#
"$ ! "!"!"

#% ! !"## !"$ “strength of FSI”

Can we do better? Can we learn about the quality of the relations?
 [L. Gamberg, M.S., in preparation]

• Still work within spectator framework,
  but non-perturbative model of FSI.

• In order to separate out GPDs, “cut” 
   the diagram !"“natural” picture of FSI.
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Relativistic Eikonal models (II)Relativistic Eikonal models (II)
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• Generalized Ladder approximation:

• Eikonal Propagator:
  Idea: highly energetic particle looses spin information !! ! "!
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T-odd TMDsT-odd TMDs

Time-reversal forbids
Sivers function

Boer-Mulders function

•  Neglect gauge link operator:

•  If T-odd TMDs ! 0: Gauge Link not neglegible, physical effect:

Initial / Final state interactions
Time reversal switches sign:

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

!!!!

"!!

!!!!

!!!
"#$

! !!!!!

!!!
"%

"!!

!!!
"#$

! !"!!

!!!
"%

" "#!# #"$ ! #%
"&'

!
!!

!"
()#*#)$

! !

!"#$%&'()*$+)&,-./()$&0123)4&!"#$%&'()*$+)&,-./()$&0123)4&

!!!"#$%&!'(%()!*$()+%,(#-$.!/'#0)+.1)22),(3!4-.(&5!4-6)&)6!75!%!8$)19&:-$!;<,=%$>)?"#$%&!'(%()!*$()+%,(#-$.!/'#0)+.1)22),(3!4-.(&5!4-6)&)6!75!%!8$)19&:-$!;<,=%$>)?

;<%4@&)!A#B:%+C1.@),(%(-+?
'#0)+.!2:$,(#-$!" !D

.

'#0)+.!)22),(!%(!E;FG;'!H!IJ!
# !"

#
!$!%&'!(!%&)

!!!F)&%(#0#.(#,!;#C-$%&!4-6)&.?!K+)%(!"'*!$-$1@)+(:+7%(#0)&5LF)&%(#0#.(#,!;#C-$%&!4-6)&.?!K+)%(!"'*!$-$1@)+(:+7%(#0)&5L
!!"#$%&!'(!)*+,-./0!*.1$234546(78980!*:;!$:!<.-<*.*%$=:(((>

!!M-+C!#$!(=)!6#B:%+C!@#,(:+)!/N)$.L!2:$,(L!#6)$(#25%7&)3
!O!4-+)!+)%&#.(#,!2-+!%!@#-$LLL

!!8$&5!6#%>+%4.!(=%(!+)2&),(!(=)!P$%#0)!@#,(:+)PL

?*.@!A@&B-/-B!CD'*,E?*.@!A@&B-/-B!CD'*,E FGH!I-+$:*.0!JK=::FGH!I-+$:*.0!JK=:: A-<%(!LM0!L445A-<%(!LM0!L445

Sivers Function in this approach

For Details see extra slides and
L.G. & Marc Schlegel 

Phys.Lett.B685:95-103,2010  & Mod.Phys.Lett.A24:2960-2972,2009.



! !

!"#$%#&'()#*+%,#!"#$%#&'()#*+%,#

!!!""#$!!"
#$# " #

$

%

$!#

"#$# "
%!! "

$%! "
##&

"
!
$ & '()%! "

$%! "
##&

"
"

!"#$%&&'(%)&*)+',-)./*0)'*)'/%$1&'02'!*30)45'674&%8!"#$%&&'(%)&*)+',-)./*0)'*)'/%$1&'02'!*30)45'674&%8

,*)45'9/4/%':)/%$4./*0)&'$%14*)')%+4/*;%'<4//$4./*;%='<%;%)'*)'9><?==,*)45'9/4/%':)/%$4./*0)&'$%14*)')%+4/*;%'<4//$4./*;%='<%;%)'*)'9><?==

!"#$%&$'()*)(%+,-"./!"#$%&$'()*)(%+,-"./ 012%3)456"#7%89:66012%3)456"#7%89:66 &);<=%>?7%>@@A&);<=%>?7%>@@A

!!!""%$!!"
#$# " #

$

*

$!#

"#$# "
%!! "

$%! "
##&

"
!
+!$ & '() '

&
" &

#
'
&

$%
# ),- '

&

#
'
&
# ),- '

&

$"
! "
$%! "
##&

"

!!!""'$!!"
#$# " # -./01,')

FSIs are negative even with Color! 

order terms. We take, however, the result of Ref. [12] as a
guide to estimate the L dependence of our lattice data,
fitting B!;u

T10ðt ¼ 0Þ=m! to the form c0 þ c1m
2
! þ

c2m
2
! expð%m!LÞ. This fit, represented by shaded bands

in Fig. 3, gives B!;u
T10ðt ¼ 0Þ ¼ 1:47ð18Þ GeV%1 at L ¼ 1

and m! & 440 MeV, compared to B!;u
T10ðt ¼ 0Þ ¼

1:95ð27Þ GeV%1 at L& 1:65 fm as represented by the
diamond in the lowest panel of Fig. 3. The typical correc-
tions for B!;u

T20ðt ¼ 0Þ=m! are similar. Within present sta-
tistics, we do not see a clear volume dependence of the
corresponding p-pole masses for n ¼ 1; 2.

The pion mass dependence of B!;u
Tn0ðt ¼ 0Þ=m! is shown

in Fig. 4. The darker shaded bands show fits based on the
ansatz we just described. Data points and error bands have
been shifted to L ¼ 1. For m! ¼ 140 MeV, we obtain
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FIG. 5 (color online). The lowest moment of the densities of
unpolarized (left) and transversely polarized (right) up quarks in
a !þ together with corresponding profile plots. The quark spin is
oriented in the transverse plane as indicated by the arrow. The
error bands in the profile plots show the uncertainties in B!;u

T10ðt ¼
0Þ=m! and the p-pole masses at mphys

! from a linear extrapola-
tion. The dashed-dotted lines show the uncertainty from a ChPT
extrapolation (light shaded band).
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Introduction.—Since their discovery in the late 1940s,
pions have played a central role in nuclear and particle
physics. As pseudo-Goldstone bosons of spontaneously
broken chiral symmetry, they are at the core of the low-
energy sector of quantum chromodynamics (QCD). Since
the pion has spin zero, its longitudinal spin structure in
terms of quark and gluon degrees of freedom is trivial. Pion
matrix elements of quark and gluon helicity operators
vanish due to parity invariance: h!ðP0Þj!3j!ðPÞi ¼ 0,
where, e.g., for quarks!3 ¼ "q"3"5q. An instructive quan-
tity describing the spin structure of hadrons is the proba-
bility density #ðx; b?Þ of quarks in impact parameter space
[1]. Here x is the longitudinal momentum fraction carried
by the quark, and the impact parameter b? gives the
distance between the quark and the center of momentum
of the hadron in the plane transverse to its motion. Because
of parity invariance, the density #ðx; b?;$Þ of quarks with
helicity $ in a pion is determined by the unpolarized
density 2#ðx; b?;$Þ ¼ #ðx; b?Þ. The latter is given by
#ðx; b?Þ ¼ H!ðx;% ¼ 0; b2?Þ in terms of a b?-dependent
generalized parton distribution (GPD) at zero skewness %.
The lattice QCD calculations discussed below give access
to x moments of quark spin densities, which we have
investigated in Ref. [2] for quarks with transverse spin
s? in a nucleon with transverse spin S?. The correspond-
ing expression #ðx; b?; s?Þ for polarized quarks in the pion
is obtained by setting S? ¼ 0 in the nucleon densities of
Refs. [2,3]. The result is much simpler but still contains a
dipole term / si?&

ijbj?, which leads to a dependence on the
direction of b? for fixed s?,

#nðb?; s?Þ ¼
Z 1

$1
dx xn$1#ðx; b?; s?Þ

¼ 1

2

!
A!
n0ðb2?Þ $

si?&
ijbj?

m!
B!0
Tn0ðb2?Þ

"
; (1)

where B!0
Tn0 ¼ @b2?B

!
Tn0. The b?-dependent vector and ten-

sor generalized form factors (GFFs) of the pion A!
n0 and

B!
Tn0, respectively, are moments of the GPDs:

Z 1

$1
dx xn$1H!ðx;% ¼ 0; b2?Þ ¼ A!

n0ðb2?Þ;
Z 1

$1
dx xn$1E!

T ðx;% ¼ 0; b2?Þ ¼ B!
Tn0ðb2?Þ:

(2)

To this day, next to nothing is known about the signs and
sizes of the B!

Tn0. Since these GFFs determine the dipole-
like distortion of the quark density in the transverse plane,
nonvanishing B!

Tn0 would imply a surprising nontrivial
transverse spin structure of the pion. A computation of
the B!

Tn0 from first principles in lattice QCD therefore
provides crucial insight into the pion structure.
Lattice QCD calculations give access to GFFs FðtÞ ¼

A!
n0ðtÞ; B!

Tn0ðtÞ in momentum space, which are related to
the impact parameter-dependent GFFs Fðb2?Þ ¼
A!
n0ðb2?Þ; B!

Tn0ðb2?Þ by a Fourier transformation

Fðb2?Þ ¼ ð2!Þ$2
Z

d2#?e
$ib?%#?Fðt ¼ $#2

?Þ; (3)

where #? is the transverse momentum transfer. The
momentum-space GFFs B!

Tn0ðtÞ parametrize pion matrix
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Introduction.—Since their discovery in the late 1940s,
pions have played a central role in nuclear and particle
physics. As pseudo-Goldstone bosons of spontaneously
broken chiral symmetry, they are at the core of the low-
energy sector of quantum chromodynamics (QCD). Since
the pion has spin zero, its longitudinal spin structure in
terms of quark and gluon degrees of freedom is trivial. Pion
matrix elements of quark and gluon helicity operators
vanish due to parity invariance: h!ðP0Þj!3j!ðPÞi ¼ 0,
where, e.g., for quarks!3 ¼ "q"3"5q. An instructive quan-
tity describing the spin structure of hadrons is the proba-
bility density #ðx; b?Þ of quarks in impact parameter space
[1]. Here x is the longitudinal momentum fraction carried
by the quark, and the impact parameter b? gives the
distance between the quark and the center of momentum
of the hadron in the plane transverse to its motion. Because
of parity invariance, the density #ðx; b?;$Þ of quarks with
helicity $ in a pion is determined by the unpolarized
density 2#ðx; b?;$Þ ¼ #ðx; b?Þ. The latter is given by
#ðx; b?Þ ¼ H!ðx;% ¼ 0; b2?Þ in terms of a b?-dependent
generalized parton distribution (GPD) at zero skewness %.
The lattice QCD calculations discussed below give access
to x moments of quark spin densities, which we have
investigated in Ref. [2] for quarks with transverse spin
s? in a nucleon with transverse spin S?. The correspond-
ing expression #ðx; b?; s?Þ for polarized quarks in the pion
is obtained by setting S? ¼ 0 in the nucleon densities of
Refs. [2,3]. The result is much simpler but still contains a
dipole term / si?&

ijbj?, which leads to a dependence on the
direction of b? for fixed s?,
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dx xn$1#ðx; b?; s?Þ

¼ 1

2

!
A!
n0ðb2?Þ $

si?&
ijbj?

m!
B!0
Tn0ðb2?Þ

"
; (1)

where B!0
Tn0 ¼ @b2?B
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Tn0. The b?-dependent vector and ten-

sor generalized form factors (GFFs) of the pion A!
n0 and
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Tn0, respectively, are moments of the GPDs:

Z 1
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Z 1
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dx xn$1E!

T ðx;% ¼ 0; b2?Þ ¼ B!
Tn0ðb2?Þ:

(2)

To this day, next to nothing is known about the signs and
sizes of the B!

Tn0. Since these GFFs determine the dipole-
like distortion of the quark density in the transverse plane,
nonvanishing B!

Tn0 would imply a surprising nontrivial
transverse spin structure of the pion. A computation of
the B!

Tn0 from first principles in lattice QCD therefore
provides crucial insight into the pion structure.
Lattice QCD calculations give access to GFFs FðtÞ ¼

A!
n0ðtÞ; B!

Tn0ðtÞ in momentum space, which are related to
the impact parameter-dependent GFFs Fðb2?Þ ¼
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Tn0ðb2?Þ by a Fourier transformation
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Figure 3: Left: The lensing functionIi(x,!bT ) from Eq. (30) for

U(1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV.

For comparison we also plot the perturbative result of Ref. [48]

including the eikonalized antiquark spectator with an arbitrary

value for the coupling, α = 0.3. Right: Plot of the quantity

xm2
πh
⊥,(1)

1
(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],

Z(p2, µ2) = p2D−1(p2, µ2)

=

(

αs(p2)

αs(µ2)
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with the parameters c = 1.269, d = 2.105, and δ = − 9
44

.

These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,

χDS (|!zT |) = 2

∫ ∞

0

dkT kTαs(k
2
T )J0(|!zT |kT )Z(k2

T ,Λ
2
QCD)/k2

T . (37)

The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.

7
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For comparison we also plot the perturbative result of Ref. [48]
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value for the coupling, α = 0.3. Right: Plot of the quantity
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(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],
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2) =
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ln
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] . (35)
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a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to
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These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form
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arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.

7

Prediction for Boer-Mulders Function of PION

L.G. & Marc Schlegel 
Phys.Lett.B685:95-103,2010  & Mod.Phys.Lett.A24:2960-2972,2009.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),



• TMD part of the cos      asymmetry using your 
Boer-Mulders functions (in pion and proton) 

•  Polarized asymmetry using the Boer-Mulders 
in the pion and the transversity in the proton

• Just to partially answer to the first question, 
when specialized to the Compass kinematics.

• And it would be great as well if you could say 
something on the last question.....About sea 
contributions..

2φ

To Do for Model Builders



Extra Slides



Relations between GPDs and TMDsRelations between GPDs and TMDs
Non-trivial relations for “T-odd” parton distributions:
M. Burkardt [Nucl.Phys. A735, 185],  [PRD66, 114005]

 Average transverse momentum of unpolarized partons in a 
            transversely polarized nucleon:

coll. “soft gluon pole” matrix element

Manipulation of Gauge Links + Impact parameter representation

Impact parameter representation for GPD E

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

!!!" "" !"" #

!
#!!" !

!
"
"
!

"
$%&$#'!%&" "(#$%&$

#'(!#%&" "
#
$ '

!#$"%
"" !""

!!!" "!"" #

!
#!("

!
$%!

!$!&%
)!'(

!%!!)#*%+" *&" % ,*!+""$
#&+"* +!( ,

!!+!"*!+!" %)
#*%+" *&" "

+")! # & %!

! -" - ("

,!!+"" #
$
#." &+"* ."(/0#!!.""&."* +"(
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1)  hkq;iT !x"iUT # 1

2

Z
d2 ~bT

Z dz$

2!
eixP

%z$hP%; ~0T; Sj ! !z1""%W !z1; z2"Iq;i!z2" !z2"jP%; ~0T; Si;

2)

 jP!; ~bT ; Si " N
Z d2 ~pT

#2!$2 e
%i ~pT & ~bT jp; Si; (31)

 hP!; ~bT ; Sj " N '
Z d2 ~p0

T

#2!$2 e
i ~p0

T & ~bT hp0; Sj; (32)

which characterize a nucleon with momentum P! at a
transverse position ~bT and a polarization specified by S.
The normalization factor N in these formulas is given by

 

1

jN j2 "
Z d2 ~pT

#2!$2 (33)

and therefore infinite. However, using wave packets in-
stead of plane wave states this infinity can be avoided
[41,43]. With the states in Eqs. (31) and (32) the correlators
defining the GPDs of quarks and gluons can be rewritten as

 

F q(!)#x; ~bT ; S$ "
1

2

Z dz%

2!
eixP

!z%hP!; ~0T; Sj " #z1$!

*W #z1; z2$ #z2$jP!; ~0T ; Si; (34)

 

F g(ij)#x; ~bT ; S$ "
1

xP!
Z dz%

2!
eixP

!z%hP!; ~0T ; SjF!j
a #z1$

*Wab#z1; z2$F!i
b #z2$jP!; ~0T ; Si; (35)

with

 z1=2 " #0!;+1
2z

%; ~bT$: (36)

Obviously, the two correlation functions in (34) and (35)
are diagonal.

In analogy with Eq. (30) we define the GPDs in impact
parameter space according to

 X #x; ~b2T$ "
Z d2 ~#T

#2!$2 e
%i ~#T & ~bTX#x; 0;% ~#2

T$: (37)

Using this definition one finds after straightforward algebra
that the correlators in Eqs. (10)–(12) for the quarks and in
Eqs. (17)–(19) for the gluons, written in impact parameter
space at the kinematical point " " 0, take the form

 F q=g#x; ~bT ; S$ " H q=g#x; ~b2T$ !
#ijT b

i
TS

j
T

M
#Eq=g#x; ~b2T$$0;

(38)

 

~F q=g#x; ~bT ; S$ " $ ~H q=g#x; ~b2T$; (39)

 F q;j
T #x; ~bT ; S$ "

#ijT b
i
T

M
#EqT#x; ~b2T$ ! 2 ~H q

T#x; ~b2T$$0

! SjT

!
H q

T#x; ~b2T$ %
~b2T
M2 #b

~H q
T#x; ~b2T$

"

! 2bjT ~bT & ~ST % SjT ~b
2
T

M2 # ~H q
T#x; ~b2T$$00;

(40)

 

F g;ij
T #x; ~bT; S$ " % ŜbiTb

j
T

M2 #EgT#x; ~b2T$ ! 2 ~H g
T#x; ~b2T$$00

% ŜbiT#
jk
T S

k
T

M

!
H g

T#x; ~b2T$

%
~b2T
M2 #b

~H g
T#x; ~b2T$

"0

% ŜbiT#
jk
T #2bkT ~bT & ~ST % SkT ~b

2
T$

M3

* # ~H g
T#x; ~b2T$$000: (41)

In these equations we use the notation

 #X#x; ~b2T$$0 "
@

@ ~b2T
#X#x; ~b2T$$; (42)

and analogous for the higher derivatives of the GPDs X, as
well as

 #bX#x; ~b2T$ "
1
~b2T

@

@ ~b2T

#
~b2T

@

@ ~b2T
#X#x; ~b2T$$

$
: (43)

While Eqs. (38)–(40) were already given in the literature
[35,38], the result in (41) is new. Since the point " " 0 is
chosen, the GPDs ~E and ~ET do not show up in (39)–(41):
the GPD ~E is multiplied by the kinematical factor #! " 0
in the correlator, and ~ET vanishes due to the constraint in
Eq. (23).

The expression in (38), for instance, can be interpreted
as the density of unpolarized quarks/gluons with momen-
tum fraction x at the transverse position ~bT in a (trans-
versely polarized) proton. This density has a spin-
independent part given by H , and a spin-dependent part
proportional to the derivative of E. Some details on the
physical interpretation of (39) and (40) can be found in
Refs. [38,39].

Because of the spin-dependent term the impact parame-
ter distribution in (38) is not axially symmetric (unless
E0 " 0), i.e., it depends on the direction of ~bT . In other
words, the spin part causes a distortion of the distribution
(38). Note that the RHS in (40) contains two terms provid-
ing a distortion, one determined by the first derivative of
ET ! 2 ~H T and one given by the second derivative of ~H T .
In (41) none of the three terms on the RHS is axially
symmetric. Later on, we will use the results (38)–(41)
and compare them with the corresponding correlators for
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and therefore infinite. However, using wave packets in-
stead of plane wave states this infinity can be avoided
[41,43]. With the states in Eqs. (31) and (32) the correlators
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parameter space according to
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Using this definition one finds after straightforward algebra
that the correlators in Eqs. (10)–(12) for the quarks and in
Eqs. (17)–(19) for the gluons, written in impact parameter
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In these equations we use the notation
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and analogous for the higher derivatives of the GPDs X, as
well as
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1
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While Eqs. (38)–(40) were already given in the literature
[35,38], the result in (41) is new. Since the point " " 0 is
chosen, the GPDs ~E and ~ET do not show up in (39)–(41):
the GPD ~E is multiplied by the kinematical factor #! " 0
in the correlator, and ~ET vanishes due to the constraint in
Eq. (23).

The expression in (38), for instance, can be interpreted
as the density of unpolarized quarks/gluons with momen-
tum fraction x at the transverse position ~bT in a (trans-
versely polarized) proton. This density has a spin-
independent part given by H , and a spin-dependent part
proportional to the derivative of E. Some details on the
physical interpretation of (39) and (40) can be found in
Refs. [38,39].

Because of the spin-dependent term the impact parame-
ter distribution in (38) is not axially symmetric (unless
E0 " 0), i.e., it depends on the direction of ~bT . In other
words, the spin part causes a distortion of the distribution
(38). Note that the RHS in (40) contains two terms provid-
ing a distortion, one determined by the first derivative of
ET ! 2 ~H T and one given by the second derivative of ~H T .
In (41) none of the three terms on the RHS is axially
symmetric. Later on, we will use the results (38)–(41)
and compare them with the corresponding correlators for
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Γ ≡ γ+

Comparing expressions difference is additional factor,        
and integration over       !bIq,i

3)

To unravel a possible connection between the Sivers effect and the GPD Eq, in Ref. [36] the RHS of (70) was
transformed to the impact parameter space, where it takes the form

 hkq;iT !x"iUT # 1

2

Z
d2 ~bT

Z dz$

2!
eixP

%z$hP%; ~0T; Sj ! !z1""%W !z1; z2"Iq;i!z2" !z2"jP%; ~0T; Si; (71)

with z1=2 as given in Eq. (36). Comparing the expression in
(71) with the correlator (34) for the quark GPDs in impact
parameter space (for " # "%) one realizes that the only
difference is the additional factor Iq;i and an integration
upon the impact parameter ~bT [36]. On the basis of this
observation one may hope to find a relation of the type

 hkq;iT !x"iUT #
Z
d2 ~kTkiT#

q!x; ~kT ; S"

’
Z
d2 ~bTIq;i!x; ~bT"F q!x; ~bT; S"; (72)

where, in rough terms, the function Iq;i incorporates the
effect of the gluon field in the correlator on the RHS of
(70). We mention that in the second term on the RHS of
(72) only the spin-dependent term of F q contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads

 hkq;iT !x"iUT # $
Z
d2 ~kTkiT

#jkT k
j
TS

k
T

M
f?q1T !x; ~k

2
T"

’
Z
d2 ~bTIq;i!x; ~bT"

#jkT b
j
TS

k
T

M
!Eq!x; ~b2T""0:

(73)

Interestingly, the relation (73) is indeed fulfilled in the
context of perturbative low order model calculations [37]
(see also Sec. IV). It also provides an intuitive understand-
ing of the origin of the Sivers transverse SSA [35,36].
However, Eq. (73) does not have the status of a general,
model-independent result (see also, e.g., Ref. [69]). The
crucial problem lies in the fact that, in general, the average
transverse momentum hkq;iT !x"iUT caused by the Sivers
effect cannot be factorized into the function Iq;i (called
lensing function in [36]) and the distortion of the impact
parameter distribution of quarks in a transversely polarized
target which is determined by !Eq"0.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context of
model calculations, we now follow a procedure given in
Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one
interchanges the impact parameter ~bT and the transverse
momentum ~kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the

relations. Note also that the two TMDs g1T and h?1L have no
counterpart on the GPD side, as already pointed out in
Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depending
on the number of derivatives of the involved GPDs in
impact parameter space. In the case of quark distributions
the results given in this subsection were already presented
in Ref. [38]. At this point one has to keep in mind that,
apart from the trivial model-independent relations (rela-
tions of first type), all relations presented in this and the
following subsection so far have only the status of anal-
ogies between functions which follow from obvious anal-
ogies in the structures of the GPD and TMD correlators.
Quantitative relations will be discussed in Sec. IV in con-
nection with model calculations.

First of all, one finds the following connections by
means of the mentioned comparison,

 fq=g1 $ H q=g; gq=g1L $ ~H q=g;
!
hq1T %

~k2T
2M2 h

?q
1T

"
$

!
H q

T $
~b2T
M2 $b

~H q
T

"
;

(74)

which simply correspond to the trivial relations discussed
in Sec. III A.

Relations of second type contain GPDs with one deriva-
tive,

 f?q=g1T $ $!Eq=g"0; h?q1 $ $!EqT % 2 ~H q
T"0;

!
hg1T %

~k2T
2M2 h

?g
1T

"
$ $2

!
H g

T $
~b2T
M2 $b

~H g
T

"0
;

(75)

where the first relation in (75) involving f?q1T and the
derivative of Eq corresponds to Eq. (73). At this point it
is also worthwhile to notice that the computation of the
average transverse momentum of a transversely polarized
quark in an unpolarized target, using the correlator in
Eq. (50), can be carried out completely analogous to
Sec. III B above where the transverse momentum caused
by the Sivers effect is considered. Doing so, one eventually
obtains an equation corresponding to (73), with the quark
Boer-Mulders function h?q1 showing up on the TMD side,
and the first derivative of the linear combination EqT %
2 ~H q

T on the GPD side. On the basis of these considera-
tions one, in particular, also expects the same lensing
function Iq;i to appear in the analogue of Eq. (73). This
feature indeed emerges in the context of the model calcu-
lations presented in Sec. IV. We note that a corresponding
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To unravel a possible connection between the Sivers effect and the GPD Eq, in Ref. [36] the RHS of (70) was
transformed to the impact parameter space, where it takes the form
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with z1=2 as given in Eq. (36). Comparing the expression in
(71) with the correlator (34) for the quark GPDs in impact
parameter space (for " # "%) one realizes that the only
difference is the additional factor Iq;i and an integration
upon the impact parameter ~bT [36]. On the basis of this
observation one may hope to find a relation of the type
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Z
d2 ~kTkiT#

q!x; ~kT ; S"

’
Z
d2 ~bTIq;i!x; ~bT"F q!x; ~bT; S"; (72)

where, in rough terms, the function Iq;i incorporates the
effect of the gluon field in the correlator on the RHS of
(70). We mention that in the second term on the RHS of
(72) only the spin-dependent term of F q contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads

 hkq;iT !x"iUT # $
Z
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#jkT k
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(73)

Interestingly, the relation (73) is indeed fulfilled in the
context of perturbative low order model calculations [37]
(see also Sec. IV). It also provides an intuitive understand-
ing of the origin of the Sivers transverse SSA [35,36].
However, Eq. (73) does not have the status of a general,
model-independent result (see also, e.g., Ref. [69]). The
crucial problem lies in the fact that, in general, the average
transverse momentum hkq;iT !x"iUT caused by the Sivers
effect cannot be factorized into the function Iq;i (called
lensing function in [36]) and the distortion of the impact
parameter distribution of quarks in a transversely polarized
target which is determined by !Eq"0.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context of
model calculations, we now follow a procedure given in
Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one
interchanges the impact parameter ~bT and the transverse
momentum ~kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the

relations. Note also that the two TMDs g1T and h?1L have no
counterpart on the GPD side, as already pointed out in
Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depending
on the number of derivatives of the involved GPDs in
impact parameter space. In the case of quark distributions
the results given in this subsection were already presented
in Ref. [38]. At this point one has to keep in mind that,
apart from the trivial model-independent relations (rela-
tions of first type), all relations presented in this and the
following subsection so far have only the status of anal-
ogies between functions which follow from obvious anal-
ogies in the structures of the GPD and TMD correlators.
Quantitative relations will be discussed in Sec. IV in con-
nection with model calculations.

First of all, one finds the following connections by
means of the mentioned comparison,

 fq=g1 $ H q=g; gq=g1L $ ~H q=g;
!
hq1T %

~k2T
2M2 h

?q
1T

"
$

!
H q

T $
~b2T
M2 $b

~H q
T

"
;

(74)

which simply correspond to the trivial relations discussed
in Sec. III A.

Relations of second type contain GPDs with one deriva-
tive,

 f?q=g1T $ $!Eq=g"0; h?q1 $ $!EqT % 2 ~H q
T"0;
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hg1T %

~k2T
2M2 h

?g
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H g
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M2 $b

~H g
T

"0
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(75)

where the first relation in (75) involving f?q1T and the
derivative of Eq corresponds to Eq. (73). At this point it
is also worthwhile to notice that the computation of the
average transverse momentum of a transversely polarized
quark in an unpolarized target, using the correlator in
Eq. (50), can be carried out completely analogous to
Sec. III B above where the transverse momentum caused
by the Sivers effect is considered. Doing so, one eventually
obtains an equation corresponding to (73), with the quark
Boer-Mulders function h?q1 showing up on the TMD side,
and the first derivative of the linear combination EqT %
2 ~H q

T on the GPD side. On the basis of these considera-
tions one, in particular, also expects the same lensing
function Iq;i to appear in the analogue of Eq. (73). This
feature indeed emerges in the context of the model calcu-
lations presented in Sec. IV. We note that a corresponding
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“Factorization” of Distortion and FSIs



4. The Lensing Function in Relativistic Eikonal Model

In order to calculate the 2 → 2 scattering amplitude M

(needed for (15)) we use functional methods to incorporate the

color degrees of freedom in the eikonal limit when soft gauge

bosons couple to highly energetic matter particles on the light

cone. It is non-trivial to extend the functional methods estab-

lished in an Abelian to non-Abelian gauge theory such as QCD.

Attempts in this direction were made in Refs. [71, 77], and only

recently a fully Lorentz and gauge invariant treatment was pre-

sented in Ref. [78]. Here we outline the details of the functional

approach as it pertains to implementing color structure to the

scattering amplitude M and thereby the lensing function. We

leave the details to a forthcoming publication [79].

Starting from the generating functional Z for QCD in a co-

variant gauge, a quark antiquark 4-point function T can then be

defined by functional derivatives with respect to quark sources

which yields,

T2→2 ∝
∫

DA e−
i
4

∫

(F2+2λ(∂·A)2) eTr lnG
−1[A]+Tr lnH−1[A]G[A] Ḡ[A].

(18)

The first exponential describes the gluonic part of the theory in-

cluding self-interactions and the second exponential describes

internal closed quark and ghost loops. G, Ḡ are the non-

perturbative quark- and antiquark-propagator determining the

external legs of the 4-point function T . One imposes eikonal

approximations on these propagators [70, 71] that simplify

the computation of the path-integral. In an Abelian theory

the eikonal approximation as discussed in the previous section

leads to a well-known eikonal representation [70], which was

argued in [71, 77] to generalize to QCD in the following way,

e.g. for a massless fermion,

Geikαβ (x, y|A) = −i
∫ ∞

0

dsδ(4)(x − y − sn)
(

e−ig
∫ s

0
dβ n·Aa(y+βn)ta

)+

αβ
,

(19)

where color is implemented by a path-ordered exponential in-

dicated by the brackets (...)+ and the color matrix ta in the ex-
ponential.

Inserting the eikonal representation for the quark- and anti-

quark propagator into Eq. (18) and implementing the general-

ized ladder approximation one finds the color gauge invariant

result corresponding to the picture of FSIs discussed in the pre-

vious section,

(

Meik
)αδ

δβ
(x, |&qT + &kT |) =

(1 − x)P+

ms

∫

d2zT e
−i&zT ·(&qT+&kT ) (20)

×














∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
− δαβ















.

In this expression, the (N2c − 1) dimensional integrals result
from auxiliary fields αa(s) and ua(s) that were introduced in
the functional formalism (see Ref. [71]) to separate the phys-

ical gluon fields from the color matrices. The eikonal phase

χ(|&zT |) in Eq. (20) represents the arbitrary amount of soft gluon

exchanges that are summed up into an exponential form and is

expressed in terms of the gluon propagator in a covariant gauge,

χ(|&zT |) = g2
∫ ∞

−∞
dα

∫ ∞

−∞
dβ nµn̄νDµν(z + αn − βn̄), (21)

whereD denotes the gluon propagator, and g is the strong cou-
pling. In this form the 4-velocity vector vµ is expressed in terms

of the complementary light cone vector n̄ where v = − (1−x)P
+

ms
n̄,

with n · n̄ = 1 and n̄2 = 0. One may choose n̄ = (0, 1,&0T ).
In Eq. (20) we evaluate the color integral,

fαβ(χ) ≡
∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
−δαβ

(22)

by deriving a power series representation for arbitrary Nc. We

expand the exponential exp[iχt · α] and rewrite the resulting
factors as derivatives with respect to u. Then we perform in-

tegrations by parts which reduces the α integral to a simple δ-
function. This simplifies the u-integral where u is set to zero

after differentiation We obtain

fαβ(χ) =
∞
∑

n=1

(iχ)n

n!
(−i)n(ta1 ...tan)αδ

∂n(eit·u)δβ

∂ua1 ...∂uan

∣

∣

∣

∣

u=0
. (23)

Now we expand the remaining exponential in Eq. (23) and note

that one can write the set of partial derivatives with respect to

uai as a sum over all permutations Pn of the set {1, ..., n}, which
results in the power series representation for f ,

fαβ(χ) =
∞
∑

n=1

(iχ)n

(n!)2

N2c−1
∑

a1=1

...

N2c−1
∑

an=1

∑

Pn

(ta1 ...tan taPn (1) ...taPn (n) )αβ . (24)

This color factor matrix nicely illustrates the generalized ladder

approximation. If only direct ladder gluons were considered

the sum over permutations would become trivial in Eq. (24) and

only terms (ta1 ...tan tan ...ta1 )αβ = Cn
F
δαβ with CF =

N2c−1
2Nc

would

contribute. This constitutes the leading order in a large-Nc ex-

pansion while non-planar diagrams, i.e. crossed gluon graphs,

are suppressed. For the leading contribution one may simply

replace α → CFαs and work in an Abelian theory. In particu-
lar, this replacement was suggested in perturbative model cal-

culations [32, 80]. Since we take into account crossed gluons

we have to sum over all permutations in (24), and such a re-

placement is not possible. In an Abelian theory, the generating

matrices t reduce to unity, t = 1, and since we have n! permu-

tations of the set {1, ..., n}, we recover the well-known result for
the Coulomb phase,

f U(1)(χ) =
∞
∑

n=1

(iχ)n

n!
= eiχ − 1. (25)

For the non-Abelian Nc = 2 theory the generators are given by

the Pauli matrices σa = 2ta. Instead of using the power series
representation we can calculate the integral (22) analytically by

means of the relation
(

eiu·
σ
2

)

αβ
= δαβ cos

(

|u|
2

)

+
i&σαβ·&u
|u| sin

(

|u|
2

)

.
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pling. In this form the 4-velocity vector vµ is expressed in terms

of the complementary light cone vector n̄ where v = − (1−x)P
+

ms
n̄,

with n · n̄ = 1 and n̄2 = 0. One may choose n̄ = (0, 1,&0T ).
In Eq. (20) we evaluate the color integral,

fαβ(χ) ≡
∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
−δαβ

(22)

by deriving a power series representation for arbitrary Nc. We

expand the exponential exp[iχt · α] and rewrite the resulting
factors as derivatives with respect to u. Then we perform in-

tegrations by parts which reduces the α integral to a simple δ-
function. This simplifies the u-integral where u is set to zero

after differentiation We obtain

fαβ(χ) =
∞
∑

n=1

(iχ)n

n!
(−i)n(ta1 ...tan)αδ

∂n(eit·u)δβ

∂ua1 ...∂uan

∣

∣

∣

∣

u=0
. (23)

Now we expand the remaining exponential in Eq. (23) and note

that one can write the set of partial derivatives with respect to

uai as a sum over all permutations Pn of the set {1, ..., n}, which
results in the power series representation for f ,

fαβ(χ) =
∞
∑

n=1

(iχ)n

(n!)2

N2c−1
∑

a1=1

...

N2c−1
∑

an=1

∑

Pn

(ta1 ...tan taPn (1) ...taPn (n) )αβ . (24)

This color factor matrix nicely illustrates the generalized ladder

approximation. If only direct ladder gluons were considered

the sum over permutations would become trivial in Eq. (24) and

only terms (ta1 ...tan tan ...ta1 )αβ = Cn
F
δαβ with CF =

N2c−1
2Nc

would

contribute. This constitutes the leading order in a large-Nc ex-

pansion while non-planar diagrams, i.e. crossed gluon graphs,

are suppressed. For the leading contribution one may simply

replace α → CFαs and work in an Abelian theory. In particu-
lar, this replacement was suggested in perturbative model cal-

culations [32, 80]. Since we take into account crossed gluons

we have to sum over all permutations in (24), and such a re-

placement is not possible. In an Abelian theory, the generating

matrices t reduce to unity, t = 1, and since we have n! permu-

tations of the set {1, ..., n}, we recover the well-known result for
the Coulomb phase,

f U(1)(χ) =
∞
∑

n=1

(iχ)n

n!
= eiχ − 1. (25)

For the non-Abelian Nc = 2 theory the generators are given by

the Pauli matrices σa = 2ta. Instead of using the power series
representation we can calculate the integral (22) analytically by

means of the relation
(

eiu·
σ
2

)

αβ
= δαβ cos

(

|u|
2

)

+
i&σαβ·&u
|u| sin

(

|u|
2

)

.
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exchange approximation. As shown in Refs. [42, 76], q− poles

appearing in M are related to light-cone divergences that may

be regulated by choosing a slightly off-light like vector n. Those

poles are incompatible with a separation of the form (5). Per-

forming the contour integration on q− under these assumptions

fixes the momentum q− of the antiquark in the loop in (9) to

q− = (!q2
T
+ m2s)/2q

+.

The eikonal propagator can be split into a real and imaginary

part using 1/(x+i0) = P(1/x)−iπδ(x). It has been argued in [46]
that only the imaginary part contributes to the relation (5) as

it forces the antiquark momentum q to be on the mass shell.

Thus, the imaginary part of the eikonal propagator corresponds

to a cut of the first diagram in Fig. 1. From the point of view

of FSIs, the kinematical point q+ = (1 − x)P+ is the ’natural’
choice for the plus component of the spectator. In the picture

where one imagines the scattered quark and antiquark to move

quasi-collinearly with respect to the target pion – backwards

and forwards respectively – the quark and antiquark exchange

soft gluons. Under these kinematic condition one would expect

the FSIs to be dominated by the “small” transverse momenta

of quark and antiquark rather than the “large” plus momenta.

An integration over q+ in (10) where contributions other than

the pole term contribute include configurationswhere largemo-

mentum is also transferred from quark to antiquark in the plus

direction. Nevertheless the principle value does contribute to

the integral (10) which allows for such momentum configura-

tions. While this effect is beyond the picture of FSIs from soft

gluon exchange, we will consider this in a future publication.

Proceeding with the picture of soft gluon exchange there is a

clean separation of FSIs and spatial distortion of the parton dis-

tribution in the transverse plane in the sense of (5). Using only

the imaginary part of the eikonal propagator Eq. (9) reduces to

W
αβ
i,σ(P, k) =

iτ
√
Nc
(1 − x)















δαβgπ(k
2)

[

( /k + mq)γ5v(Ps,σ)
]

i

!k2
T
+ m̃2

+

∫

d2qT

(2π)2

gπ
(

(P−q)2
) [

( /P− /q + mq)γ5v(Ps,σ)
]

i

(

M̄
)αδ

δβ
(q; Ps)

[

!q2
T
+ m̃2
]















.

(10)

We have introduced the notation M̄ = msM/(2(1 − x)P+).
We now use (10) to calculate the pion Boer-Mulders function

via (6). Specifying the pion-quark-antiquark vertex function

gπ(k
2) = gπ

(−Λ2)n−1

(n − 1)!
∂n−1
Λ2

(k2 − m2q) f (k2)
k2 − Λ2 + i0

(11)

where f is a homogeneous function of the quark virtuality

we choose it to be a Gaussian exp[−λ2|k2|], in accordance to
Ref. [42]. Inserting (10) into (6) and a bit of algebra yields the

following expression for the Boer-Mulders function,

εi j
T
k
j

T
h⊥1 (x,

!k2T ) =
2g2πmπ

(2π)3Λ2
(xms + (1 − x)mq)

(

(1 − x)Λ2
)2n−1

×
∫

d2qT

(2π)2
d2pT

(2π)2
ε ji
T
(q

j

T
− p j

T
)
e−

2λ2

1−x (xm
2
s−x(1−x)m2π)e−

λ2

1−x (!q
2
T
+!p2

T
)

[

!q2
T
+ Λ̃2(x)

]n [

!p2
T
+ Λ̃2(x)

]n

×
(

%[M̄eik]
)αδ

δβ
(!kT + !qT )

(

(2π)2δαβδ(2)(!pT + !kT )

+
(

&[M̄eik]
)βγ

γα
(!kT + !pT )

)

, (12)

with Λ̃2(x) = xm2s − x(1 − x)M2 + (1 − x)Λ2. Anticipating
an eikonal form for the scattering amplitude M̄(x,!kT , !qT ) →
M̄eik(|!qT + !kT |) that will be discussed in the next section we
exploit this property to simplify the expression and show a re-

lation to the chirally-odd GPD Hπ
1
. Since GPDs are defined

from collinear light-cone correlations functions gauge link con-

tributions to GPDs don’t lead to an observable effect. In fact,

in light-cone gauge the corresponding contributions from the

gauge link are re-shuffled into the gluon propagators [35] and

they appear as gluon dressings of the tree-level contribution to

GPDs. Thus one can consistently describe GPDs from tree-

level diagrams in the spectator model where the effects of gluon

dressings are effectively hidden in the model parameters. A cal-

culation for the GPD Hπ
1
for an antiquark spectator can be found

in [48]. It is easy to generalize it with a phenomenological ver-

tex function (11). We obtain the following representation after

some elementary manipulations,

Hπ1 (x, 0,−!∆
2
T ) =

−g2πmπ
2(2π)3Λ2

(xms+ (1−x) mq)















(1−x)Λ2

!D2
T
+Λ̃2(x)















2n−1

×
∫ 2π

0

dϕ

∫ 1

0

dz
z2n−2e2λ

2Λ2e−
2λ2( !D2

T
+Λ̃2 (x))

(1−x)z

[

1 − 4z(1 − z)
!D2
T

!D2
T
+Λ̃2(x)

cos2 ϕ
]n , (13)

with !D2
T
= 1

4
(1 − x)2!∆2

T
. Performing a translation of the in-

tegration variables in (12) according to qT → qT + kT and

pT → pT+kT , a rotation of the form q′
T
= qT−pT , p′T = qT+pT ,

weighting with a transverse quark vector ki
T
and integrating

both sides over kT we find the relation

m2πh
⊥(1)
1
(x) =

∫

d2qT

2(2π)2
!qT · !I(x, !qT )Hπ1















x, 0,−
(

!qT
1 − x

)2














. (14)

The function Ii can be expressed in terms of the real and imag-

inary part of the scattering amplitude M̄,

Ii(x, !qT ) =
1

Nc

∫

d2pT

(2π)2
(2pT − qT )i

(

%[M̄eik]
)αδ

δβ
(|!pT |)

(

(2π)2δαβδ(2)(!pT − !qT ) +
(

&[M̄eik]

)βγ

γα
(|!pT − !qT |)

)

. (15)

In order to derive the relation (5) one transforms Eq. (14) into

the impact parameter space via a Fourier transforms of the fol-

lowing form,

Hπ1 (x,!b
2
T ) =

∫

d2∆T

(2π)2
e−i
!∆T ·!bT Hπ1 (x, 0,−!∆

2
T ). (16)

The lensing function in the impact parameter space then reads,

Ii(x,!bT ) = i(1 − x)
∫

d2qT

(2π)2
ei
!qT ·!bT
1−x Ii(x, !qT ). (17)

In the following section we will use a quark-antiquark scatter-

ing amplitude computed in relativistic eikonal models as input

for the lensing function (15).
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on the transverse structure of the pion in terms of the impact

parameter GPD, Hπ
1
and the Boer Mulders function for which

there are very few studies. Recent lattice calculations indicate

that the spatial asymmetry of transversely polarized quarks in

the pion is quite similar in magnitude to that of quarks in the

nucleon [49] which lends supports the findings in [50]. Further

understanding of the Boer-Mulders function for the pion may

provide insight into the explanation of large cos 2φ ∼ h⊥ π
1
⊗ h⊥

1

azimuthal asymmetry (AA) observed in unpolarized π p Drell-
Yan scattering [51, 52, 53]. This work also has direct im-

pact on studies of AAs and TSSAs in unpolarized and polar-

ized measurements πN Drell-Yan experiments proposed by the
COMPASS collaboration. In the latter case the TSSA is sensi-

tive to the the nucleon’s transversity through the convolution of

h⊥ π
1
⊗ h1.

2. T-odd PDFs, Gluonic Poles and The Lensing Function

The field-theoretical definition of transverse-momentum de-

pendent (TMD) parton distributions in terms of hadronic matrix

elements of quark operators serves as the starting point of our

analysis. A classification of TMDs for a spin-1/2 hadron with

momentum P and spin S was presented in Refs. [24, 29, 54].

The TMDs for a spin-0 are obtained by setting S T =. One en-

counters two leading twist TMDs for a pion, the distribution

for unpolarized quarks f1, and the distribution of transversely

polarized quarks h⊥
1
, the Boer-Mulders function. Adopting the

infinite-momentum frame where the hadron moves relativisti-

cally along the positive z-axis such that the target momentum P

has a large plus component P+ and no transverse component we

use the light cone components of a 4-vector a± = 1/
√
2(a0±a3),

aµ = (a−, a+, a⊥). The Boer-Mulders function, defined for

SIDIS reads

2εi j
T
k
j

T
h⊥1 (x,$k

2
T ) = mπ

∫

dz−d2zT

2(2π)3
eixP

+z−−i$kT ·$z

×〈P| q̄ j(0) [0 ; ∞n] iσi+γ5[∞n + zT ; z] qi(z) |P〉, (1)

where [x ; y] denotes a gauge link operator connecting the two

locations x and y and the light-like vector nµ = (1, 0, 0). Pos-
sible complications with slightly off-light cone vectors as sug-

gested in TMD factorization theorems [30, 55] are discussed

below. Throughout this analysis we work in a covariant gauge

where the transverse gauge link at light-cone infinity is negligi-

ble. The gauge link in (1) is interpreted physically as FSIs of

the active quark with the target remnants [32, 33] and is neces-

sary for “naive” time-reversal odd (T-odd) TMDs [22, 25, 31]

to exist [33]. The Boer-Mulders function appears in the fac-

torized description of semi-inclusive processes such as SIDIS

or Drell-Yan [24, 25, 26, 30, 56, 57, 58, 59, 60, 61] in terms

of the first kT -moment, 2m
2
πh
⊥(1)
1
(x) =

∫

d2kT $k2T h
⊥
1
(x,$k2

T
). It

was shown in Ref. [26] that the first kT -moment of the Boer-

Mulders function can be written in terms of a gluonic pole ma-

trix element. Transforming the two pion states in Eq. (1) into a

mixed coordinate-momentum representation [46, 62] results in

an impact parameter representation for the gluonic pole matrix

element,

〈kT 〉(x) = mπh⊥(1)1
(x) =

∫

d2bT
dz−

4(2π)
eixP

+z−

×〈P+, $0T | q̄(z1) [z1 ; z2] Ii(z2)σi+ q(z2) |P+, $0T 〉. (2)

where, the impact parameter bT is hidden in the arguments

of the quark fields, z
µ
1/2 = ∓

z−

2
nµ + b

µ
T
. The 4-vector b

µ
T
is

b
µ
T
= (0, 0, b1

T
, b2

T
). The operator Ii originates from the time-

reversal behavior of the ISIs/FSIs implemented by the gauge

link operator in (1) and is given in terms of the gluonic field

strength tensor Fµν,

2Ii(z2) =

∫

dy− [z2 ; y] gF
+i(y) [y ; z2], (3)

with yµ = y−nµ + b
µ
T
.

Turning our attention to GPDs of a pion, they are represented

by an off-diagonal matrix element of a quark-quark operator

defined on the light-cone [63, 64, 65], where "in"- and "out"-

pion states are labeled by different incoming and outgoing pion

momenta p and p′. One encounters two leading twist GPDs

for a pion, a chirally-even GPD Fπ
1
and the chiral odd GPDs

Hπ
1
[48]. We use the symmetric conventions for the kinematics

for GPDs [63], P = 1
2
(p + p′) and ∆ = p′ − p. The skewness

parameter ξ is defined by ∆+ = −2ξP+, and t = ∆2. The impact
parameter GPDs are obtained from the ordinary GPDs via a

Fourier-transform of the transverse momentum transfer $∆T at
zero skewness ξ = 0. The chirally-odd impact parameter GPD
Hπ
1
is expressed as

∫

dz−

2(2π)
eixP

+z−〈P+,$0T | q̄(z1)[z1; z2]σ+iq(z2) |P+,$0T 〉

=
2bi

T

mπ

∂

∂$b2
T

Hπ1 (x,$b
2
T ). (4)

Hπ
1
describes how transversely polarized quarks are distributed

in a plane transverse to the direction of motion. This distri-

bution functions represents a transverse space distortion due

to spin-orbit correlations [49, 66, 67]. A comparison of the

first moment of the Boer Mulders function (2) and the im-

pact parameter GPD Hπ
1
reveals that they differ by the oper-

ator Ii which represents the FSIs. In various model calculations

[45, 46, 62, 68] the FSIs are treated such that the two effects of

a distortion of the transverse space parton distribution and the

FSIs factorize resulting in the relation

2m2πh
⊥(1)
1
(x) ,

∫

d2bT $bT · $I(x,$bT )
∂

∂$b2
T

Hπ1 (x,$b
2
T ), (5)

where I is called the “quantum chromodynamic lensing func-
tion” [62]. This factorization (5) doesn’t hold in general [48,

69]. On the other hand it is unknown how well Eq. (5) works as

a quantitative and possibly phenomenological approximation.

A phenomenological test of Eq. (5) requires information on the

parton distributions h
⊥(1)
1

and Hπ
1
(in principle measurable) and

quantitative knowledge of the lensing function. In the follow-

ing sections we estimate the size of the lensing function using

2
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Parm. of GTMD correlator hermiticity parity time-reversal
from Andreas Metz INT talk
GTMD analysis

• GTMD-correlator (e.g., Belitsky, Ji, Radyushkin, Yuan, 2003, 2005)

W q =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p′; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WGTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

• Projection onto GPDs and TMDs

F q =
1

2

Z

dz−

2π
eik·z ˙

p′; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WGPD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=zT =0

=

Z

d2"kT W q

Φq =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

= W q
˛

˛

˛

∆=0

→ GPDs and TMDs appear as certain limits of GTMDs (mother distributions)

→ Which GPDs and TMDs have the same mother distributions ?

Reality Check

(x, ξ, "kT , "∆T )GTMD analysis

• GTMD-correlator (e.g., Belitsky, Ji, Radyushkin, Yuan, 2003, 2005)

W q =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p′; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WGTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

• Projection onto GPDs and TMDs

F q =
1

2

Z

dz−

2π
eik·z ˙

p′; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WGPD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=zT =0

=

Z

d2"kT W q

Φq =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

= W q
˛

˛

˛

∆=0

→ GPDs and TMDs appear as certain limits of GTMDs (mother distributions)

→ Which GPDs and TMDs have the same mother distributions ?



• Parameterization of GTMD-correlator

Example:

W q [γ+] =
1

2M
ū(p′, λ′)

»

F1,1+
iσi+ki

T

P +
F1,2+

iσi+∆i
T

P +
F1,3+

iσijki
T∆j

T

M2
F1,4

–

u(p, λ)

→ GTMDs are complex functions: F1,n = F e
1,n + iF o

1,n

• Implications for potential nontrivial relations

– Relations of second type

E(x, 0, $∆2
T ) =

Z

d2$kT

»

− F e
1,1 + 2

„$kT · $∆T

$∆2
T

F e
1,2 + F e

1,3

«–

f⊥
1T (x,$k2

T) = −F o
1,2(x, 0,$k2

T , 0, 0)

→ No model-independent nontrivial relation between E and f⊥
1T possible

→ Relation in spectator model due to simplicity of the model

→ No information on numerical violation of relation

→ Likewise for nontrivial relation involving h⊥
1

GTMD-Wigner Function Correlator
Miessner Metz & Schlegel JHEP 2008 & 2009



These Have Different Mothers

with F1,n = F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η). In addition, the hermiticity constraint implies

F ∗

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) = ±F1,n(x,−ξ,"k2
T ,−"kT · "∆T , "∆2

T ; η) , (10)

where the plus sign holds for n = 1, 3, 4 and the minus sign for n = 2. Finally, the time-
reversal constraint allows one to split each GTMD into two real valued functions,

F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) =F e
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T )

+ i F o
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T ; η) , (11)

the so-called T-even and T-odd part of the GTMD, which can be distinguished by a different
dependence on η. While the T-even part F e

1,n is independent of η the T-odd part F o
1,n changes

its sign under η → −η.
As the correlator of GTMDs (5) contains the correlators of GPDs (1) and TMDs (3) in

the limits (6) and (7), GTMDs can be considered as the mother distributions of GPDs and
TMDs. Therefore, one should be able to obtain the parameterization of GPDs in Eq. (2)
and of TMDs in Eq. (4) directly from the parameterization of the GTMDs in Eq. (9). This
is indeed possible and one finds for the GPDs

H(x, ξ, t) =

∫

d2"kT

[

F e
1,1 + 2ξ2

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (12)

E(x, ξ, t) =

∫

d2"kT

[

− F e
1,1 + 2(1 − ξ2)

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (13)

with F e
1,n = F e

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ) and for the TMDs

f1(x,"k2
T ) = F e

1,1(x, 0,"k2
T , 0, 0) , (14)

f⊥

1T (x,"k2
T ; η) = −F o

1,2(x, 0,"k2
T , 0, 0; η) . (15)

Consequently, a complete parameterization of all GTMDs immediately yields a complete
parameterization of all GPDs and TMDs. We have performed such a parameterization of
the correlator (5) to all twists and found a total of 64 complex valued GTMDs for the
nucleon, which can be split into 64 real valued T-even and 64 real valued T-odd parts. In
addition we also studied the limits of GPDs and TMDs and found that in both cases 32
real valued functions survive (see Tab. 1 for an overview). To our knowledge, this result is

GTMDs GPDs TMDs
twist: Γ T-even T-odd T-even T-odd T-even T-odd

2: γ+ / γ+γ5 / iσi+ 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 2 / 3 1 / 0 / 1

3: 1 / γ5 / γi 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 0 / 1 1 / 2 / 3
γiγ5 / iσij / iσ+− 8 / 4 / 4 8 / 4 / 4 4 / 2 / 2 0 / 0 / 0 3 / 2 / 1 1 / 0 / 1

4: γ− / γ−γ5 / iσi− 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 2 / 3 1 / 0 / 1
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with F1,n = F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η). In addition, the hermiticity constraint implies

F ∗

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) = ±F1,n(x,−ξ,"k2
T ,−"kT · "∆T , "∆2

T ; η) , (10)

where the plus sign holds for n = 1, 3, 4 and the minus sign for n = 2. Finally, the time-
reversal constraint allows one to split each GTMD into two real valued functions,

F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) =F e
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T )

+ i F o
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T ; η) , (11)

the so-called T-even and T-odd part of the GTMD, which can be distinguished by a different
dependence on η. While the T-even part F e

1,n is independent of η the T-odd part F o
1,n changes

its sign under η → −η.
As the correlator of GTMDs (5) contains the correlators of GPDs (1) and TMDs (3) in

the limits (6) and (7), GTMDs can be considered as the mother distributions of GPDs and
TMDs. Therefore, one should be able to obtain the parameterization of GPDs in Eq. (2)
and of TMDs in Eq. (4) directly from the parameterization of the GTMDs in Eq. (9). This
is indeed possible and one finds for the GPDs

H(x, ξ, t) =

∫

d2"kT

[

F e
1,1 + 2ξ2

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (12)

E(x, ξ, t) =

∫

d2"kT

[

− F e
1,1 + 2(1 − ξ2)

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (13)

with F e
1,n = F e

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ) and for the TMDs

f1(x,"k2
T ) = F e

1,1(x, 0,"k2
T , 0, 0) , (14)

f⊥

1T (x,"k2
T ; η) = −F o

1,2(x, 0,"k2
T , 0, 0; η) . (15)

Consequently, a complete parameterization of all GTMDs immediately yields a complete
parameterization of all GPDs and TMDs. We have performed such a parameterization of
the correlator (5) to all twists and found a total of 64 complex valued GTMDs for the
nucleon, which can be split into 64 real valued T-even and 64 real valued T-odd parts. In
addition we also studied the limits of GPDs and TMDs and found that in both cases 32
real valued functions survive (see Tab. 1 for an overview). To our knowledge, this result is
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• Parameterization of GTMD-correlator

Example:

W q [γ+] =
1

2M
ū(p′, λ′)

»

F1,1+
iσi+ki

T

P +
F1,2+

iσi+∆i
T

P +
F1,3+

iσijki
T∆j

T

M2
F1,4

–

u(p, λ)

→ GTMDs are complex functions: F1,n = F e
1,n + iF o

1,n

• Implications for potential nontrivial relations

– Relations of second type

E(x, 0, $∆2
T ) =

Z

d2$kT

»

− F e
1,1 + 2

„$kT · $∆T

$∆2
T

F e
1,2 + F e

1,3

«–

f⊥
1T (x,$k2

T) = −F o
1,2(x, 0,$k2

T , 0, 0)

→ No model-independent nontrivial relation between E and f⊥
1T possible

→ Relation in spectator model due to simplicity of the model

→ No information on numerical violation of relation

→ Likewise for nontrivial relation involving h⊥
1

!k2
T , !k · !∆, and !∆2

T . The four leading twist quark GTMDs of an unpolarized target are

W q[γ+] = F q
1 (x, ξ,!k2

T ,!kT · !∆T , !∆2
T ) , (12)

W q[γ+γ5] =
iεij

T ki
T ∆j

T

M2
G̃q

1(x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) , (13)

W q[iσj+γ5] =
iεij

T ki
T

M
Hk,q

1 (x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) +
iεij

T ∆i
T

M
H∆,q

1 (x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) . (14)

From this parametrization one immediately recovers the model-independent validity of
the relations of first type in Eq. (5), as the involved GPDs and TMDs are simply limiting
cases of the same GTMDs,

∫

d2!bT Hq(x,!b 2
T ) =

∫

d2!kT f q
1 (x,!k 2

T ) =
∫

d2!kT Re
[

F q
1 (x, 0,!k 2

T , 0, 0)
]

. (15)

For the relations of second type in Eq. (6) one finds, however, that

(

Eq
T + 2H̃q

T

)′

∼ Re
[

1
2

(

k1
T

∆1
T

+
k2

T

∆2
T

)

Hk,q
1 + H∆,q

1

]

and h⊥q
1 ∼ Im

[

Hk,q
1

]

, (16)

so that the involved GPDs and TMDs are limiting cases of two independent functions,
the real and the imaginary part of some GTMDs. This supports the understanding that
the relations in Eq. (6) do not hold in general. At the present stage our analysis does not
permit any statement about the relations of third or fourth type in Eqs. (7) and (8), as
here we would have to consider, in particular, target polarization.

5 Conclusions

We showed that model-independent considerations suggest possible relations between
GPDs and TMDs. From these relations, so far only the relations of first type are known to
be valid in general. The relations of second type are probably only valid in simple model
calculations, which is supported by our analysis of GTMDs. It will be very interesting
to redo this analysis for the relations of third and fourth type, as at least the relations of
third type are similar to those of first type and could therefore be valid in general.
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Gauge Links and Transverse Momentum-Spin Correlations

εij
T ki

⊥Sj
Tf⊥(1)

1T (x, k2
⊥) ∼

=< ki
⊥(x) >UT (1)

A
Ph⊥/M

UT sin(φ − φS)(x, z) =
(−2)

∑
a e2

axf⊥(1)a
1T (x)Da

1(z)∑
a e2

axfa
1 (x)Da

1(z)
(2)

4. SIVERS EFFECT IN SIDIS: FIRST INSIGHTS

The first information on the Sivers function from SIDIS was obtained in [39] from a

study of preliminary HERMES data [64] on the ’weighted’ SSA defined as

A
Ph⊥/MN sin(!−!S)
UT (x) ≡

1

ST

"i

〈

Ph⊥,i
MN

N
↑
i −

Ph⊥,i
MN

N
↓
i

〉

"i

〈

1
2
(N↑

i +N
↓
i )

〉 (12)

where N
↑(↓)
i are sums over event counts for the respective transverse target polarization,

and 〈. . .〉 denotes averaging — here over z and Ph⊥. The advantage of ’weighted SSAs’
is that the integrals in the structure function (11) can be solved exactly [24] yielding

A
Ph⊥/MN sin(!−!S)
UT (x,z) =

2
∫

d!P2h⊥
Ph⊥
MN
F
sin(!−!S)
UT (x,z,Ph⊥)

∫

d!P2h⊥FUU (x,z,Ph⊥)
=

(−2) "a e2a x f
⊥(1)a
1T (x)Da1(z)

"a e
2
a x f

a
1 (x)Da1(z)

(13)

where f
⊥(1)a
1T (x) ≡

∫

d2!pT
!p2T
2M2

N

f⊥a1T (x,!p2T ).

While the weighting is preferable from a theory point of view, it makes data analysis

harder. It is difficult to control acceptance effects, and the HERMES Collaboration does

not recommend the use of the preliminary data [64]. In ’unweighted SSAs’ defined as

A
sin(!−!S)
UT (x) ≡

1

ST

"i

〈

N
↑
i −N

↓
i

〉

"i

〈

1
2
(N↑

i +N
↓
i )

〉 (14)

acceptance effects largely cancel. Therefore such data have been finalized first, and one

even is not discouraged to use preliminary data of this type [7, 9, 10]. However, the prize

to pay is that now the convolution integrals in (11) can be solved only by resorting to

models for the transverse momentum dependence. Here we assume the distributions of

transverse parton and hadron momenta in distribution and fragmentation functions to be

Gaussian with the corresponding Gaussian widths, p2Siv and K
2
D1
, taken to be x- or z- and

flavor-independent. The Sivers SSA (14) as measured in [5, 6] is then given by [42]

A
sin(!−!S)
UT =

aG (−2)"a e2a x f
⊥(1)a
1T (x)Da1(z)

"a e
2
a x f

a
1 (x)D

a
1(z)

with aG =

√
#

2

MN
√

p2Siv+K2D1/z
2

. (15)

In view of the sizeable error bars of the first data it was necessary to minimize the number

of fit parameters. For that in [42] effects of sea quarks were neglected. In addition, the

prediction from the limit of a large number of colors Nc in QCD [65], namely

f⊥u1T (x,!p2T ) = − f⊥d1T (x,!p2T ) modulo 1/Nc corrections, (16)

was imposed as an exact constraint. Analog relations holds also for antiquarks, and all

are valid for x of the order xNc = O(N0c ) [65]. The following Ansatz was made and
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In azimuthal asymm. one uses transv. moments of the correlator
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FIG. 4: The graphical representation of the quark-quark-gluon correlator ∆G in the case of fragmentation including besides
the parton a gluon with momentum k1 and the possible intermediate states (a) and (b) in a spectator model description.

As the effects of the component k− will appear suppressed by two powers of the hard scale as compared to the
collinear term, it is integrated over and one considers quark-quark correlators on the light-front (LF: ξ · n = 0)

Φ[U ]
ij (x,kT ) =

∫

d(ξ·P ) d2ξT

(2π)3
eik·ξ 〈P |ψj(0)U[0;ξ] ψi(ξ) |P 〉

⌋

LF
. (5)

The Wilson line or gauge link U[η;ξ] = Pexp
[

−ig
∫

C
ds·Aa(s) ta

]

is a path-ordered exponential along the integration
path C with endpoints at η and ξ. Its presence in the hadronic matrix element is required by gauge-invariance. In the
TMD correlator (5) the integration path C in the gauge link is process-dependent. In the diagrammatic approach the
Wilson lines arise by resumming all gluon interactions between the soft and the hard partonic parts of the hadronic
process [11, 20–22].

Collinear quark distribution functions are obtained from the TMD correlator after integration over pT ,

Φ(x) =

∫

d2kT Φ[U ](x,kT ) =

∫

d(ξ·P )

2π
ei x ξ·P 〈P |ψ(0)Un

[0;ξ] ψ(ξ) |P 〉
⌋

LC
. (6)

The nonlocality is restricted to the light-cone (LC: ξ ·n = ξT = 0) and the gauge link is unique, being the straight-line
path along n. In azimuthal asymmetries one needs the transverse moments contained in the correlator

Φα [U ]
∂ (x) =

∫

d2kT kα
T

Φ[U ](x,kT ) . (7)

The TMD correlator, expanded in distribution functions depending on x and k2
T

contains T-even and T-odd functions,
since the correlator is not T-invariant, which is attributed to the gauge link that depending on the process, accounts
for specific initial and/or final state interactions depending on the color flow in the process. For the collinear case,
the link structure becomes unique in the case of integration over kT (Eq. 6). For spin 0 and spin 1/2 the quark and
gluon correlators that appear at leading order in high energy processes contain only T-even operator combinations.
Evaluated between plane waves one only finds T-even functions depending on x in the parametrization.

For the collinear weighted case, the transverse moments in Eq. (7) one retains a nontrivial link-dependence that
prohibits the use of T-invariance as a constraint. It is possible, however, to decompose the weighted quark (and also
gluon) correlators as

Φα [U ]
∂ (x) = Φ̃α

∂ (x) + C [U ]
G πΦα

G(x, x), (8)

with calculable process-dependent gluonic pole factors C[U ]
G and process (link) independent correlators Φ̃∂ and ΦG.

The correlator Φ̃∂ contains the T-even operator combination, while ΦG contains the T-odd operator combination.
The latter is precisely the soft limit x1 → 0 of a quark-gluon correlator ΦG(x, x1) of the type

T-even T-odd
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• For the weighted cross sections the process dependence is in gluonic
pole factors Bomhof, Pijlman, Mulders 2004-2008 JHEP,NPB. . .

< qα
T dσ > ∼ Φ̃α[ !C]

∂ (x)σ̂lq→lq∆(z) + C [U(C)]
G πΦα[ !C]

G (x, x)σ̂lq→lq∆(z)

< qT σSivers
lH→lhX > ∼ +f⊥(1)

1T (x)σ̂lq→lqD1(z)

< qT σSivers
HH̄→ll̄X > ∼ −f⊥(1)

1T (x1)σ̂qq̄→ll̄f̄1(x2)

f⊥(1)
1T (x) = − g

2M
TF (x) Boer,Pijlman,Mulders 2003 NPB

• For more complicated processes one gets gluonic pole factors “[C]”

Φα[C]
∂ (x) = Φ̃α[ !C]

∂ (x) + C [U(C)]
G πΦα[ !C]

G (x, x)

∆α [C]
∂ (z) = ∆̃α[ !C]

∂

(
1
z

)
+ C [U(C)]

G π∆α[ !C]
G

(
1
z,

1
z

)
.

• Universality violated from gluonic pole matrix elements Sivers asymmetry
Collins Qui, Collins PRD 2007,2008 H H → h h X at high PT

Process Dependence. . . & Qiu Sterman Mech. from Gauge Links

• For the weighted cross sections the process dependence is in gluonic
pole factors Bomhof, Pijlman, Mulders 2004-2008 JHEP,NPB. . .

< qα
T dσ > ∼ Φ̃α[ !C]

∂ (x)σ̂lq→lq∆(z) + C [U(C)]
G πΦα[ !C]

G (x, x)σ̂lq→lq∆(z)

< qT σSivers
lH→lhX > ∼ +f⊥(1)

1T (x)σ̂lq→lqD1(z)

< qT σSivers
HH̄→ll̄X > ∼ −f⊥(1)

1T (x1)σ̂qq̄→ll̄f̄1(x2)

f⊥(1)
1T (x) = − g

2M
TF (x) Boer,Pijlman,Mulders 2003 NPB

• For more complicated processes one gets gluonic pole factors “[C]”

Φα[C]
∂ (x) = Φ̃α[ !C]

∂ (x) + C [U(C)]
G πΦα[ !C]

G (x, x)

∆α [C]
∂ (z) = ∆̃α[ !C]

∂

(
1
z

)
+ C [U(C)]

G π∆α[ !C]
G

(
1
z,

1
z

)
.

• Universality violated from gluonic pole matrix elements Sivers asymmetry
Collins Qui, Collins PRD 2007,2008 H H → h h X at high PT

Relations between GPDs and TMDsRelations between GPDs and TMDs
Non-trivial relations for “T-odd” parton distributions:
M. Burkardt [Nucl.Phys. A735, 185],  [PRD66, 114005]

 Average transverse momentum of unpolarized partons in a 
            transversely polarized nucleon:

coll. “soft gluon pole” matrix element

Manipulation of Gauge Links + Impact parameter representation

Impact parameter representation for GPD E
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To unravel a possible connection between the Sivers effect and the GPD Eq, in Ref. [36] the RHS of (70) was
transformed to the impact parameter space, where it takes the form

 hkq;iT !x"iUT # 1

2

Z
d2 ~bT

Z dz$

2!
eixP

%z$hP%; ~0T; Sj ! !z1""%W !z1; z2"Iq;i!z2" !z2"jP%; ~0T; Si; (71)

with z1=2 as given in Eq. (36). Comparing the expression in
(71) with the correlator (34) for the quark GPDs in impact
parameter space (for " # "%) one realizes that the only
difference is the additional factor Iq;i and an integration
upon the impact parameter ~bT [36]. On the basis of this
observation one may hope to find a relation of the type

 hkq;iT !x"iUT #
Z
d2 ~kTkiT#

q!x; ~kT ; S"

’
Z
d2 ~bTIq;i!x; ~bT"F q!x; ~bT; S"; (72)

where, in rough terms, the function Iq;i incorporates the
effect of the gluon field in the correlator on the RHS of
(70). We mention that in the second term on the RHS of
(72) only the spin-dependent term of F q contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads

 hkq;iT !x"iUT # $
Z
d2 ~kTkiT

#jkT k
j
TS

k
T

M
f?q1T !x; ~k

2
T"

’
Z
d2 ~bTIq;i!x; ~bT"

#jkT b
j
TS

k
T

M
!Eq!x; ~b2T""0:

(73)

Interestingly, the relation (73) is indeed fulfilled in the
context of perturbative low order model calculations [37]
(see also Sec. IV). It also provides an intuitive understand-
ing of the origin of the Sivers transverse SSA [35,36].
However, Eq. (73) does not have the status of a general,
model-independent result (see also, e.g., Ref. [69]). The
crucial problem lies in the fact that, in general, the average
transverse momentum hkq;iT !x"iUT caused by the Sivers
effect cannot be factorized into the function Iq;i (called
lensing function in [36]) and the distortion of the impact
parameter distribution of quarks in a transversely polarized
target which is determined by !Eq"0.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context of
model calculations, we now follow a procedure given in
Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one
interchanges the impact parameter ~bT and the transverse
momentum ~kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the

relations. Note also that the two TMDs g1T and h?1L have no
counterpart on the GPD side, as already pointed out in
Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depending
on the number of derivatives of the involved GPDs in
impact parameter space. In the case of quark distributions
the results given in this subsection were already presented
in Ref. [38]. At this point one has to keep in mind that,
apart from the trivial model-independent relations (rela-
tions of first type), all relations presented in this and the
following subsection so far have only the status of anal-
ogies between functions which follow from obvious anal-
ogies in the structures of the GPD and TMD correlators.
Quantitative relations will be discussed in Sec. IV in con-
nection with model calculations.

First of all, one finds the following connections by
means of the mentioned comparison,

 fq=g1 $ H q=g; gq=g1L $ ~H q=g;
!
hq1T %

~k2T
2M2 h

?q
1T

"
$

!
H q

T $
~b2T
M2 $b

~H q
T

"
;
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which simply correspond to the trivial relations discussed
in Sec. III A.

Relations of second type contain GPDs with one deriva-
tive,

 f?q=g1T $ $!Eq=g"0; h?q1 $ $!EqT % 2 ~H q
T"0;

!
hg1T %

~k2T
2M2 h

?g
1T

"
$ $2

!
H g

T $
~b2T
M2 $b

~H g
T

"0
;

(75)

where the first relation in (75) involving f?q1T and the
derivative of Eq corresponds to Eq. (73). At this point it
is also worthwhile to notice that the computation of the
average transverse momentum of a transversely polarized
quark in an unpolarized target, using the correlator in
Eq. (50), can be carried out completely analogous to
Sec. III B above where the transverse momentum caused
by the Sivers effect is considered. Doing so, one eventually
obtains an equation corresponding to (73), with the quark
Boer-Mulders function h?q1 showing up on the TMD side,
and the first derivative of the linear combination EqT %
2 ~H q

T on the GPD side. On the basis of these considera-
tions one, in particular, also expects the same lensing
function Iq;i to appear in the analogue of Eq. (73). This
feature indeed emerges in the context of the model calcu-
lations presented in Sec. IV. We note that a corresponding
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