## Perspectives for Drell-Yan at FAIR

Paolo Lenisa<br>Università di Ferrara and INFN - ITALY

Studying the hadron structure in DY-reactions
CERN - 27.04.10

## FAIR - Research highlights

 Hadron Structure, QCD \& MediumCooled antiprotons < 15 GéV, 500 users
Warm Dense Plasmías Bunch-compression \&' PetawattLaser 250 users

Materials Science, Space- and Radiation Biology (Ion- \& antiproton- beams; 350 users

Accelerator Physics \& Gym Eight Rings \& two Linacs

SIS 100/300
QCD-Phase Diagram: CBM HI beams 2 to $45 \mathrm{AGeV} ; 400$ use
CBM $_{\text {Rare-Isotope }} \stackrel{100 \mathrm{~m}}{\mathrm{~N}}$
Production Target
Super FRS

## Antiproton

Production Target
Nuclear Astrophys. NUSTAR RI beam- fragmentation; 600 users

## $\left.\begin{array}{c}\text { RESR } \\ C R\end{array}\right)$

NESR
Fundamental Symmetries Ultra-High EM Fields SPARC; FLAIR
Antiprotons, $\mathrm{Hi}-\mathrm{Z}$ ions; 250 users

## Antiprotons at FAIR



- Antiprotons with $1.5 \mathrm{GeV} / \mathrm{c} \leq \mathrm{P} \leq 15 \mathrm{GeV} / \mathrm{c}$
- High luminosity: $2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Thick targets: $4 \cdot 10^{15} \mathrm{~cm}^{-2}$
Thick targets: $4 \cdot 10^{15} \mathrm{~cm}^{-2}$
Long beam life time: $>30 \mathrm{~min}$

- High momentum resolution: $\Delta p / p \leq 4 \cdot 10^{-5}$

Phase space cooling


## Polerised Antioboton EXPenments

## Hadron Physics "Dream Machine"

## Asymmetric (double-polarized)

## proton (15 GeV/c) - antiproton (3.5 GeV/c) collider



## Outline

- DY with polarized antiprotons @ asymmetric collider
- Perspectives for single-single spin asymm. @ fixed target
-Status of polarized antiprotons studies


## Transversity


transversely polarised quarks and nucleons

- Probes relativistic nature of quarks
- No gluon analog for spin-1/2 nucleon
- Different $Q^{2}$ evolution than $\Delta q$
- Sensitive to valence quark polarization
$h_{1}$ is chirally odd -> it needs a chirally odd partner


## The "golden-gate" to transversity: $h_{1}$ from $\overline{\mathrm{p}} \uparrow-\mathrm{p} \uparrow$ Drell-Yan



Drell-Yan


$$
\begin{aligned}
& \frac{d^{2} \sigma}{d M^{2} d x_{F}}=\frac{4 \pi \alpha^{2}}{9 M^{2} s} \frac{1}{x_{1}+x_{2}} \sum_{q} e_{q}^{2}\left\langle\left(x_{1}\right) \bar{q}\left(x_{2}\right)+\bar{q}\left(x_{1}\right) q\left(x_{2}\right)_{-}^{-}\right. \\
& x_{F}=x_{1}-x_{2} \quad x_{1} x_{2}=M^{2} / s \equiv \tau \quad x_{F}=2 Q_{L} / \sqrt{s}
\end{aligned}\left\{\begin{array}{l}
\mathrm{q}=\mathrm{u}, \overline{\mathrm{u}}, \mathrm{~d}, \overline{\mathrm{~d}}, \ldots \\
\begin{array}{l}
\text { M invariant Mass } \\
\text { of lepton pair }
\end{array} \\
\hline
\end{array}\right.
$$

$$
A_{T T}=\frac{\mathrm{d} \sigma^{\uparrow \uparrow}-\mathrm{d} \sigma^{\uparrow \downarrow}}{\mathrm{d} \sigma^{\uparrow \uparrow}+\mathrm{d} \sigma^{\uparrow \downarrow}}=\hat{a}_{T T} \frac{\sum_{q} e_{q}^{2} \boldsymbol{l}_{q}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+h_{1 \bar{q}}\left(x_{1}\right) h_{1 \bar{q}}\left(x_{2}\right)^{-}}{\sum_{q} e_{q}^{2} \mid\left(x_{1}\right) q\left(x_{2}\right)+\bar{q}\left(x_{1}\right) \bar{q}\left(x_{2}\right)_{-}^{-}}
$$

## PAX proposal: Phase II



## EXPERIMENT: <br> Asymmetric collider: <br> polarized protons in HESR ( $p=15 \mathrm{GeV} / \mathrm{c}$ ) <br> polarized antiprotons in CSR ( $p=3.5 \mathrm{GeV} / \mathrm{c}$ ) <br> Luminosity: $1.5 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

## $h_{1 u}$ from $\overline{\mathrm{p}} \uparrow-\mathrm{p} \uparrow$ Drell-Yan at PAX

$$
A_{T T}=\frac{\mathrm{d} \sigma^{\uparrow \uparrow}-\mathrm{d} \sigma^{\uparrow \downarrow}}{\mathrm{d} \sigma^{\uparrow \uparrow}+\mathrm{d} \sigma^{\uparrow \downarrow}}=\hat{a}_{T T} \frac{\sum_{q} e_{q}^{2} \prod_{1 q}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+h_{1 \bar{q}}\left(x_{1}\right) h_{1 \bar{q}}\left(x_{2}\right)^{-}}{\sum_{q} e_{q}^{2}!\left(x_{1}\right) q\left(x_{2}\right)+\bar{q}\left(x_{1}\right) \bar{q}\left(x_{2}\right)_{-}^{-}}
$$

- u-dominance
- $\left|h_{1 u}\right|>\left|h_{1 d}\right|$

$$
A_{T T} \approx \hat{a}_{T T} \frac{h_{1 u}\left(x_{1}\right) h_{1 u}\left(x_{2}\right)}{u\left(x_{1}\right) u\left(x_{2}\right)}
$$

$$
\begin{aligned}
& \text { PAX: } \mathrm{M}^{2} / \mathrm{s}=x_{1} x_{2} \sim 0.02-0.3 \\
& \text { valence quarks } \\
& \left(A_{T T} \text { large } \sim 0.2-0.3\right)
\end{aligned}
$$

## Events for Drell-Yan processes



$Q^{2}>4 \mathrm{GeV}^{2}$

$$
M \geq M_{J / \Psi}
$$

Usually taken as "safe region"

$$
\Rightarrow \quad \tau \geq \frac{M_{J / \Psi}^{2}}{s}
$$

## Radiative corrections <br> Cross-section



Asymmetry


Shimizu et al. PRD71 (2005) 114007



## PAX Detector Concept

Physics:
$h_{1}$ distribution $\sin ^{2} \theta$ EMFF $\sin 2 \theta$ pbar-p elastic high $|+|$

Azimuthally Symmetric: BARREL GEOMETRY LARGE ANGLES

Experiment: Flexible Facility


```
Detector: Extremely rare DY signal (10-7 p-pbar)
    Maximum Bjorken-x coverage (M interval)
    Excellent PID (hadron/e rejection ~ 104)
    High mass resolution (\leq2 %)
    Moderate lepton energies (0.5-5 GeV)
```

Magnet: Keeps beam polarization vertical Compatible with Cerenkov Compatible with pol. target

## PAX Detector Concept



1 m.
PAX Detector
Designed for Collider but compatible with fixed target

## - -p Phase Space

p vs $\theta$ for primary Drell-Yan leptons




## Background to Drell-Yan $e^{+} e^{-}$

10 min . experiment: $2 \cdot 10^{8} \mathrm{p}$-pbar interactions several DY events

Invariant mass of ee pair



Background $1: 1$ to signal after PID, E>300 MeV, conversion veto, mass cut

* the combinatorial component can be subtracted (wrong-sign control sample)
* the charm can be reduced (vertex decay)


## Resolution




Vertex measurement uncertainty ( $\mathrm{R}, \mathrm{Z}$ plane)

Better than 2\% mass resol

* $x$ dependence of $h_{1}$
* resonance vs continuum

Mandatory to study M below $\mathrm{J} / \psi$ mass
P.Lenisa

DY at FAIR

## Precision in $h_{1}$ measurement

1 year of data taking at $15+3.5 \mathrm{GeV}$ collider

$$
\begin{aligned}
& L=1.5 \cdot 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \mathrm{p} \uparrow=0.8 \\
& \operatorname{pbar} \uparrow=0.15
\end{aligned}
$$



$10 \%$ precision on the $h_{1}{ }^{4}(x)$ in the valence region

## More statistics from $J / \Psi$...

| $q \bar{q}-J / \Psi$ |
| :--- | :--- |
| $q \bar{q}-\gamma^{*}$ |
| $q \bar{q}-e^{+} e^{-}$ |\(\quad \begin{aligned} \& unknown vector coupling, <br>

\& but same Lorentz <br>
\& and spinor structure <br>
\& as other two processes\end{aligned}\)
Unknown quantities cancel in the ratios for $A_{T T}$, but helicity structure remains!


Expected to double the statistics $\rightarrow$ Good mass resolution fundamental

## What about p-p?


(Asymmetry evoluted under the assumption: $h_{1 \bar{q}}\left(x, Q_{0}^{2}\right)=\Delta \bar{q}\left(x, Q_{0}^{2}\right)$

Asymmetries are estimated to be large at PAX energies $\rightarrow$ access to $h_{-}(x)$
RHIC: $\quad \tau=x_{1} x_{2} \sim 10^{-3} \rightarrow$ sea quarks $\quad\left(A_{T T} \sim 0.01\right)$

JPARC/U70: $T=x_{1} x_{2} \sim 10^{-1} \rightarrow$ valence and sea $\quad\left(A_{T T} \sim 0.1\right)$
PAX: $\quad T=x_{1} x_{2} \sim 10^{-1} \rightarrow$ valence and sea $\quad\left(A_{T T} \sim 0.1\right)$

## DY events distribution ( $p \uparrow \bar{p} \uparrow, p \uparrow p \uparrow$ and $\bar{p} \uparrow d \uparrow$ )




$$
M^{2} / s=x_{1} x_{2} \sim 0.02-0.3
$$

At $x_{1}=x_{2} \quad A_{T T} \sim h_{1 u}{ }^{2}$ Direct measurement of $h_{1 u}$ for $0.05<x<0.5$

Single spin asymmétries:
Sivers function from pbar $\uparrow$-p or pbar-p $\uparrow$ Drell-Yan @ PAX

## Test of Universality




## Fixed target experiments

## DY measurements @ PANDA

antiproton momentum
$1.5 \mathrm{GeV} / \mathrm{c}<\mathrm{p}<15 \mathrm{GeV} / \mathrm{c}$

- Stochastic and electron cooling: $\Delta \mathrm{p} / \mathrm{p}<10^{-5}$
- Luminosity $>10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Hydrogen pellet or jet target, polarised Hydrogen under study
- Variety of nuclear targets


## Measurement of Transversity


D. Boer, Ferrara (2008)
-There is only a single self-sufficient process with a single polarized beam - Single spin-asymmetry in $\overline{\mathrm{p}} \uparrow \mathrm{p}$ or $\mathrm{p} \overline{\mathrm{p}} \uparrow$ Drell-Yan

A "window" to transversity: pbar - $\mathrm{p} \uparrow \rightarrow \mathrm{I}^{+\mid} \mathrm{X}$
Only self-sufficient single spin-asymmetry (involves TMDs)

Unpolarized DY production cross-section

```
d\mp@subsup{\sigma}{}{DY}\propto\mp@subsup{\overline{h}}{\uparrow}{\perp}(\mp@subsup{x}{1}{\prime},\mp@subsup{k}{T1}{2})\otimes\mp@subsup{h}{\uparrow}{\perp}(\mp@subsup{x}{2}{\prime},\mp@subsup{k}{T2}{2})\operatorname{cos}2\phi
    @ Boer-Mulders }
\(\rightarrow\) analogue of BELLE \(\cos 2 \phi\) asymmetry
```

Single-polarized DY production cross-section

$$
\begin{aligned}
d \sigma^{D Y} \propto \bar{f}_{1}\left(x_{1}, k_{T 1}^{2}\right) \otimes & f_{1 T}^{\perp}\left(x_{2}, k_{T 2}^{2}\right) \sin \left(\phi-\phi_{S 2}\right)+ \\
& \uparrow \text { Sivers }
\end{aligned}
$$

$$
\begin{aligned}
& +\bar{h}_{1}^{+}\left(x_{1}, k_{T 1}^{2}\right) \otimes h_{1}\left(x_{2}, k_{T}^{2}\right) \sin \left(\phi+\phi_{S 2}\right)+\quad \rightarrow \text { analogue of SIDIS Collins asymmetry } \\
& \uparrow \text { ober-Mulders } 1 \text { Tanssersitiv }
\end{aligned}
$$

## Kinematics and cross section




## DY@PANDA: MC - Simulations I

A. Bianconi NIM A593, 562 (2008)

## Unpolarized case:

$\overline{\mathrm{p}} \mathrm{p} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$

M. Maggiora Univ. Torino and INFN (I)
$5 \times 10^{5}$ events
$1.5<M_{1}^{2+1}<2.5 \mathrm{GeV}^{2}$
$q_{T}>1 \mathrm{GeV} / \mathrm{c}$
$60^{\circ}<\theta^{c s} \mu+<120^{\circ}$

## DY@PANDA: MC - Simulations II

A. Bianconi, M. Radici Phys. Rev. D71, 074014 (2005)

Single-spin asymmetry:
$\overline{\mathrm{p}} \mathrm{p} \uparrow \rightarrow \mu^{+} \mu^{-} \mathrm{X}$



# A polarized target in PANDA? 

A very difficult task!


Positioning:
-Keep good PID for EM physics

- No parasitic run possible

Technical issues:
-Transport of polarized gas
-Compensation of solenoidal field
-Pumping of polarized gas

Possible options:
-new detector with thoroidal field? -additional IP in HESR?

## Status of polarized antiproton-studies

## Polarized Antiprotons. <br> Two Methods: Loss versus spin flip

For an ensemble of spin $\frac{1}{2}$ particles with projections $+(\uparrow)$ and $-(\downarrow)$


## Spin-filtering

Polarization build-up of an initially unpolarized particle beam by repeated passage through a polarized hydrogen target:


## Spin-filtering at TSR: „FILTEX" - proof-of-principle



## Spin filtering works for protons!

PAX submitted new proposal to find out how well spin filtering works for antiprotons (CERN-SPSC-2009-012 / SPSC-P-337)

## PAX at the CERN-AD

 (spin filtering with antiprotons)

## Experimental Setup for AD



## Spin-dependence of the pbar-p interaction

Measurement of the polarization buildup equivalent to the determination of $\sigma_{1}$ and $\sigma_{2}$ Once a polarized antiproton beam is available, spin-correlation data can be measured at AD (50-500 MeV)

Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991).

Model OBEPF: J. Haidenbauer, K. Holinde, A.W. Thomas, Phys. Rev. C 45, 952 (1992).

Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995).


## Spin-filtering studies at COSY- FZJ-Germany

## Main purpose:

1. Confirm understanding of spin-filtering with protons.
2.Commissioning of the experimental setup for AD

## Proposal to COSY PAC (submitted in July 2009)

COSY-Quadupoles


Low- $\beta$ quadrupoles


## Low-b section commissioning (Feb. 2010)

## Acceptance measurements with scrapers




New low- $\beta$ section
Low $-\beta$ section does not limit the machine acceptance

## Conclusions

- Outstanding case for DY with polarized antiprotons
-Interesting perspectives for DY on fixed target -Polarized target in PANDA technical challenge
- Studies on polarized antiprotons undertaken by PAX Collab.



## Ferrara International School Niccolò Cabeo



The Ferrara PhD School in Physics, in collaboration with the Pavia, Torino and Trieste Universities, has organized a permanent International School on hadron structure and interactions.


The School is mainly addressed to young PhD students, both theoreticians and experimentalists, although advanced PhD students as well as post-does and young researchers are also welcome.


Every year the School will offer two levels of plenary lectures: one "pedagogical", on relevant subjects
 and the other, more technical, on specific related items.

The school lasts one week, and includes several sections devoted to informal conversations with teachers. Every year proceedings of the lectures will be published and delivered to the students.


A permanent Advisory Scientific Committee serves the School by proposing, each year, the lecturers and reviewing the program. It also provides the necessary connections among the Universities and the laboratories involved, and eventually seeks for funding.


The main topic of this year is
Transverse Momentum Dependent
 Parton Distribution Functions

## The first session of the school is announced:



## Expected polarizations after filtering for two lifetimes at AD

transverse

longitudinal

$\Delta$

## Higher energy p-p machine


V. Barone, T. Calarco and A. Drago

Phys. Rev. D 56 (1997) 527
-s $\uparrow$
-Asymmetry $\downarrow$

- $A_{L L}>A_{T T}$
- $S_{\text {JPARC }}$ ideal




## Background for $\quad \bar{p} p \rightarrow e^{+} e^{-} X$

## Preliminary PYTHIA result ( $2.10^{9}$ events)

Total background


Background origin


- Background higher for $\mu$ than for $e$
- Background from charge coniugated mesons negligible for e.


## The PANDA detector



# From DY to elastic e $e^{-}$production: Proton Electromagnetic Form Factors @fixed target 

## Background in pbar-p $\rightarrow e^{+} e^{-}$

$\checkmark$ Reactions with at least 3 particles produced: ( $e^{+} e^{-} \mathrm{X}, \pi^{+} \pi^{-} \mathrm{X}, \ldots$ )
Particle identification and kinematics constraints
$\rightarrow$ no problem ( still to be quantified)
$\checkmark$ Reactions with 2 charged particles ( $\pi^{+} \pi^{-}$) $\sigma\left(\pi^{+} \pi^{-}\right) / \sigma\left(e^{+} e^{-}\right) \approx 10^{6}\left(2 \mu b / 8 p b\right.$ at $\left.q^{2}=9 .(\mathrm{GeV} / \mathrm{c})^{2}\right)$
need rejection of $\mathrm{Pp} \rightarrow \pi^{+} \pi^{-}$by $10^{-8}$
binary event, mean reject. of $10^{-4}$ per $\pi^{+}$and per $\pi^{-}$ very close kinematics
PID is crucial, EMC, DIRC, dE/dx

## DY with $e^{+} / e^{-}$@ PANDA? Pion-rejection promisiong...

| $\left(\begin{array}{l} \mathbf{T}_{\text {p_bar }} \\ (\mathbf{G e V}) \end{array}\right.$ | $\left\lvert\, \begin{aligned} & \mathbf{Q}^{2} \\ & (\mathrm{GeV} / \mathrm{c})^{2} \end{aligned}\right.$ | ${ }^{\theta} \mathbf{C M}$ | ${ }^{\text {lab }}$ | $\left\lvert\, \begin{aligned} & \mathbf{P}_{\text {lab }} \\ & (\mathbf{G e V} / \mathrm{c}) \end{aligned}\right.$ | one $\pi$ Misident. Probability ECAL $\times$ DIRC $\times \mathrm{dE} / \mathrm{dx}$ | $\pi^{+} \pi$ <br> Misident. <br> Probability |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $5.4$ | $20^{\circ}$ | $13^{\circ}$ | 2.2 | $0.001 \times 0.5 \times 0.05=2.510^{-5}$ | $0.110^{-9}$ |
|  |  | $160^{\circ}$ | $132^{\circ}$ | 0.57 | $0.033 \times 0.003 \times 0.03=3.010^{-6}$ |  |
|  |  | $90^{\circ}$ | $54^{\circ}$ | 1.43 | $0.001 \times 0.3 \times 0.03=9.10^{-6}$ | $0.110^{-9}$ |
|  |  | $90^{\circ}$ | $54^{\circ}$ | 1.43 | $0.001 \times 0.3 \times 0.03=9.10^{-6}$ |  |
| $2.5$ | $8.2$ | $20^{\circ}$ | $10^{\circ}$ | 3.7 | $0.001 \times 1 . \times 0.05=5.10^{-5}$ | $0.310^{-9}$ |
|  |  | $160^{\circ}$ | $117^{\circ}$ | 0.7 | $0.014 \times 0.014 \times 0.03=6.10^{-6}$ |  |
|  |  | $90^{\circ}$ | $41^{\circ}$ | 2.2 | $0.001 \times 1 . \times 0.03=3.10^{-5}$ | $0.910^{-9}$ |
|  |  | $90^{\circ}$ | $41^{\circ}$ | 2.2 | $0.001 \times 1 . \times 0.03=3.10^{-5}$ |  |
| 5. | $12.9$ | $20^{\circ}$ | $7.4^{\circ}$ | 6.1 | $0.001 \times 1 . \times 0.1=10^{-4}$ | $0.610^{-9}$ |
|  |  | $160^{\circ}$ | $102^{\circ}$ | 0.8 | $0.014 \times 0.014 \times 0.03=6.10^{-6}$ |  |
|  |  | $90^{\circ}$ | $32^{\circ}$ | 3.4 | $0.001 \times 1 . \times 0.05=5.10^{-5}$ | $2.510^{-9}$ |
|  |  | $90^{\circ}$ | $32^{\circ}$ | 3.4 | $0.001 \times 1 . \times 0.05=5.10^{-5}$ |  |
| $10$ | $22.3$ | $20^{\circ}$ | $5.4^{\circ}$ | 10.9 | $0.001 \times 1 . \times 0.3=3.100^{-4}$ | $5.410^{-9}$ |
|  |  | $160^{\circ}$ | $85^{\circ}$ | 1.0 | $0.005 \times 0.12 \times 0.03=1.810^{-5}$ |  |
|  |  | $90^{\circ}$ | $24^{\circ}$ | 5.95 | $0.001 \times 1 . \times 0.1=1.10^{-4}$ | $10.10^{-9}$ |
|  |  | $90^{\circ}$ | $24^{\circ}$ | 5.95 | $0.001 \times 1 . \times 0.1=1.10^{-4}$ |  |

F. Maas Univ. of Mainz - GSI (D)

Pbar-p $->e^{+} e^{-}$
Statistical projection for timelike FF @ PANDA

$\left(G_{E}=G_{M}\right)$
F. Maas (Mainz+GSI)

Measurement of $G_{E}$ and $G_{M}$ moduli @ PANDA

- Use of different angular dependence for $G_{E}$ and $G_{M}$


-Generated events:
$2 \mathrm{fb}^{-1}$ (4 months @ $2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ )


## Single Spin Observables

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}\left(P_{y}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{0}\left[1+\mathcal{A} P_{y}\right] \\
\mathcal{A}=\frac{\sin 2 \theta I m G_{E}^{4} G_{M}}{D \sqrt{\tau}}, D=\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{\tau}\left|G_{E}\right|^{2} \sin ^{2} \theta
\end{gathered}
$$

A. Z. Dubnickova, S. Dubnicka, M.P. Rekalo Nuovo Cimento A109, 241 (1996)


## Double polarized pbar-p annihilation:



$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x x}=\sin ^{2} \theta\left(\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \mathcal{N} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{y y}=-\sin ^{2} \theta\left(\left|G_{M}\right|^{2}-\frac{1}{\tau}\left|G_{E}\right|^{2}\right) \mathcal{N}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{z z}=\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}-\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right] \mathcal{N}, \\
& \left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x z}=\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{z x}=\frac{1}{\sqrt{\tau}} \sin 2 \theta \operatorname{Re} G_{E} G_{M}^{*} \mathcal{N} .
\end{aligned}
$$

E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)

- Most contain moduli $G_{E}, G_{M}$
- Independent $G_{G} G_{M}$ separation
- Test of Rosenbluth separation in the time-like region
- Access to $G_{E}-G_{M}$ phase
- Very sensitive to different models (next transparencies)

