Future Drell-Yan Experiments at J-PARC and RHIC (internal target)

CERN Workshop on "Studying the hadron structure in Drell-Yan reactions" April 27th, 2010 Yuji Goto (RIKEN/RBRC)

Outline of this talk

- J-PARC proposals
 - Unpolarized experiment
 - Polarized experiment with a polarized beam
- Ideas at RHIC
 - (Collider)
 - Fixed-target experiment

J-PARC proposals

- P04: measurement of high-mass dimuon production at the 50-GeV proton synchrotron
 - spokespersons: Jen-Chieh Peng (UIUC) and Shinya Sawadas (KEK)
 - collaboration: Abilene Christian Univ., ANL, Duke Univ., KEK, UIUC, LANL, Pusan National Univ., RIKEN, Seoul National Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.
 - including polarized physics program, but not discussed
 - "deferred"
- P24: polarized proton acceleration at J-PARC
 - contact persons: Yuji Goto (RIKEN) and Hikaru Sato (KEK)
 - collaboration: ANL, BNL, UIUC, KEK, Kyoto Univ., LANL, RCNP, RIKEN, RBRC, Rikkyo Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.
 - polarized Drell-Yan included as a physics case
 - "no decision"
- Next proposal for the polarized physics program
 - not submitted yet

Polarized proton acceleration

- How to keep the polarization given by the polarized proton source
 - depolarizing resonance
 - imperfection resonance
 - magnet errors and misalignments
 - intrinsic resonance
 - vertical focusing field
 - weaken the resonance
 - fast tune jump
 - harmonic orbit correction
 - intensify the resonance and flip the spin
 - rf dipole
 - snake magnet
- How to monitor the polarization
 - polarimeters

Polarized proton acceleration at AGS/RHIC

 Proposed scheme for the polarized proton acceleration at J-PARC is based on the successful experience of accelerating polarized protons to 25 GeV at BNL AGS

Polarized proton acceleration at J-PARC

Dimuon experiment at J-PARC

pQCD studies of Drell-Yan cross section

pQCD correction can be controlled at J-PARC energy

Polarized Drell-Yan experiment at J-PARC

- Single transverse-spin asymmetry
 - Sivers effect measurement
- Experimental condition
 - higher beam intensity is possible for unpolarized liquid H₂ target, or nuclear target
 - 5×10¹² ppp = 2.5×10¹²×2sec in 1pulse (5sec) possible?
 - PYTHIA simulation
 - 75% polarization beam
 - 120 days, beam on target 5×10¹⁷ (with 50% duty factor)
 - ~5% liquid H₂ target
 - 10000 fb⁻¹ luminosity
 - ~20% nuclear target
 - 40000 fb⁻¹ luminosity
 - mass 4 5 GeV/c²

Theory calculation by Ji, Qiu, Vogelsang and Yuan based on Sivers function fit of HERMES data (Vogelsang and Yuan: PRD 72, 054028 (2005))

J-PARC and/or RHIC

- J-PARC
 - Advantage
 - High intensity = high luminosity
 - Disadvantage
 - Smaller cross section (at the same invariant mass)
 - Uncertainties
 - Availability of 50 GeV beam
 - Polarized proton beam?
- RHIC
 - Advantage
 - Polarized proton beam available
 - Larger cross section (at the same invariant mass)
 - Disadvantage
 - Luminosity?
 - Collider or fixed-target (internal-target) experiment

Fixed-target experiment

- Simple PYTHIA simulation for a fixed target experiement
 - $-\sqrt{s} = 22 \text{ GeV} (E_{lab} = 250 \text{ GeV})$
 - Angle & E_{μ} cut only
 - 0.03 < θ < 0.1
 - E_u > 2, 5, 10 GeV
 - (no magnetic field, no detector acceptance)
 - luminosity assumption 10,000 pb⁻¹
 - \sim 10 times larger luminosity necessary than collider experiments
 - because of ~10 times smaller cross section × acceptance

$$-$$
 M_{µµ} = 4.5 ~ 8 GeV

35K events total with 10-GeV cut

rapidity	#event
-0.4, 0.0	1K
0.0, 0.4	17K
0.4, 0.8	14K
0.8, 1.2	2K

Collider vs fixed-target

- x₁ & x₂ coverage
 - PHENIX muon arm
 - Single arm: $x_1 = 0.05 0.1 (x_2 = 0.001 0.002)$
 - Very sensitive x-region of SIDIS data
 - Back-to-back: small x₁ & x₂
 - Fixed-target experiment
 - $x_1 = 0.25 0.4 (x_2 = 0.1 0.2)$
 - Can explore higher-x region with better sensitivity

Fixed-target experiment

- Phase-1: parasitic experiment (with other collider experiments)
 - Beam intensity $2 \times 10^{11} \times 10$ MHz = 2×10^{18} /sec
 - Cluster or pellet target 10¹⁵/cm²
 - 50 times thinner than RHIC CNI carbon target
 - Luminosity 2×10³³/cm²/sec
 - 10,000pb⁻¹ with 5×10^{6} sec
 - 8 weeks, or 3 years (10 weeks \times 3) with efficiency and live time
 - Reaction rate $2 \times 10^{33} \times 50$ mb = 10^8 /sec = 100MHz
 - Beam lifetime 2×10¹¹×100bunch / 10⁸ = 2×10⁵sec (at longest)
 - More factor to make the lifetime shorter, but expected to be still long enough

Fixed-target experiment

- Phase-2: dedicated experiment
 - Beam intensity $2 \times 10^{11} \times 30$ MHz = 6×10^{18} /sec
 - Cluster, pellet or solid target 10¹⁶/cm²
 - 5 times thinner than RHIC CNI carbon target
 - Luminosity 6×10³⁴/cm²/sec
 - 10,000pb⁻¹ with 2×10^5 sec
 - 3 days, or 2 weeks with efficiency and live time
 - Or 50,000 pb⁻¹ with 10^6 sec
 - 2 weeks, or 8 weeks with efficiency and live time
 - Reaction rate $6 \times 10^{34} \times 50$ mb = 3×10^{9} /sec = 3GHz
 - Beam lifetime 2×10¹¹×300bunch / 3×10⁹ = 2×10⁴sec ~
 6hours
 - More factor to make the lifetime shorter
 - Special short-interval operation necessary

Physics

- Experimental sensitivity
 - Phase-1 (parasitic operation)
 - $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - 10,000 pb-1 with 5×10⁶ s ~ 8 weeks (1 year), or 3 years of beam time by considering efficiency and live time
 - Phase-2 (dedicated operation)
 - L = 6×10^{34} cm⁻²s⁻¹
 - 50,000 pb-1 with 10⁶ s ~ 2 weeks, or 8 weeks (1 year) of beam time by considering efficiency and live time

Issues for the fixed-target experiment

- Requirement for target thickness
 - In phase-1 (parasitic operation), 10^{15} /cm² thickness is necessary to achieve L = 2×10³³ cm⁻²s⁻¹
 - Pellet target (~10¹⁵ /cm²) or cluster-jet target (up to 8×10¹⁴/cm²?) is necessary
 - If it is not achieved, the internal-target experiment would not be competitive against collider experiments
 - In collider experiments, L = 2(or 3)×10³² is expected and cross section (× acceptance) is >10 times larger
 - In phase-2 (dedicated operation), 10-times larger thickness, 10¹⁶ /cm² is expected

• Requirement for accelerator

- Compensation of dipole magnets in the experimental apparatus (in two colliding-beam operation)
- Size of the experimental site and possible target-position (with proper beam operation)
- Reaction rate (peak rate) and beam lifetime
- Radiation issues
 - Beam loss/dump requirement

Summary

- Polarized Drell-Yan experiment
 - The simplest process in hadron-hadron reaction
 - But, not yet done because of technical difficulties so far
 - At present it has become feasible, finally
- J-PARC proposal
 - Not accepted yet
 - Waiting for FNAL-E906 result for unpolarized measurements
 - 50 GeV beam necessary, polarized-beam necessary
- RHIC
 - Collider experiment
 - Fixed-target (internal-target) experiment
 - Both feasible

Backup slides

Outline of this talk

- Physics motivations of polarized Drell-Yan experiments
- J-PARC proposals
 - Unpolarized experiment
 - Polarized experiment with a polarized beam
- Ideas at RHIC
 - Collider
 - Fixed-target experiment
- Other possibility

Drell-Yan experiment

• The simplest process in hadronhadron reactions

- No QCD final state effect
- Fermilab E866

with CTEQ5M

$$\int_{0.015}^{0.35} dx [\overline{d}(x) - \overline{u}(x)] = 0.0803 \pm 0.011$$
$$\int_{0}^{1} dx [\overline{d}(x) - \overline{u}(x)] = 0.118 \pm 0.012$$

Drell-Yan γ^* FNAL E866/NuSea Drell-Yan 1.3 CTEO4M 1.2 CTEO5M 1.1 GRV98 $\sigma^{pd}/2\sigma^{pp}$ 0.9 "CTEQ4M ($\bar{d} - \bar{u} = 0$)" 0.8 Drell-Yan J/w Υ(1S) Υ(2S) 0.7 1% Systematic error not shown 0.6 0.15 0.2 0.05 0.25 0.3 0.35 0.1 X_2

21

April 27, 2010

Drell-Yan experiment

- Flavor asymmetry of sea-quark distribution
 - Possible origins
 - meson-cloud model
 - virtual meson-baryon state
 - chiral quark model
 - instanton model
 - chiral quark soliton model

- $-\pi^+$ in the proton as an origin of anti-d quark
 - pseudo-scaler meson should have orbital angular momentum in the proton...
- Polarized Drell-Yan experiment
 - Not yet done!
 - Many new inputs for remaining proton-spin puzzle
 - flavor asymmetry of the sea-quark polarization
 - transversity distribution
 - transverse-momentum dependent (TMD) distributions
 - Sivers function, Boer-Mulders function, etc.

Polarized Drell-Yan experiment

- Single transverse-spin asymmetry
 - Sivers function measurement
 - Transversity \otimes Boer-Mulders function

 $\sigma_{TU} \propto f_{1T}^{\perp} f_1 + \sin 2\phi h_1 h_1^{\perp} + \sin 2\phi h_{1T}^{\perp} h_1^{\perp}$

- Double transverse-spin asymmetry
 - Transversity (quark \otimes antiquark for p+p collisions)
- Double helicity asymmtry
 - Flavor asymmetry of quark polarization
- Other physics
 - Parity violation asymmetry?

Single transverse-spin asymmetry

- Sivers effect
 - Spin-correlated transverse momentum distribution of an parton in the proton (Sivers distribution function)
 - Related to the orbital angular momentum in the proton (and the shape of the proton)
 - Multi-dimensional structure of the proton
 - Initial-state or final-state interaction with remnant partons

Sivers function measurement

- Sign of Sivers function determined by single transverse-spin (SSA) measurement of DIS and Drell-Yan processes
 - Should be opposite each other
 - Initial-state interaction or final-state interaction with remnant partons
- < 1% level multi-points measurements have already been
- done for SSA of DIS process
 - -x = 0.005 0.3 (more sensitive in lower-x region)
- comparable level measurement needs to be done for SSA of Drell-Yan process for comparison

Sivers function measurement

- Sign of Sivers function determined by single transverse-spin (SSA) measurement of DIS and Drell-Yan processes
 - Should be opposite each other
 - Initial-state interaction or final-state interaction with remnant partons
 - Test of TMD factorization
 - Explanation by Vogelsang and Yuan...
 - From "Transverse-Spin Drell-Yan Physics at RHIC," Les Bland, et al., May 1, 2007

Sivers function measurement

 < 1% level multi-points measurements have already been done for SSA of DIS process

-x = 0.005 - 0.3 (more sensitive in lower-x region)

• comparable level measurement needs to be done for SSA of Drell-Yan process for comparison

Single transverse-spin asymmetry

- Sivers function measurement
- Transversity \otimes Boer-Mulders function measurement

$$\sum \frac{\Delta d\sigma^{\text{Sivers}}}{d^4 q d\Omega_{cs}} \propto \underbrace{\Delta^N f_{a/A^{\uparrow}} \left(\frac{q_0 + q_L}{\sqrt{s}}\right)}_{\text{Sivers}} f_{b/B} \left(\frac{q_0 - q_L}{\sqrt{s}}\right)$$
 by Stefano Melis

$$\times \frac{q_T}{M_{Siv}} \left\{ \underbrace{\left(1 + \cos^2 \theta_{cs}\right) \sin(\phi_{S_A} - \phi_{\gamma})}_{\text{analogous of the } \lambda \text{ like term in unp. DY}} + O(q_T/M) \right\}$$

$$\sum \frac{\Delta d\sigma^{h_1 - BM}}{d^4 q d\Omega_{cs}} \propto \underbrace{h_1 \left(\frac{q_0 + q_L}{\sqrt{s}}\right) \Delta f_{b^{\uparrow}/B} \left(\frac{q_0 - q_L}{\sqrt{s}}\right)}_{\text{transversity } \times \text{ Boer-Mulders}}$$

$$\times \frac{q_T}{M_{BM}} \left\{ \sin^2 \theta_{cs} \cos 2\phi_{cs} \sin(\phi_{S_A} - \phi_{\gamma}) - \sin^2 \theta_{cs} \cos(\phi_{S_A} - \phi_{\gamma}) + O(q_T^2/M^2) \right\}$$

same role of ν like term in unp. DY

Polarized and unpolarized Drell-Yan experiment

- A_{TT} measurement
 - $-h_1(x)$: transversity
 - quark ⊗ antiquark in p+p collisions

$$A_{TT} = \hat{a}_{TT} \cdot \frac{\sum_{q} e_{q}^{2}(\bar{h}_{1q}(x_{1})h_{1q}(x_{2}) + (1 \leftrightarrow 2))}{\sum_{q} e_{q}^{2}(\bar{f}_{1q}(x_{1})f_{1q}(x_{2}) + (1 \leftrightarrow 2))}$$
$$\hat{a}_{TT} = \frac{\sin^{2}\theta\cos(2\phi - \phi_{S_{1}} - \phi_{S_{2}})}{1 + \cos^{2}\theta}$$

 $\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$

- Unpolarized measurement
 - angular distribution of unpolarized Drell-Yan
 - Boer-Mulders function

• violation of the Lam-Tung relation

$$\nu \neq 0, 1 - \lambda \neq 2\nu$$

Polarized Drell-Yan experiment

- Longitudinally-polarized measurement
 - A_{LL} measurement
 - flavor asymmetry of sea-quark polarization
 - SIDIS data from HERMES, and new COMPASS data available
 - W data from RHIC will be available in the near future
 - Polarized Drell-Yan data will be able to cover higher-x region

AGS 25% superconducting helical snake

helical dipole coil correction solenoid and dipoles

measured twist angle 2 deg/cm in the middle ~4 deg/cm at ends

April 27, 2010

Possible location of partial helical snake magnets in the MR

- Kinetic energy from 3 GeV to 50 GeV
 - $G\gamma = 7.5 \approx 97.5$
 - betatron tune v_x = 22.339, v_y = 20.270

- Spin tracking
 - $-v_x = 22.128, v_y = 20.960$
 - average of 12 particles on an ellipse of 8π mm mrad J-PARC MR - 2 snakes, μ =54:54->45:45

Dimuon experiment at J-PARC (P04)

- based on the Fermilab spectrometer for 800 GeV
- length to be reduced but the aperture to be increased
- two bending magnets with p_T kick of 2.5 GeV/c and 0.5 GeV/c
- tracking by three stations of MWPC and drift chambers
- muon id and tracking

FNAL-E906 dimuon spectrometer

Beam dumped within magnet

Collider experiment

- Very simple PYTHIA simulation for PHENIX muon arm
 - $-\sqrt{s} = 500 \text{ GeV}$
 - Angle & E_{μ} cut only
 - 1.2 < |η| < 2.2 (0.22 < |θ| < 0.59)
 - E_µ > 2, 5, 10 GeV
 - (no magnetic field, no detector acceptance)
 - RHIC-II luminosity assumption 1,000 pb⁻¹
 - $M_{\mu\mu}$ = 4.5 ~ 8 GeV

Magnetic field lines for the two Central Magnet coils in combined (++) mode

110K events total with 2-GeV cut

rapidity	#event
-2.4, -2.0	5K
-2.0, -1.6	28K
-1.6, -1.2	17K
-0.4, 0.0	3K
0.0, 0.4	3K
1.2, 1.6	18K
1.6, 2.0	31K
2.0, 2.4	5K

Collider experiment

- "Transverse-Spin Drell-Yan Physics at RHIC"
 - Les Bland, et al., May 1, 2007
 - $-\sqrt{s} = 200 \text{ GeV}$
 - PHENIX muon arm
 - STAR FMS (Forward Muon Spectrometer)
 - Large background from bquark
 - $-\sqrt{s} = 500 \text{ GeV may be better...}$
 - Higher luminosity and larger cross section

Collider experiment

- Very simple PYTHIA simulation for a dedicated collider experiment
 - $-\sqrt{s} = 500 \text{ GeV}$
 - Angle & E_{μ} cut only
 - |η| < 2.2
 - E_µ > 2, 5, 10 GeV
 - (no magnetic field, no detector acceptance)
 - RHIC-II luminosity assumption 1,000 pb⁻¹

$$-$$
 M_{µµ} = 4.5 ~ 8 GeV

rapidity	#event		
-2.4, -2.0	5K		
-2.0, -1.6	32K		
-1.6, -1.2	53K		
-1.2, -0.8	53K		
-0.8, -0.4	60K		
-0.4, 0.0	70K		
0.0, 0.4	68K		
0.4, 0.8	60K		
0.8, 1.2	55K		
1.2, 1.6	54K		
1.6, 2.0	36K		
2.0. 2.4	5K		

5K 39

Fixed-target experiment

- PYTHIA simulation with FNAL-E906 geometry
 - $-\sqrt{s} = 22 \text{ GeV} (E_{lab} = 250 \text{ GeV})$
 - luminosity assumption 10,000 pb⁻¹
 - M_{µµ} = 4.5 ~ 8 GeV
 - Magnetic field and detector location should be tuned to optimize the acceptance, and fit to available experimental hall

16K events total

rapidity	#event
-0.4, 0.0	1K
0.0, 0.4	5K
0.4, 0.8	6K
0.8, 1.2	3K

PYTHIA simulation with IP2 configuration

- IP2 configuration shown in the next slide
 - detector components from FNAL-E906 apparatus
 - E906: total z-length ~25 m
 - IP2: available z-lengh ~14 m
 - z-length of FMAG (1st magnet) is shortened
 - because of limited z-length at IP2
- PYTHIA simulation
 - just acceptance for Drell-Yan dimuon signal is studied
 - momentum resolution needs to be studied
 - background rate needs to be studied
- Beam needs to be restored on axis
 - after passing through two bending magnets
 - both beams needs to be restored in parasitic operation

Drell-Yan dimuon rapidity

Drell-Yan x₁ vs x₂ (accepted events)

- x₁: x of beam proton (polarized)
- x₂: x of target proton

Drell-Yan E₁ vs E₂ (accepted events)

• E₁, E₂: energy of dimuons

energy cut shown at 5 – 10 GeV

Fixed-target experiment

- Internal target
 - Storage cell target (polarized)
 - H₂, D₂, ³He
 - 10¹⁴ / cm²
 - HERMES
 - Cluster jet target

 - $10^{14} 10^{15}$ / cm²
 - CELSIUS (Uppsala), FNAL-E835, Muenster, COSY, GSI, ...
 - Pellet target
 - H₂, D₂, N₂, Ne, Ar, Kr, Xe, ...
 - $10^{15} 10^{16}$ / cm²
 - CELSIUS (Uppsala), COSY, GSI, ...

Double-spin experiment possible Low density = low luminosity Issue to be used in the RHIC ring

High luminosity

• H₂, D₂, N₂, CH₄, Ne, Ar, Kr, Xe, ... Only single-spin experiment possible

experiment	particles	energy	x1 or x2	luminosity
COMPASS	<i>π</i> ± + p↑	160 GeV √s = 17.4 GeV	$x^2 = 0.2 - 0.3$	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
COMPASS (low mass)	<i>π</i> ± + p↑	160 GeV √s = 17.4 GeV	x2 ~ 0.05	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
ΡΑΧ	p↑ + pbar	collider $\sqrt{s} = 14 \text{ GeV}$	x1 = 0.1 - 0.9	$2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
PANDA (low mass)	pbar + p↑	15 GeV √s = 5.5 GeV	$x^2 = 0.2 - 0.4$	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
J-PARC	p ↑ + p	50 GeV √s = 10 GeV	x1 = 0.5 - 0.9	10 ³⁵ cm ⁻² s ⁻¹
NICA	p ↑ + p	collider √s = 20 GeV	x1 = 0.1 - 0.8	10 ³⁰ cm ⁻² s ⁻¹
SPASCHARM (low mass)	p + p↑	60 GeV √s = 11 GeV	$x^2 = 0.05 - 0.2$	
SPASCHARM (low mass)	<i>π</i> ± + p↑	34 GeV √s = 8 GeV	$x^2 = 0.1 - 0.3$	
RHIC PHENIX Muon	p ↑ + p	collider \sqrt{s} = 500 GeV	x1 = 0.05 - 0.1	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
RHIC Internal Target phase-1	p ↑ + p	250 GeV √s = 22 GeV	x1 = 0.25 – 0.4	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
RHIC Internal Target phase-2	p↑ + p	250 GeV √s = 22 GeV	x1 = 0.25 – 0.4	$6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Key issues

- Requirement for target thickness
 - In phase-1 (parasitic operation), 10^{15} /cm² thickness is necessary to achieve L = 2×10^{33} cm⁻²s⁻¹
 - Pellet target (~10¹⁵ /cm²) or cluster-jet target (up to 8×10¹⁴/cm²?) is necessary
 - If it is not achieved, the internal-target experiment would not be competitive against collider experiments
 - In collider experiments, L = 2(or 3)×10³² is expected and cross section (× acceptance) is >10 times larger
 - In phase-2 (dedicated operation), 10-times larger thickness, 10¹⁶ /cm² is expected
- Requirement for accelerator
 - Compensation of dipole magnets in the experimental apparatus (in two colliding-beam operation)
 - Size of the experimental site and possible target-position (with proper beam operation)

Accelerator issues

- Experimental dipole magnets
 - Beam axis restoration (one beam on target, the other beam displaced)
- Size of the experimental site and possible targetposition (with proper beam operation)
 - IP2 (BRAHMS) area?
- Reaction rate (peak rate) and beam lifetime
- Radiation issues
 - Beam loss/dump requirement

Summary

- Polarized Drell-Yan experiment
 - The simplest process in hadron-hadron reaction
 - But, not yet done because of technical difficulties so far
 - At present it has become feasible, finally
- J-PARC proposal
 - Not accepted yet
 - Waiting for FNAL-E906 result for unpolarized measurements
 - 50 GeV beam necessary, polarized-beam necessary
- RHIC
 - Collider experiment
 - Fixed-target (internal-target) experiment
 - Both feasible
- Other possibility
 - FNAL π^{\pm} /antiproton beam with a polarized target
 - Similar to the COMPASS Drell-Yan experiment