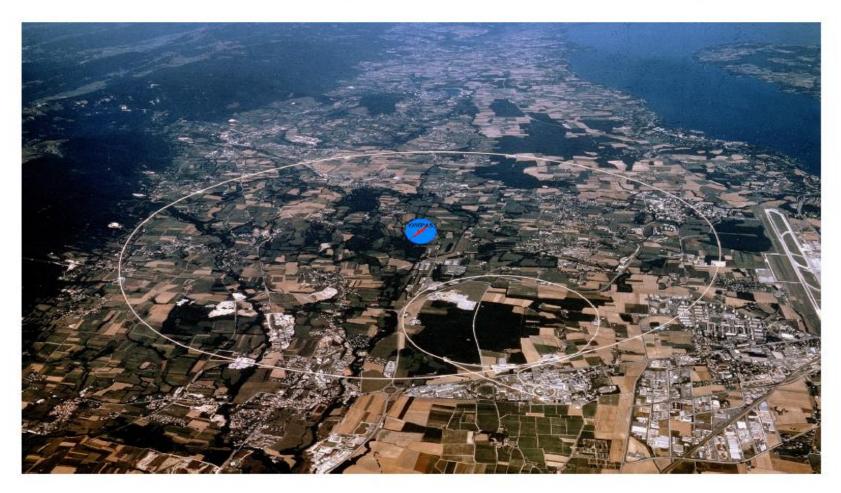
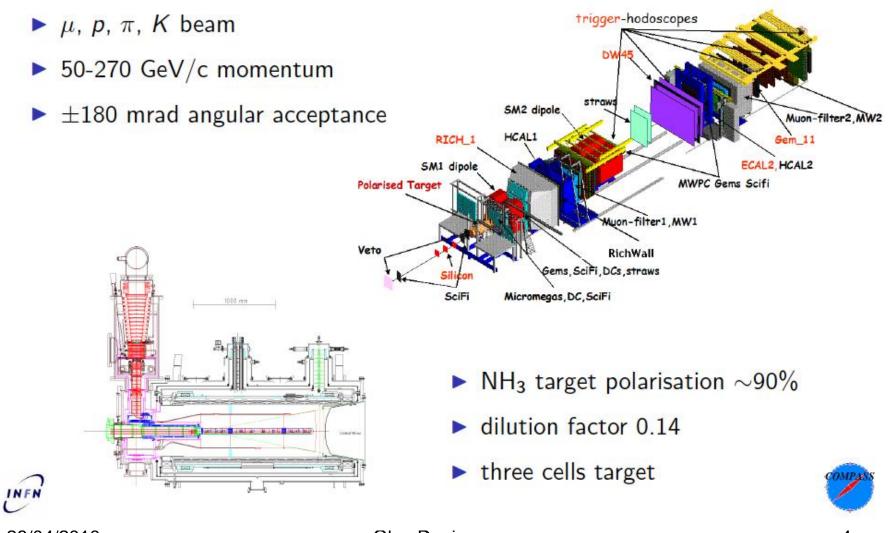


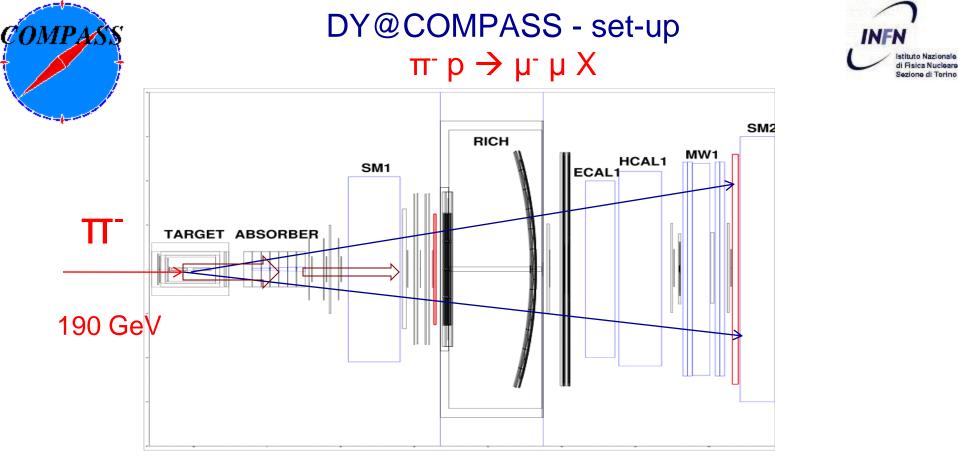
Future COMPASS Drell-Yan experiment

Oleg Denisov for COMPASS Collaboration CERN and INFN sez. di Torino 20.04.2010

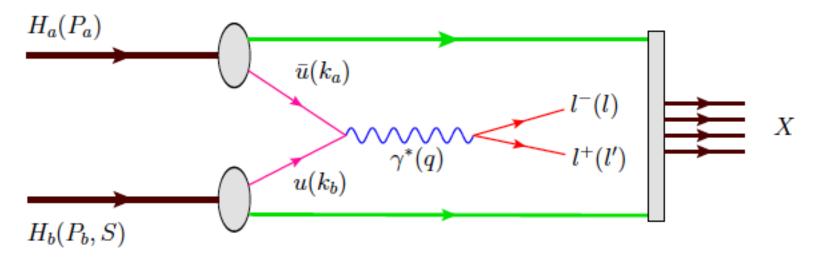

- DY@COMPASS physics see presentations by Daniel, Paul, Werner, First day of the Workshop
- DY@COMPASS set-up
- DY@COMPASS kinematic range
 - Valence quark contribution is dominant
 - 'Pure' u-ubar channel
 - <P_T> ~ 1GeV TMDs induced effects expected to be dominant
- DY@COMPASS feasibility
- Projections
- Conclusions

COMPASS facility at CERN (SPS) I


COmmon Muon Proton Apparatus for Structure and Spectroscopy



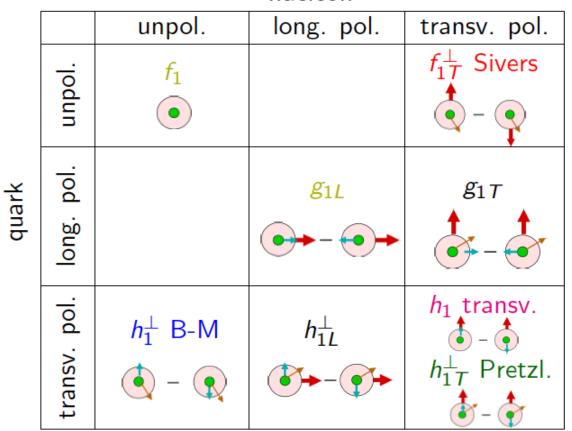
COMPASS facility at CERN (SPS) II


Key elements:

- 1. COMPASS PT
- 2. Tracking system (both LAS abs SAS) and beam telescope in front of PT
- 3. Muon trigger (in LAS is of particular importance 60% of the DY acceptance)
- 4. RICH1, Calorimetry also important to reduce the background (the hadron flux downstream of the hadron absorber ~ 10 higher then muon flux)

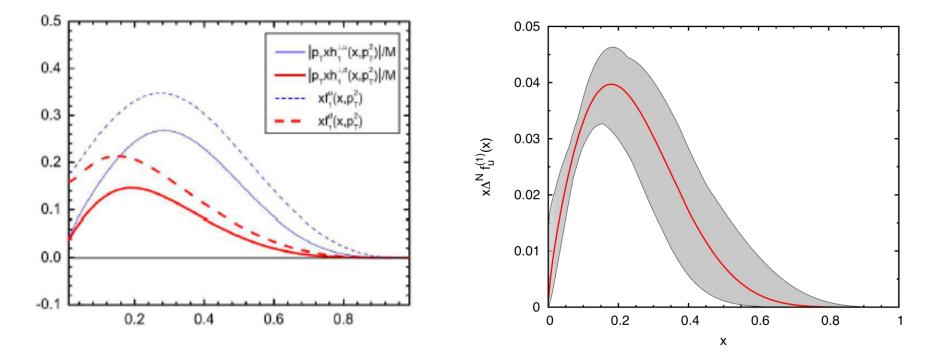
Drell-Yan Kinematics

 $\begin{array}{l} P_{a(b)} \\ s &= (P_a + P_b)^2, \\ x_{a(b)} &= q^2/(2P_{a(b)} \cdot q), \\ x_F &= x_a - x_b, \\ M_{\mu\mu}^2 &= Q^2 = q^2 = s \ x_a \ x_b, \\ \mathbf{k}_{Ta(b)} \\ \mathbf{q}_T &= \mathbf{P}_T = \mathbf{k}_{Ta} + \mathbf{k}_{Tb} \end{array}$


the momentum of the beam (target) hadron, the total centre-of-mass energy squared, the momentum fraction carried by a parton from $H_{a(b)}$, the Feynman variable, the invariant mass squared of the dimuon, the transverse component of the quark momentum, the transverse component of the momentum of the virtual photon.

LO TMD PDFs – unique feature of the COMPASS

When the parton transverse momentum (k_T) dependence is taken into account, eight parton distribution functions are used to describe the nucleon at LO nucleon

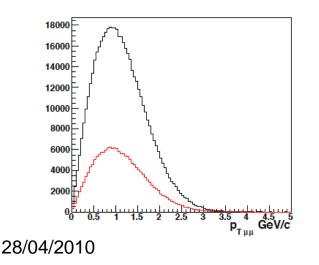

28/04/2010

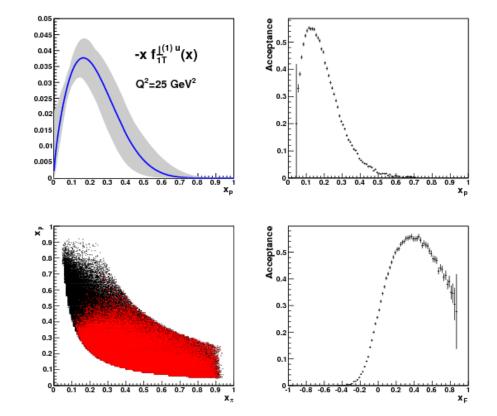
INFN

TMD PDFs – ALL are sizable in the valence quark region

Boer-Mulder function for u and d quarks as extracted from p + D data from Zhang et al Phys. Rev. D77,0504011]

Sivers effect in Drell-Yan processes. M. Anselmino, M. Boglione U. D'Alesio, S. Melis, F. Murgia, A. Prokudin Published in Phys.Rev.D79:054010, 2009


COMP A.

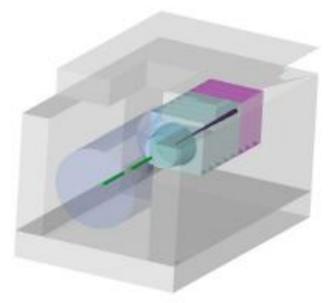


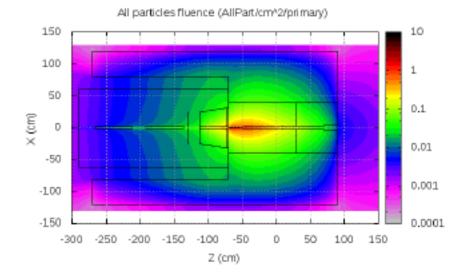
DY@COMPASS – kinematics - valence quark range $\pi^{-}p \rightarrow \mu^{-}\mu^{-}X$

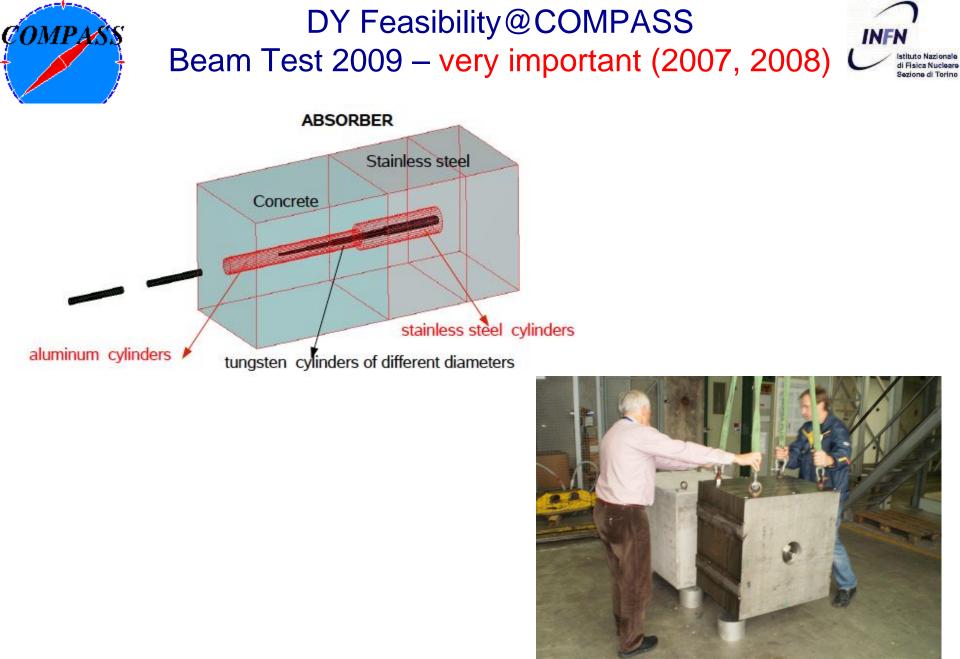
- In our case (π⁻ p → μ⁻ μ X) contribution from valence quarks is dominant
- In COMPASS kinematics uubar dominance
- <P_T> ~ 1GeV TMDs induced effects expected to be dominant with respect to the higher QCD corrections

Oleg Denisov

DY@COMPASS - feasibility


- Small cross section High luminosity experiment
- Polarised target is the key instrument of the program
- Radioprotection issue experiment similar to NA3
- Detector occupancies
- Trigger rates
- DY event rate (J/Psi as a monitoring signal)
- Physics background study:
 - D-Dbar semi-leptonic decays
 - Combinatorial background from π and K
- COMPASS spectrometer kinematic range

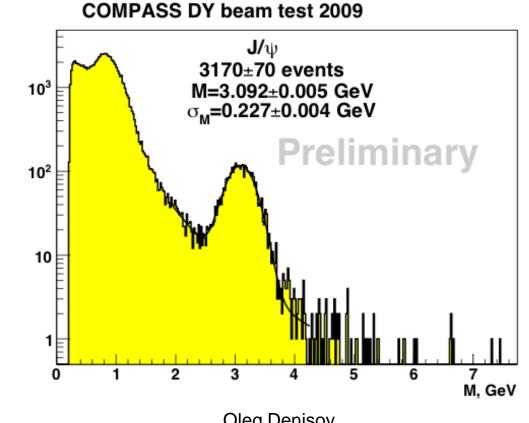



DY@COMPASS - feasibility - PT

- Beam of the intensity up to 10⁸ s⁻¹ normally not a problem
- Expected heat input ~ 2 mW will not affect relaxation time, refrigerator cooling power is sufficient (~ 5 mW)
- Beam spot has to stay large (~ 1 cm HWHM) implemented in MC
- The radiation dose is simulated with FLUKA (cross-checked with Radio-Protection group) the results are communicated to PT group

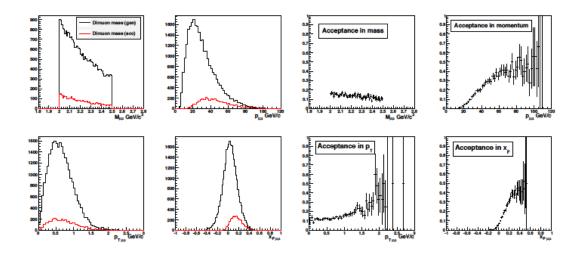
DY Feasibility@COMPASS Beam Test 2009 (with hadron absorber III)

28/04/2010


Oleg Denisov

DY@COMPASS - feasibility - Signal

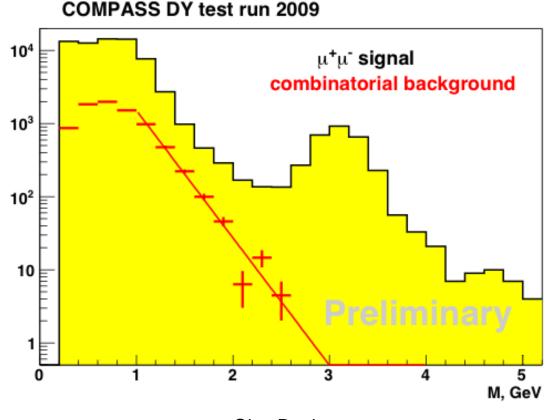
- Expected according to the proposal J/Psi and Drell-Yan yields: 3600 ± 600 and 110 ± 22 (normalized to 2009 beam flux ~3.7 x 10¹¹)
- Measured in 2009 beam test J/Psi yield is 3170±70, and DY yield ٠ is 84±10



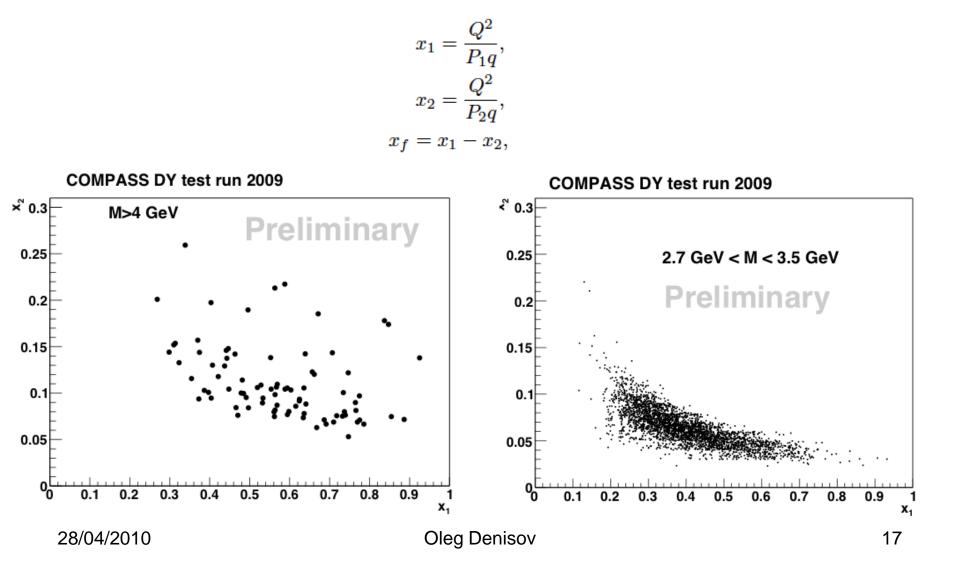
DY@COMPASS - feasibility – Background I – D-Dbar

- Calculated by MC
- Negligible in both HM and IM ranges (~15% contribution in IM)

Acceptance for open-charm 2.0 - 2.5 ${\rm GeV}/c^2$

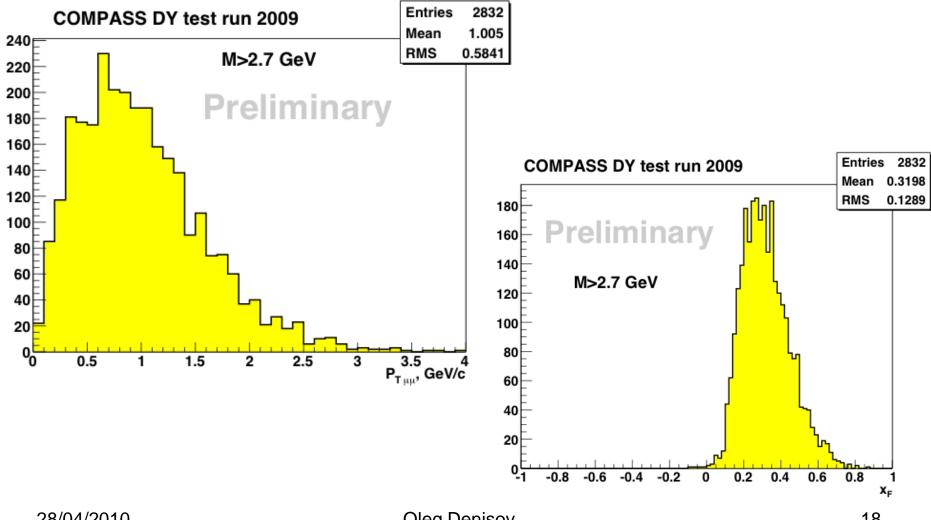

As in the IMR the acceptances are 14% for open-charm and 43% for DY, the ratio of observable events in the dimuon mass spectra will be $N_{D\bar{D}}/N_{DY} = (5.47 \times 0.14)/(12.46 \times 0.43) = 0.14$.

- 2009 beam test id very important
- Combinatorial background suppressed by ~10 at 2.0 GeV/c dimuon invariant mass (beam intensity ~8 times lower wrt Proposal)



DY@COMPASS - feasibility – Kinematics I

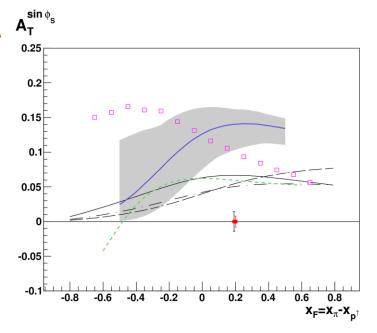
• Valence quark range for both J/Psi and DY



DY@COMPASS - feasibility – Kinematics II

q_T and x_F ranges

DY@COMPASS projections I


With a beam intensity $I_{beam} = 6 \times 10^7$ particles/second, a luminosity of $L = 1.7 \times 10^{33} \ cm^{-2} s^{-1}$ can be obtained.

 \hookrightarrow Assuming 2 years of data-taking, one can collect > 200000 DY events in the region $4 < M_{\mu\mu} < 9$. GeV/c².

Predictions for the Sivers asymmetry in the COMPASS phase-space, for the mass region 4. < M < 9. GeV/c², compared to the expected statistical errors of the measurement:

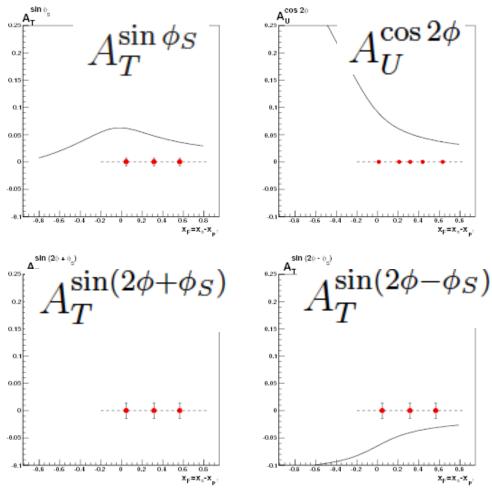
- solid and dashed: Efremov et al, PLB612(2005)233;
- dot-dashed: Collins et al,
 PRD73(2006)014021;
- solid, dot-dashed: Anselmino et al, PRD79(2009)054010;
- -boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al, PRD78(2008)074010.

28/04/2010

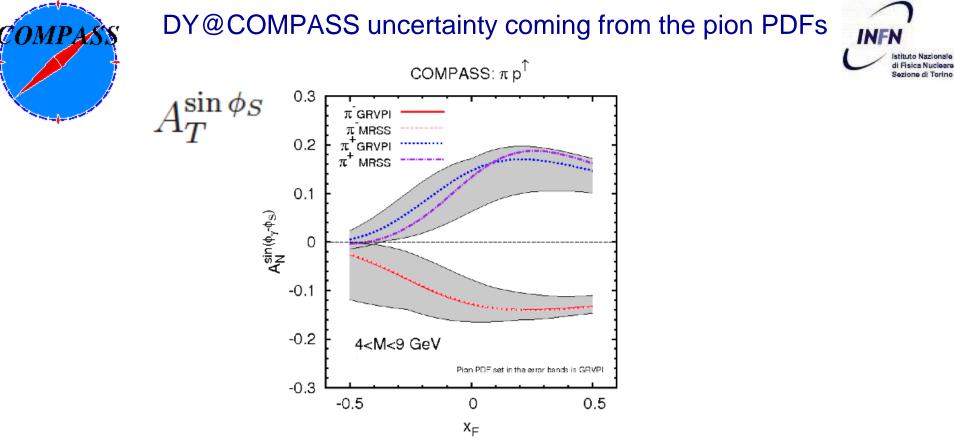


DY@COMPASS projections II

 $/c^2$



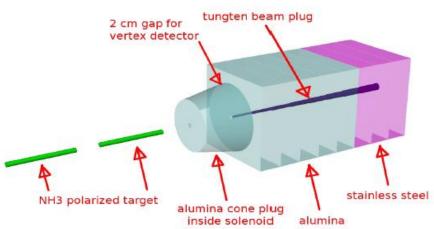
DY@COMPASS projections III



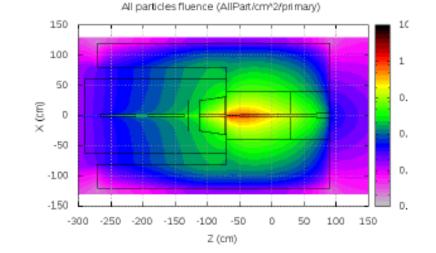
J/ψ region: $2.9 \le M_{\mu\mu} \le 3.2 \text{ GeV/c}^2$

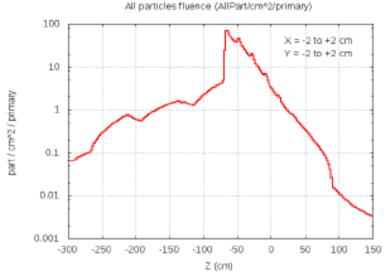
28/04/2010

Oleg Denisov


In case of $\pi^- p$ scattering the valence pion \bar{u} unpolarised PDF is well known and there is no difference between two pdf sets. In case of $\pi^+ p$ scattering there is a little contamination coming from sea \bar{u} of the pion, which annihilates with valence u quark of the proton, because the distribution functions are weighted in the cross section with e_q^2 , and the $\bar{u}u$ contribution is multiplied by factor 4/9 while the $\bar{d}d$ by factor 1/9. Thus, the contribution from the sea \bar{u} of the pion can not be neglected, it is less known with respect to valence PDFs and it explains the difference from one data set (GRVPI) to another (MRSS).

28/04/2010

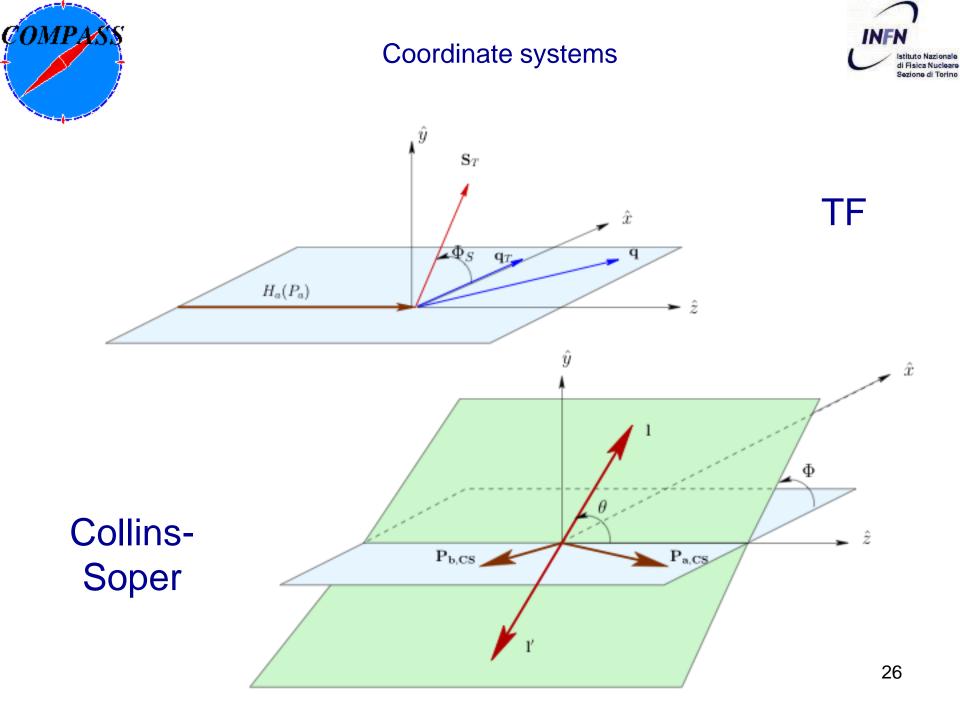



DY@COMPASS upgrades: Absorber

The absorber geometry and composition is optimized taking into account the experience of past DY experiments
The MC (FLUKA) simulation of the stopping power as well as particle fluxes downstream of the absorber is performed
The recommendations on the RP shielding is worked out (cross-check by CERN RP group is in progress)

28/04/2010

DT@COMPASS: Summary

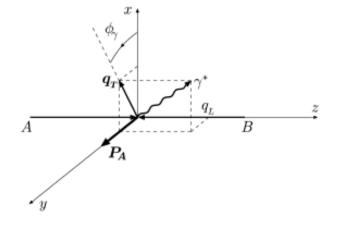

- Can be first ever polarised Drell-Yan experiment, sensitive to TMD PDFs induced effects
- DY@COMPASS process dominated by the contribution from the valence quarks (τ = x₁x₂ = Q²/s ≅ 0.05÷0.3), it is pure u-dominance channel because of the π⁻ beam
- Physics program is broad (Daniel, Paul, Werner, Bernard....)
- Key measurement:
 - − TMD PDF universality test SIDIS $\leftarrow \rightarrow$ DY
 - T-odd TMD (Sivers and Boer-Mulders) sign change from SIDIS to DY if sign change is not conformed for my QCD is 'useless'
- Now we can say (after the series of beam tests) that the feasibility is proven
- Statistical error on single spin asymmetries of 1÷2% can be achieved in two years of data taking (useful event yield is confirmed by the results of 2009 beam test)
- The proposal will be submitted by the end of May, if accepted we can hope for first DY exposition in 2013 or 2014.
- In case we successful the DY measurement with antiproton beam can be considered as a continuation of the program

COMPA

Spares

Drell-Yan Kinematics (transverse motion)

If we consider the transverse motion of partons then:


$$p_{a} = \frac{\sqrt{s}}{2} x_{a} \left(1 + \frac{k_{\perp a}^{2}}{x_{a}^{2}s}, \frac{2\mathbf{k}_{\perp a}}{x_{a}\sqrt{s}}, 1 + \frac{k_{\perp a}^{2}}{x_{a}^{2}s} \right)$$
$$p_{b} = \frac{\sqrt{s}}{2} x_{b} \left(1 - \frac{k_{\perp b}^{2}}{x_{b}^{2}s}, \frac{2\mathbf{k}_{\perp b}}{x_{b}\sqrt{s}}, -1 + \frac{k_{\perp b}^{2}}{x_{b}^{2}s} \right)$$

 \succ ... and the γ^* (dilepton) momentum has a transverse component in the h.c.m. frame

$$q = p_a + p_b = (q_0, \boldsymbol{q}_T, q_L)$$

 $\label{eq:q_T} \boxed{ q_T = k_{\perp a} + k_{\perp b} }$ Only low $q_T~(q_T^2 \ll q^2)$ have a non-perturbative origins

In other words is dominated by the contribution from TMD PDFs

28/04/2010

Oleg Denisov

Drell-Yan Workshop at CERN, April 26-27

Since a long time the Drell-Yan (DY) process is considered to be a powerful

Studying the hadron structure in Drell-Yan reactions

26-27 April 2010 CERN

Overview	tool to study hadron structure. In the past, several experiments were successfully carried out using unpolarised beams and targets. Nowadays, taking into account								
Programme	the much advanced understanding of the spin structure of the nucleon, we are								
Registration	discussing a new generation of DY measurements using polarised beams and/or targets.								
Registration Form	-								
List of registrants	The COMPASS collaboration is currently preparing a proposal for future studies of nucleon structure beyond 2011. One of the main aims is a first measurement of								
Laptop and Wireless access	transverse-momentum-dependent parton distributions (TMDs) using the Drell-Yan process on a transversely polarised proton target hit by a pion beam. Among								
Access Cards	the distributions to be studied are Sivers, Boer-Mulders and pretzelosity TMDs as well as transversely polarised quark distributions.								
Accomodation	The workshop will review ongoing theoretical and experimental efforts related								
How to get to CERN	to the Drell-Yan process. Detailed presentations and discussions of the theoretical aspects will be complemented by descriptions of planned fixed-target and collide								
⊡ Support	experiments.								
	Organizers: Paula Bordalo (LIP-Lisbon and IST/UTL)								
	Oleg Denisov (CERN/INFN-Torino)								
	Eva-Maria Kabuss (Mainz)								
	Fabienne Kunne (CEA Saclay) Alain Magnon (CEA Saclay)								
	Gerhard Mallot (CERN)								
	Anna Martin (Univ. Trieste and INFN-Trieste)								
	Wolf-Dieter Nowak (CERN)								
	Daniele Panzieri (Univ. Alessandria and INFN-Torino)								

from 26 April 2010 09:00 to 27 April 2010 18:00 Dates: Location: CERN Salle Andersson Room: 40-S2-A01

Drell-Yan Workshop at CERN, April 26-27

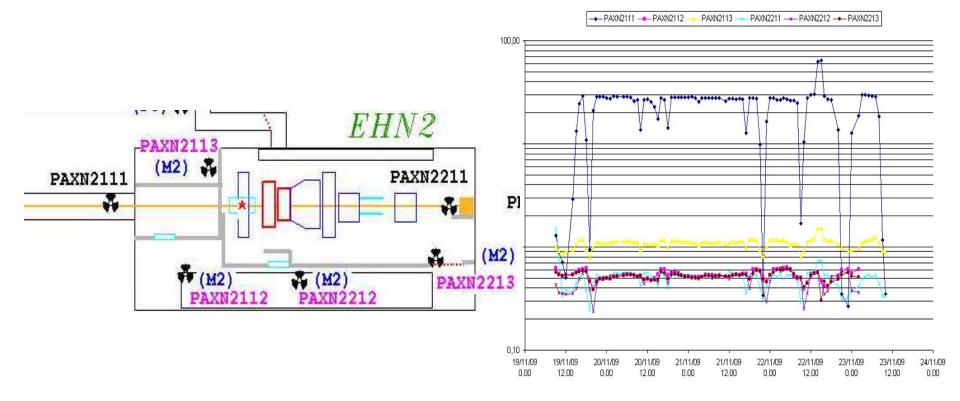
Monday 26 April 2010

- 09:00 09:05 Welcome 05' (CERN (40-2-A01)
- 09:05 09:35 Theory Overview 30' Speakers: Daniel Boer
- 09:35 09:45 Discussion 10'
- 09:45 10:15 Experiment overview 30' Speakers: Paul Reimer
- 10:15 10:25 Discussion 10'
- 10:25 10:55 QCD corrections for the DY process 30' Speakers: Werner Vogelsang
- 10:55 11:10 Discussion 15'
- 11:10 11:30 Coffee Break
- 11:30 12:00 General form of the DY cross-section 30' Speakers: Marc Schlegel
- 12:00 12:15 Discussion 15'
- 12:15 12:45 Single transversely polarised DY, observables, TMDs 30' Speakers: Aram Kotzinian
- 12:45 13:00 Discussion 15'
- 13:00 14:30 Lunch Break
- 14:30 15:00 TMD universality, factorization and sign change SIDIS-DY 30' Speakers: Alessandro Bacchetta
- 15:00 15:15 Discussion 15'
- 15:15 15:45 TMD phenomenology in SIDIS and DY 30' Speakers: Stefano Melis
- 15:45 16:00 Discussion 15'
- 16:00 16:30 Coffee Break
- 16:30 18:00 Theory round table (topics: key issues in DY measurements, models, predictions,

Drell-Yan Workshop at CERN, April 26-27

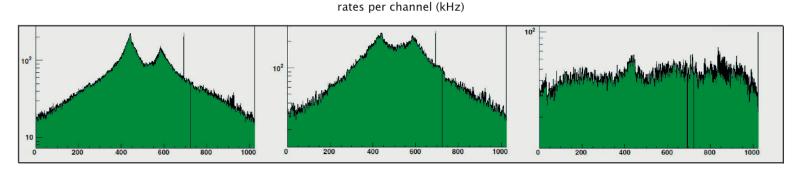
exclusive DY, GPDs) 1h30' Speakers: Oleg Teryaev, Marco Radici

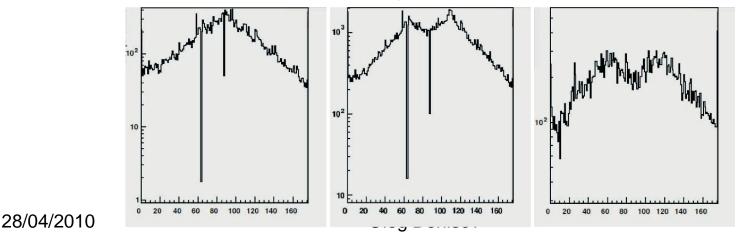
Tuesday 27 April 2010


09:00 - 09:20	Future Drell-Yan fixed target experiments at Fermilab 20' Speakers: Wolfgang Lorenzon
09:20 - 09:30	Discussion 10'
09:30 - 09:50	Future Drell-Yan collider experiments 20' Speakers: Matthias Grosse Perdekamp
09:50 - 10:00	Discussion 10'
10:00 - 10:20	Future Drell-Yan experiments at J-Parc and at RHIC (internal target) 20' Speakers: Yuji Goto
10:20 - 10:30	Discussion 10'
10:30 - 11:00	Coffee Break
11:00 - 11:20	Future Drell-Yan experiments at GSI 20' Speakers: Paolo Lenisa
11:20 - 11:30	Discussion 10'
11:30 - 11:50	Future Drell-Yan program at NICA 20' Speakers: Alexander Nagaytsev
11:50 - 12:00	Discussion 10'
12:00 - 12:20	Future COMPASS Drell-Yan experiment 20' Speakers: N.N.
12:20 - 12:30	Discussion 10'
12:30 - 13:00	Concluding remarks 30' Speakers: Mauro Anselmino
13:00 - 14:30	Lunch break
14:30 - 17:00	Visit to the COMPASS experiment (optional) Location: COMPASS Experiment (Prevessin Site 888)

DY@COMPASS - feasibility - RP

- Very important 2009 beam test
- At 1.5x10⁸ /spill stays below 0.5 uSv (allowed 3 uSv)
- Conclusion by CERN RP group well under control





DY@COMPASS - feasibility - occupancies

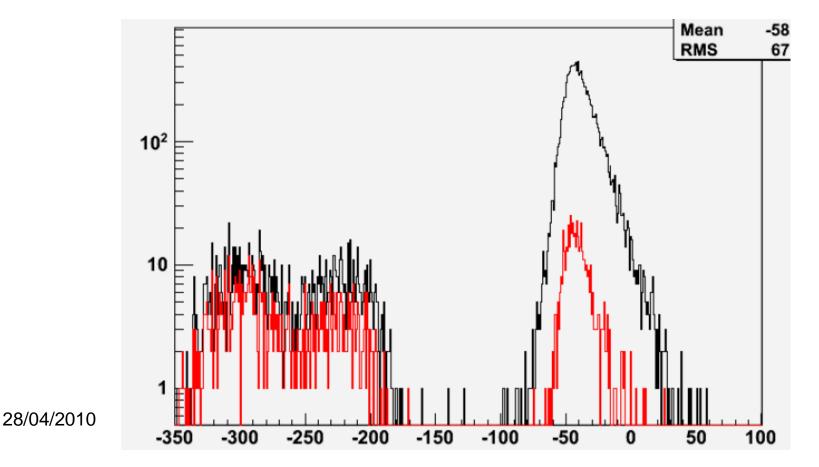
- Very important 2009 beam test
- Occupancies are ~ factor 10 lower with respect to standard muon or hadron spectroscopy running

rates per channel (kHz)

DY@COMPASS - feasibility - trigger

- Very important 2009 beam test
- Sort of muon trigger was implemented in LAS based on HCal1
- Trigger rate < 50 kEvents/spill

	Controller Status: okay ?					Controller Status:				okay	?			
10	nSpi	ll: 0 Spill:	6	Triggers: 2	48745			onSpi	ll: O Spil	: 0	Triggers:	0		
Prescaler Status: okay ?						Prescaler Status:					okay	?		
n	um	name	div	attempts	triggers	MTi/attempts		num	name	div	attempts	triggers	MTi/ati	tempts
	0	LTi	1	41 400	41 400	1.7	·	0	LTI	1	69885	69885		1.79
	1	MT+HCAL1m	1	328	328	222.8	'	1	MT+HCAL1r	n 1	836	836		149.36
	2	LT+HCAL1m	1	608	608	120.23	3	2	LT+HCAL1m	i 1	1333	1333		93.67
	3	OT+HCAL1m	1	175	175	417.73	3	3	OT+HCAL1n	า 1	354	354		352.73
	4	HCAL2m	1	55187	55187	1.3	2	4	HCAL2m	1	98873	98873		1.26
	5	VetoInner	1000	1545636	1546	0.0	i	5	VetoInner	1000	2806971	2807		0.04
	6	Halo	500	337107	675	0.23	2	6	Halo	500	663445	1327		0.19
	7	BeamT	1000	52180988	52181	0.0	1	7	BeamT	10000	71812665	7182		0.00
	8	MTi	1	73102	73102	1.0	1	8	MTi	1	124867	124867		1.00
	9	HCAL1m	10	697729	69773	0.10	1	9	HCAL1m	100	1091782	10918		0.11
	10	оті	1	1910	1910	38.2	,	10	ОТІ	1	3398	3398		36.75
	11	TRand	100	307974	3080	0.24	L	11	TRand	100	307851	3079		0.41
	dea	adtime not avail	able		299965			dea	adtime not av	ailable		324859		
	Dea	dtime:	2_1	0_250	v	💷 plot		Dea	dtime:	2_1	0_250	v		plot



UPGRADES: DY@COMPASS upgrades: Trigger

Mass Range GeV	Global acceptance $\%$	LAS	LAS+SAS	SAS
4 - 9	35	64	40	4
2 - 2.5	43	32	54	20

Table 2: Global and partial acceptance of the spectrometer for dimuons belonging to two mass ranges .

34

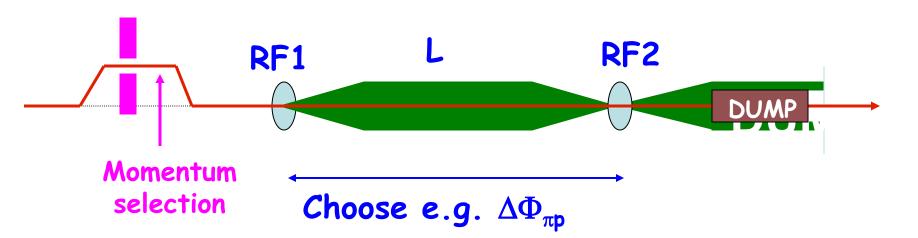
Competition and complementarity

Facility		Type		$s \; (\text{GeV}^2)$	Timeline
RHIC (STAR)	[134]	collider,	$p^{\Uparrow}p$	200^{2}	> 2013
E906 (Fermilab)	[135]	fixed target,	pp,	250	> 2011
J-PARC	[136]	fixed target,	$pp^{\uparrow}, \pi p^{\uparrow}$	$60 \div 100$	> 2015
GSI (PAX)	[137]	collider,	$\overline{p}^{ m fl}p^{ m fl}$	200	> 2017
GSI (Panda)	[138]	fixed target,	$\overline{p}p$	30	> 2016
NICA	[139]	collider,	$p^{\Uparrow}p^{\Uparrow},d^{\Uparrow}d^{\Uparrow}$	676	> 2014
Compass	(this letter)	fixed target,	$\pi^- p^{\Uparrow}$	$300 \div 400$	> 2012

Table 10: Future Drell–Yan experiments.

DY@COMPASS upgrades: beam telescope and additional tracking station downstream of PT

- Beam telescope upstream of the COMPASS PT
 - Radiation hardness (beam intensity ~ $6x10^7 s^{-1}$), 280 days in total
 - Good time resolution (~ few ns)
 - Moderate space resolution (50-100 um)
- Most probable, the additional tracking station will help to vertex resolution, further MC required. NA50 experience is not positive, but with ~ 10 higher intensity
- The issue will be discussed on one of the forthcoming TB meetings


WHAT ABOUT A RF SEPARATED pbar BEAM ???

First and very preliminary thoughts, guided by • recent studies for P326

 CKM studies by J.Doornbos/TRIUMF, e.g. http://trshare.triumf.ca/~trjd/rfbeam.ps.gz

E.g. a system with two cavities:

 $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1}) \text{ with } \beta_1^{-1} - \beta_2^{-1} = (m_1^2 - m_2^2)/2p^2$

L.Gatignon, 17-10-2006

Preliminary rate estimates for RF separated antiproton beams