

EXCLUSIVE LIMITS of DRELL YAN Accessing GPDs and TDAs

B. Pire

CPhT, École Polytechnique, CNRS, PALAISEAU, France

Compass workshop

April 26th, 2010

CERN

based on works with

M. Diehl, E. Berger and L. Szymanowski, J.P. Lansberg

TWO EXCLUSIVE LIMITS

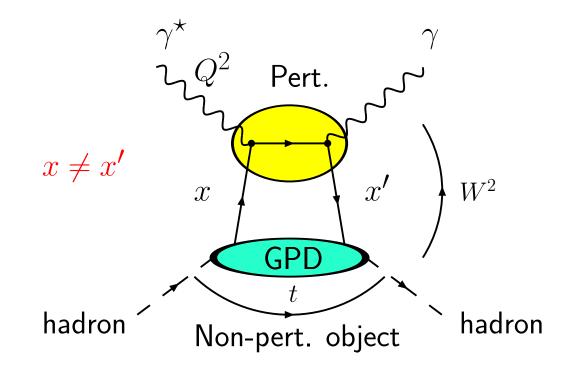
- \rightarrow FORWARD region :
- based on factorized description of forward DVCS
- in terms of Generalized Parton Distributions (GPD)
- → **BACKWARD** region :
- based on factorized description of backward DVCS
- in terms of Transition Distribution Amplitudes (TDA)

(Fixed angle region : tiny cross sections)

From spacelike DVCS to Timelike "TCS"

E.Berger, M. Diehl, BP : Eur.Phys.J.C23, 675(2002).

Success of factorized description of DVCS $\gamma^*N \rightarrow \gamma N'$ in terms of Generalized Parton Distributions



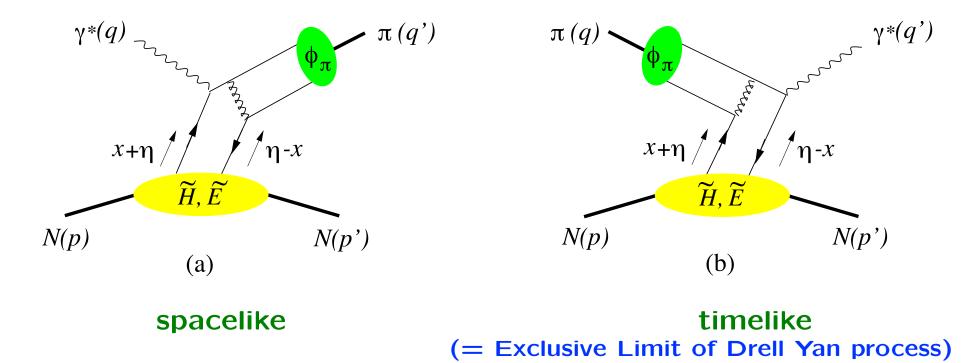
Initial Photon Beam allows to study crossed reaction $\gamma N \rightarrow \gamma^* N'$ in terms of the same GPDs

at LHC : BP, L.Szymanowski, J.Wagner : Phys Rev. D79,014010(2009)

From
$$\gamma^*N \to \pi N'$$
 to $\pi N \to \gamma^*N'$

E.Berger, M.Diehl, BP, Phys Lett. B523

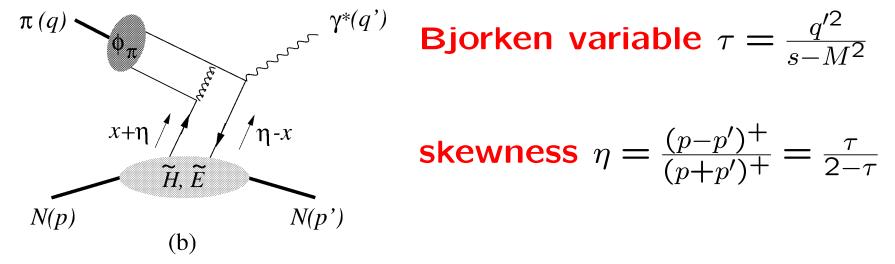
Pion beams reveal \tilde{H}, \tilde{E} Generalized Parton distributions



JLab or COMPASS physics \iff **COMPASS or JParc physics**

Exclusive lepton pair production in πN **scattering**

$$\pi N \to \gamma^* N'$$



At lowest order, spacelike (ξ) and timelike ($-\eta$) amplitudes are equal

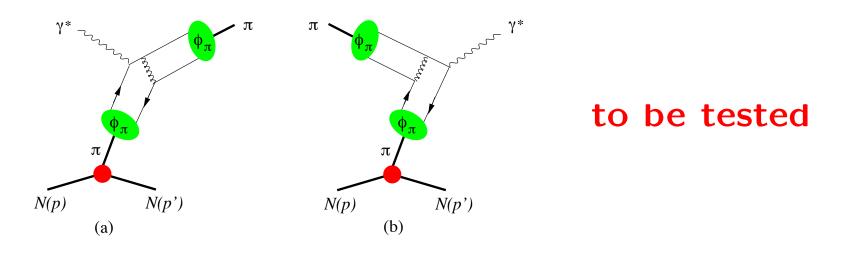
At higher orders, significant differences in the hard amplitude (recall K-factor in Drell-Yan vs DIS)

 \rightarrow critical check of the factorization procedure and of the universality of GPDs.

 \tilde{H} and \tilde{E} GPDs

$$\Rightarrow \tilde{H}(x,\xi=0,t=0) = \Delta q(x)$$

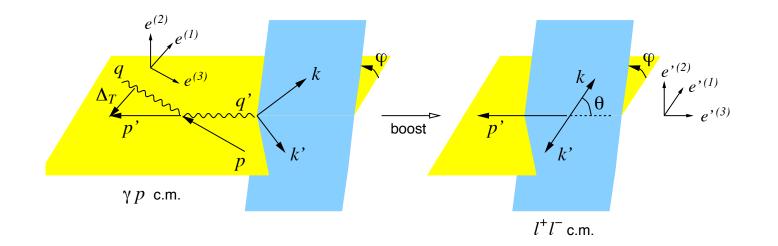
 $\Rightarrow \tilde{E}$ unknown : Pion pole dominance often assumed



 \Rightarrow *t*-dependence \rightarrow proton femtophotography

Lepton angular distribution

Dominant Amplitude : longitudinal γ^*



 $\frac{d\sigma}{dQ'^2 dt d(\cos\theta) d\varphi} = \frac{\alpha_{\rm em}}{256 \pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2\theta$

Crucial Test of the validity of the twist expansion if σ_T not small, extract GPDs from σ_L only !

Cross sections

Amplitude $M^{0\lambda',\lambda}(\pi^- p \to \gamma^* n) = -ie \frac{4\pi}{3} \frac{J_{\pi}}{O'}$ $\times \quad \frac{1}{(p+n')^+} \,\bar{u}(p',\lambda') \left[\gamma^+ \gamma_5 \,\tilde{\mathcal{H}}^{du}(-\eta,\eta,t) + \gamma_5 \frac{(p'-p)^+}{2M} \,\tilde{\mathcal{E}}^{du}(-\eta,\eta,t) \right] \, u(p,\lambda).$ $\frac{d\sigma(\pi^{-}p \to \mu^{+}\mu^{-}n)}{d\Omega'^{2}dt} = \frac{4\pi\alpha_{em}^{2}}{27} \frac{\tau^{2}}{\Omega'^{8}} f_{\pi}^{2}$. $[((1-\eta^2)|\tilde{\mathcal{H}}^{du}|^2-2\eta^2\mathcal{R}e(\tilde{\mathcal{H}}^{du*}\tilde{\mathcal{E}}^{du})-\eta^2\frac{t}{\mathcal{I}M^2}|\tilde{\mathcal{E}}^{du}|^2]$ $\tilde{\mathcal{H}}^{du}(\xi,\eta,t) = \frac{8}{3} \alpha_S \int_{-1}^{1} dz \, \frac{\phi_{\pi}(z)}{1-z^2}$ with $\times \int_{-1}^{1} dx \left| \frac{e_d}{\xi - x - i\epsilon} - \frac{e_u}{\xi + x - i\epsilon} \right| \left[\tilde{H}^d(x, \eta, t) - \tilde{H}^u(x, \eta, t) \right]$

and similar eqn for $ilde{\mathcal{E}}^{du}$.

Remember $\xi = -\eta$

Target Transverse Spin asymmetry

At the twist 2 level : $\frac{d^{\uparrow}\sigma - d^{\downarrow}\sigma}{d^{\uparrow}\sigma + d^{\downarrow}\sigma} = A_{\rm UT}^{\sin(\phi - \phi_S)}\sin(\phi - \phi_S) + \text{other harmonics}$

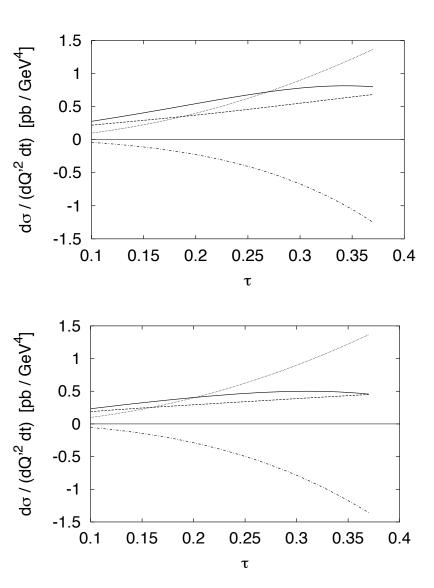
$$A_{UT} = \frac{-2\sqrt{\frac{t-t_{min}}{t_{min}}} \eta^2 \mathcal{I}m \left(\tilde{\mathcal{H}}\tilde{\mathcal{E}}^*\right)}{(1-\eta^2)|\tilde{\mathcal{H}}|^2 - \frac{t}{4M^2}|\eta\tilde{\mathcal{E}}|^2 - 2\eta^2 \mathcal{R}e(\tilde{\mathcal{H}}\tilde{\mathcal{E}}^*)}$$

New information on GPDs.

e.g. if \tilde{E} is well modelized by pion pole, $\tilde{\mathcal{E}}$ is real $\rightarrow A_{UT} \sim \tilde{H}(x, \xi = x, t)$

Cross section estimates

E.Berger, M.Diehl, BP, Phys Lett. B523



$$\pi^- p \to \mu^+ \mu^- n$$
; $Q^2 = 5$; $t = -0.2$; $\tau = \frac{Q^2}{s - M^2}$

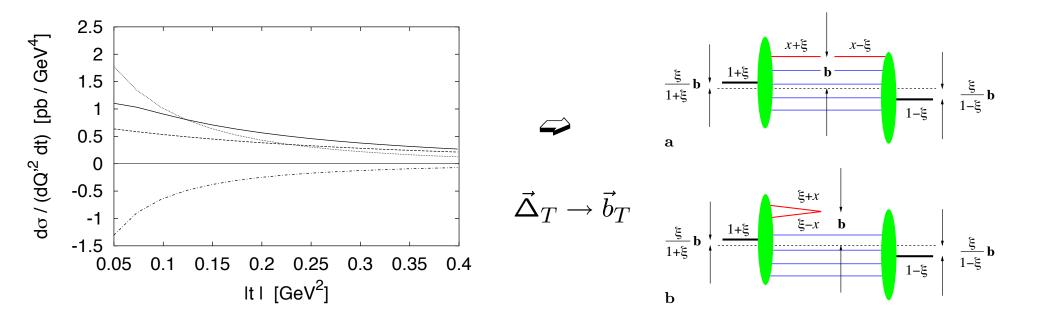
Solid = total; dashed : \tilde{H}^2 ; Dash-dotted : $\operatorname{Re}(\tilde{H}.\tilde{E})$; dotted : \tilde{E}^2

$$\pi^+n
ightarrow \mu^+\mu^-p$$
 ; $\,Q^2=5$; $\,t=-0.2$

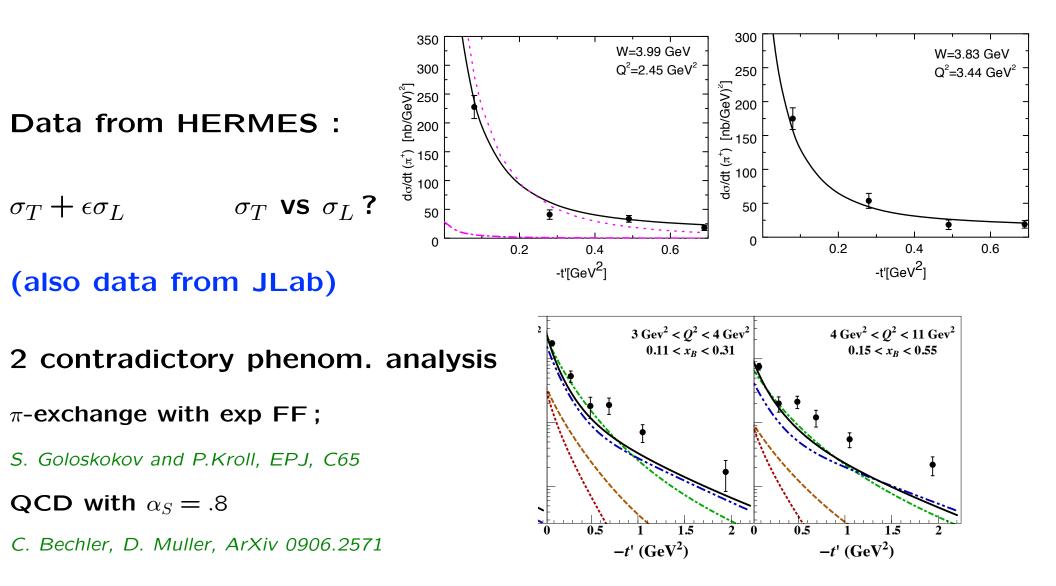
t- dependence and femtophotography

E.Berger, M.Diehl, BP, Phys Lett. B523

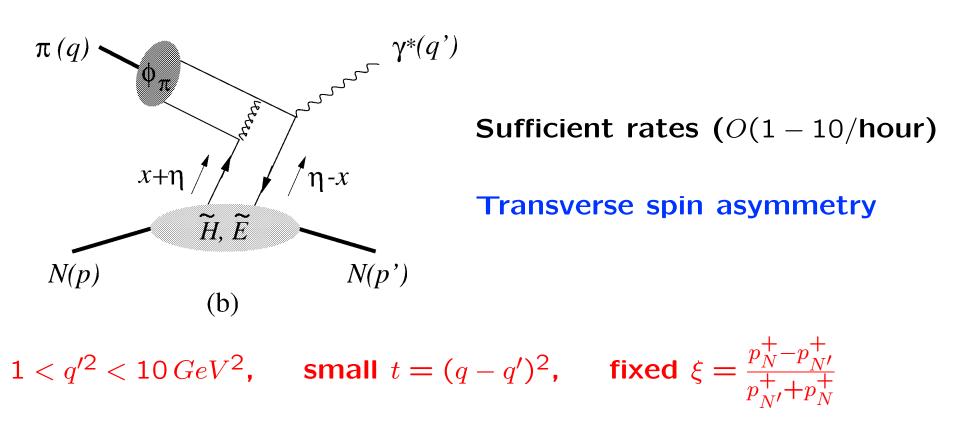
M.Diehl, EPHJA, C25



Status of spacelike $\gamma^*(Q)p \to \pi N$



Compass Opportunity



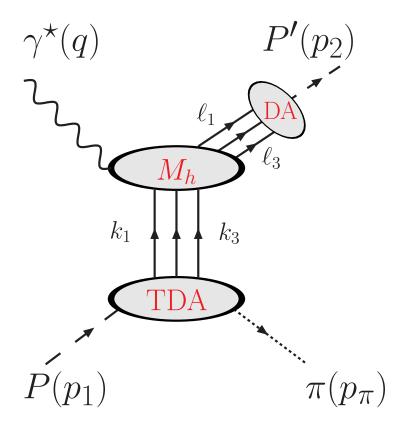
Measure lepton pair momentum; deduce missing mass² = \overline{M}^2 .

Select small $\bar{M}^2 \approx M_p^2$. ((or detect final proton with recoil detector?)

Small ξ : lepton pair forward.

How to factorize backward electroproduction $\gamma^* N \rightarrow N' \pi$

BP, L Szymanowski, PRD71 and PLB622

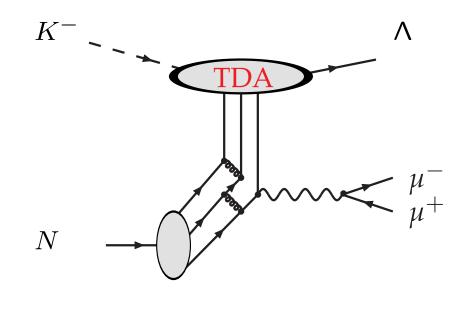


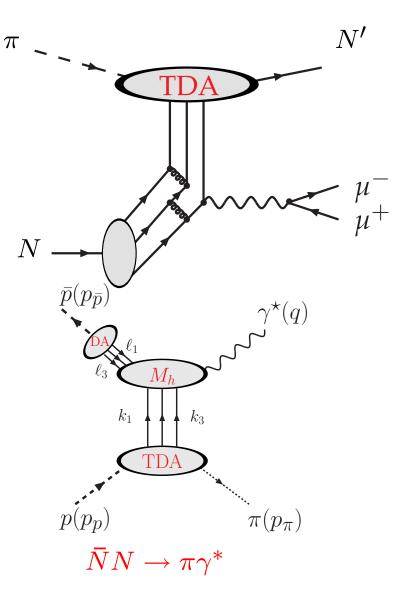
at large
$$q^2$$
, small $t = (p_{N'} - p_{\pi})^2$, fixed $\xi = \frac{p_{N'}^+ - p_{\pi}^+}{p_{N'}^+ + p_{\pi}^+}$

 \rightarrow factorize timelike versions of backward $\gamma^* N \rightarrow N' \pi$

 $K^-N \to \Lambda \gamma^*$

 $\pi N \to N' \gamma^*$





Interpretation of the $N \rightarrow \pi$ TDAs

Develop proton wave function as (schematically) $|qqq > + |qqq\pi > + ...$ |qqq > is described by proton DA : $\langle 0 | \epsilon^{ijk} u^i_{\alpha}(z_1 n) u^j_{\beta}(z_2 n) d^k_{\gamma}(z_3 n) | p(p,s) \rangle \Big|_{z^+=0, z_T=0}$

Define matrix elements sensitive to $|qqq \ \pi > part$: the TDAs

$$\left\langle \pi(p') \right| \epsilon^{ijk} u^i_{\alpha}(z_1 n) u^j_{\beta}(z_2 n) d^k_{\gamma}(z_3 n) \left| p(p,s) \right\rangle \Big|_{z^+=0, z_T=0}$$

light cone matrix elements of operators obeying usual RG evolution equations

 \Rightarrow The $\pi \rightarrow N$ TDAs provides information on the next to minimal Fock state in the baryon

$$p \rightarrow p' = p \rightarrow \left[p' \rightarrow p' \right]^*$$

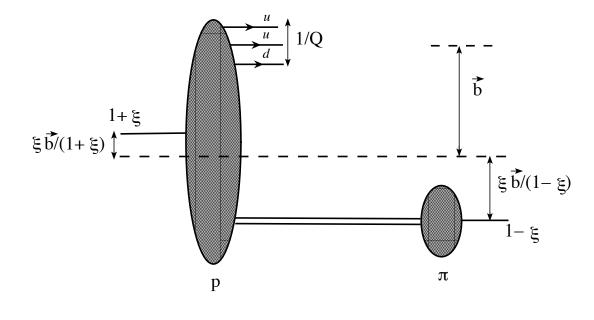
 $Proton = |u \ d \ d \ \pi^+ >$ with small transverse separation for the quark triplet

Impact parameter interpretation

• As for GPDs Fourier transform $\Delta_T \rightarrow b_T$

$$F(x_i, \xi, t = \Delta^2) \to \tilde{F}(x_i, \xi, b_T)$$

 \rightarrow Transverse picture of pion cloud in the proton



if factorization works

Define Transition Distribution Amplitudes

• Dirac decomposition at leading twist :

$$4\langle \pi^{0}(p') | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}) u^{j}_{\beta}(z_{2}) d^{k}_{\gamma}(z_{3}) | p(p,s) \rangle \Big|_{z^{+}=0, z_{T}=0} = \frac{-f_{N}}{2f_{\pi}} \Big[V^{0}_{1}(\hat{P}C)_{\alpha\beta}(B)_{\gamma} + A^{0}_{1}(\hat{P}\gamma^{5}C)_{\alpha\beta}(\gamma^{5}B)_{\gamma} - 3T^{0}_{1}(P^{\nu}i\sigma_{\mu\nu}C)_{\alpha\beta}(\gamma^{\mu}B)_{\gamma}] + V^{0}_{2}(\hat{P}C)_{\alpha\beta}(\hat{\Delta}_{T}B)_{\gamma} + A^{0}_{2}(\hat{P}\gamma^{5}C)_{\alpha\beta}(\hat{\Delta}_{T}\gamma^{5}B)_{\gamma} + T^{0}_{2}(\Delta^{\mu}_{T}P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(B)_{\gamma} + T^{0}_{3}(P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(\sigma^{\mu\rho}\Delta^{\rho}_{T}B)_{\gamma} + \frac{T^{0}_{4}}{M}(\Delta^{\mu}_{T}P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(\hat{\Delta}_{T}B)_{\gamma}$$

B = nucleon spinor $V_i(z_i), A_i(z_i), T_i(z_i)$ are the TDAs

- V_1 and T_1 dominant . If isospin = 1/2, $T_1 = f(V_1)$
- Fourier transform each TDA, → momentum fractions representation

$$F(z_i) = \int_{-1+\xi}^{1+\xi} d^3x \delta(\sum x_i - 2\xi) e^{-iPn\sum x_i z_i} F(x_1, x_2, x_3, \xi, t, Q^2)$$

 $F = V_i, A_i, T_i$

 \Rightarrow Write the Amplitude $(\pi N(p_2) \rightarrow N'(p_1)\mu^+\mu^-)$

$$\mathcal{M}_{s_{1}s_{2}}^{\lambda} = -i \frac{(4\pi\alpha_{s})^{2}\sqrt{4\pi\alpha_{em}}f_{N}^{2}}{54f_{\pi}Q^{4}} \left[\underbrace{\bar{u}(p_{2},s_{2})\not(\lambda)\gamma^{5}u(p_{1},s_{1})}_{\mathcal{S}_{s_{1}s_{2}}^{\lambda}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3}x \int_{0}^{1} d^{3}y \left(2\sum_{\alpha=1}^{7}T_{\alpha} + \sum_{\alpha=8}^{14}T_{\alpha}\right)}_{I} \right] \\ -\underbrace{\varepsilon(\lambda)_{\mu}\Delta_{T,\nu}\bar{u}(p_{2},s_{2})(\sigma^{\mu\nu} + g^{\mu\nu})\gamma^{5}u(p_{1},s_{1})}_{\mathcal{S}_{s_{1}s_{2}}^{\prime}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3}x \int_{0}^{1} d^{3}y \left(2\sum_{\alpha=1}^{7}T_{\alpha}' + \sum_{\alpha=8}^{14}T_{\alpha}'\right)}_{I'} \right],$$

= baryon helicity conserving + baryon helicity violating amplitudes

The Hard Amplitude is calculated from 21 Feynman diagrams

Interference of \mathcal{S} and $\mathcal{S}' \rightarrow \text{Transverse spin asymmetry}$

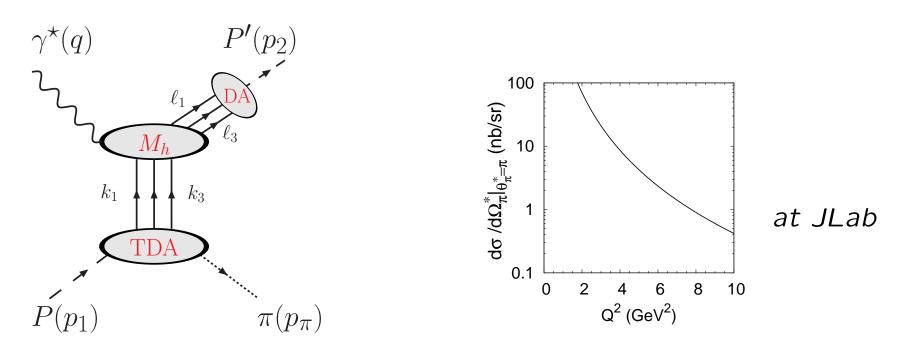
Hard amplitude

α		T_{lpha}	T'_{lpha}
1	$u(x_1) \xrightarrow{\qquad \qquad} u(y_1)$ $u(x_2) \xrightarrow{\qquad \qquad} u(y_2)$ $d(x_3) \xrightarrow{\qquad \qquad} d(y_3)$	$\frac{-Q_{u}(2\xi)^{2}[(V_{1}^{p\pi^{0}}-A_{1}^{p\pi^{0}})(V^{p}-A^{p})+4T_{1}^{p\pi^{0}}T^{p}+2\frac{\Delta_{T}^{2}}{M^{2}}T_{4}^{p\pi^{0}}T^{p}]}{(2\xi-x_{1}-i\epsilon)^{2}(x_{3}-i\epsilon)(1-y_{1})^{2}y_{3}}$	$\frac{-Q_u(2\xi)^2[(V_2^{p\pi^0} - A_2^{p\pi^0})(V^p - A^p) + 2(T_2^{p\pi^0} + T_3^{p\pi^0})T^p]}{(2\xi - x_1 - i\epsilon)^2(x_3 - i\epsilon)(1 - y_1)^2y_3}$
2	$u(x_1) \qquad \qquad$	0	0
3	$u(x_1) \qquad \qquad$	$\frac{Q_u(2\xi)^2 [4T_1^{p\pi^0}T^p + 2\frac{\Delta_u^2}{M^2}T_4^{p\pi^0}T^p]}{(x_1 - i\epsilon)(2\xi - x_2 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_1)y_3}$	$\frac{Q_u(2\xi)^2 [2(T_2^{p\pi^0} + T_3^{p\pi^0})T^p]}{(x_1 - i\epsilon)(2\xi - x_2 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_1)y_3}$
4	$u(x_1) \qquad u(y_1)$ $u(x_2) \qquad u(y_2)$ $d(x_3) \qquad d(y_3)$	$\frac{-Q_u(2\xi)^2[(V_1^{p\pi^0} - A_1^{p\pi^0})(V^p - A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_1)y_3}$	$\frac{-Q_u(2\xi)^2[(V_2^{p\pi^0} - A_2^{p\pi^0})(V^p - A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_1)y_3}$
5	$u(x_1) \qquad \qquad$	$\frac{Q_u(2\xi)^2[(V_1^{p\pi^0} + A_1^{p\pi^0})(V^p + A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_2)y_3}$	$\frac{Q_u(2\xi)^2[(V_2^{p\pi^0} + A_2^{p\pi^0})(V^p + A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)(x_3 - i\epsilon)y_1(1 - y_2)y_3}$
6	$u(x_1) \qquad \qquad$	0	0
7	$u(x_1) \qquad \qquad$	$\frac{-Q_d(2\xi)^2 [2(V_1^{p\pi^0}V^p + A_1^{p\pi^0}A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)^2 y_1(1 - y_3)^2}$	$\frac{-Q_d(2\xi)^2 [2(V_2^{p\pi^0}V^p + A_2^{p\pi^0}A^p)]}{(x_1 - i\epsilon)(2\xi - x_3 - i\epsilon)^2 y_1(1 - y_3)^2}$

 T_i and T'_i real for $x_1, x_2, x_3 > 0$

Backward electroproduction

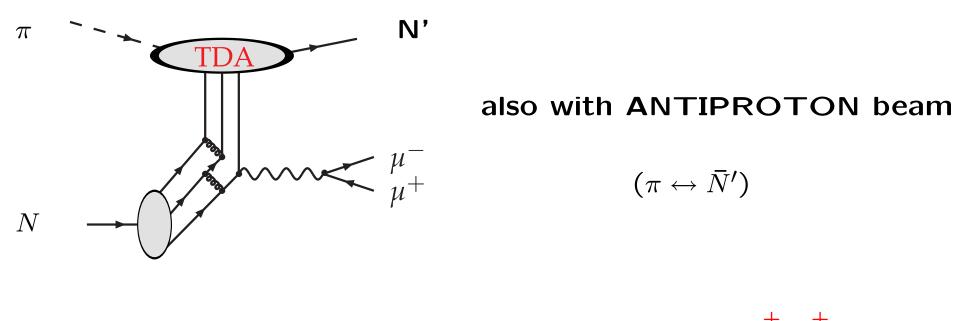
JP Lansberg, BP, L Szymanowski, PRD75



Data are being analyzed with outgoing π^0 , π^+ and ω ...

More to come with JLab@12 GeV

Compass Opportunity



 $1 < Q^2 < 10 GeV^2$, small $t = (p_{\pi} - p_{N'})^2$, fixed $\xi = \frac{p_{\pi}^+ - p_{N'}^+}{p_{N'}^+ + p_{\pi}^+}$

Measure lepton pair momentum; deduce missing mass² = \overline{M}^2 .

Select small $\bar{M}^2 \approx M_p^2$. (antiproton case $\approx M_\pi^2$)

Small $t = (p_{target} - q)^2$: lepton pair almost at rest in lab frame

Transverse Target spin asymmetry

Recall $\mathcal{M} = ST_i + S'T'_i$; S(S') is Nucleon helicity conserving (violating)

- $\boldsymbol{\nleftrightarrow}$ Comes from Interference of $\mathcal S$ and $\mathcal S'$
- \Rightarrow Leading twist (i.e. not $1/Q^2$) in eN and $\overline{N}N$ reactions
- \Rightarrow zero in πN reaction
- \Rightarrow Proportionnal to \mathcal{I} m ($T_i T_j^{'*}$)

 \Rightarrow absent in a hadronic (nucleon exchange) description

 \Rightarrow i.e. specific to a partonic (TDA) description

 \rightarrow transversally polarized \wedge in $KN \rightarrow \wedge \mu^+ \mu^-$

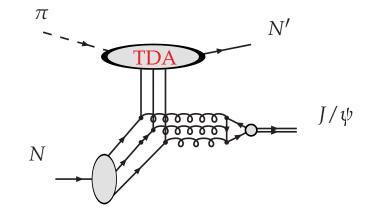
Extending Drell Yan to charmonium case : $\pi N \rightarrow N' \psi$

 $\Rightarrow \text{Recall } \psi \to \overline{p}p \text{ decay}$

the amplitude of which is described with the help of proton (and \bar{p}) DAs

 \Rightarrow Replace antiproton DA by $\pi \rightarrow N$ TDA

 $\xi \approx \frac{M_{\psi}^2}{2s_{\pi N}}$



 ψ is isoscalar \rightarrow Isospin $\frac{1}{2}$ part of $\pi \rightarrow N$ TDA selected by hard amplitude

Tests of the applicability of the TDA framework

The process amplitude Factorizes at large enough Q^2 :

$$\mathcal{M}(Q^2,\xi,t) = \int dx dy \phi(y_i) T_H(x_i, y_i, Q^2) F(x_i,\xi,t)$$

You know that you reach the right domain if you check :

- scaling law for the amplitude : $\mathcal{M}(Q^2,\xi)\sim rac{lpha_s(Q^2)^2}{Q^4}$, (up to log corrections)
- Dominance of transversely polarized virtual photon $\sigma_T >> \sigma_L$

 \Rightarrow crucial test : Universality of TDAs \rightarrow this description applies as well to spacelike and timelike reactions

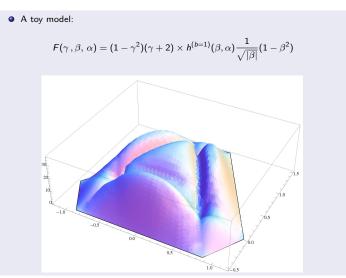
 \rightarrow Backward DEMP $\gamma^* P \rightarrow P' \pi$ and Backward $\pi N \rightarrow N' \gamma^*$ Data exist (JLab) for Q^2 up to a few GeV² \rightarrow More to come !

Conclusions

 \Rightarrow Exclusive limit of Drell Yan reactions with π (and \overline{p}) beams will yield crucial information on GPDs and TDAs!

GPD and TDA physics explore confinement dynamics in hadrons

- → More theoretical work still needed
- Improve the understanding of the Pert. part in particular wrt Timelike vs Spacelike scales
- More non pert. studies of GPDs and TDAs



Experimental breakthrough expected from COMPASS (and JParc) :

- first measurements of $\tilde{H}(x,\xi,t)$, $\tilde{E}(x,\xi,t)$ at small ξ
 - first measurements of TDA in a timelike regime

ready for simulation with Compass acceptance!