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Exploring the 3-dimensional 
phase-space structure of the 

nucleon with Drell-Yan processes    

k⊥b

sq

S

phase-space (k-b)     
distribution of partons 

in nucleons; parton 
intrinsic motion;     

spin-k⊥ correlations?
orbiting quarks?

information encoded in 
GPDs and TMDs

(exclusive and inclusive 
processes)
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Usual way of exploring the nucleon structure: 
collinear QCD parton model 

dσ

dxdQ2
=

∑

q

q(x, Q2)⊗ dσ̂q

dQ2



g1 =
1
2

∑

q

e2
q ∆q(x, Q2)

great success, but essentially x and Q2 degrees of freedom …. 
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Φij(k;P, S) =
∑

X

∫
d3P X

(2π)3 2EX
(2π)4 δ4(P − k − PX)〈PS|Ψj(0)|X〉〈X|Ψi(0)|PS〉

=
∫

d4 ξ eik·ξ〈PS|Ψj(0)Ψi(ξ)|PS〉

The nucleon, as probed in DIS, in collinear 
configuration:  3 distribution functions 

Φ(x, S) =
1
2

[
f1(x) /n+ + SL g1L(x) γ5 /n+ + h1T iσµνγ5nµ

+Sν
T

]

q Δq ΔTq

Correlator:

k

P, S

k

P, S
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Fig. 36: HERAPDFs, xuv, xdv, xS, xg, at (left) Q2 = 4 GeV2 and (right) Q2 = 10 GeV2. Fractional uncertainty bands are shown

beneath each PDF. The experimental and model uncertainties are shown separately as the red and yellow bands respectively

0

0.2

0.4

0.6

0.8

1
2 =100 GeV2Q

v
xu

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
2 =100 GeV2Q

v
xd

HERAPDF0.1(prel.)
 exp. uncert.

 model uncert.

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5
2 =100 GeV2Q

xS

0

1

2

3

4

5

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2

0

1

2

3

4

5

0

2

4

6

8

10
2 =100 GeV2Q

xg

0

2

4

6

8

10

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2
0

2

4

6

8

10

H1 and ZEUS Combined PDF Fit

H
E

R
A

 S
tr

uc
tu

re
 F

un
ct

io
n 

W
or

ki
ng

 G
ro

up
A

pr
il 

20
08

0

0.2

0.4

0.6

0.8

1
2 =10000 GeV2Q

v
xu

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
2 =10000 GeV2Q

v
xd

HERAPDF0.1(prel.)
 exp. uncert.

 model uncert.

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

40
2 =10000 GeV2Q

xS

0

5

10

15

20

25

30

35

40

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2
0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80
2 =10000 GeV2Q

xg

0

10

20

30

40

50

60

70

80

-0.2

0

0.2

-4
10

-3
10

-2
10

-1
10 1

x

-0.2

0

0.2

-0.2

0

0.2
0

10

20

30

40

50

60

70

80

H1 and ZEUS Combined PDF Fit

H
E

R
A

 S
tr

uc
tu

re
 F

un
ct

io
n 

W
or

ki
ng

 G
ro

up
A

pr
il 

20
08

Fig. 37: HERAPDFs, xuv, xdv, xS, xg, at (left) Q2 = 100 GeV2 and (right) Q2 = 10000 GeV2. Fractional uncertainty bands are

shown beneath each PDF. The experimental and model uncertainties are shown separately as the red and yellow bands respectively
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Fig. 38: Left: PDFs from the ZEUS-JETS and H1PDF2000 PDF separate analyses of ZEUS and H1. Right: HERAPDF0.1 PDFs

from the analysis of the combined data set

integrated parton distribution functions, PDF

q(x, Q2) = fq
1 (x, Q2) =

∫
d2k⊥ fq

1 (x, k2
⊥;Q2)



FIGURE 5. Comparison between LSS’06, AAC’08 and DSSV NLO PDFs in (MS) scheme.

Let us finally discuss the present status of the proton spin sum rule. Using the values

for !"(Q2) and !G(Q2) at Q2 = 4 GeV 2 obtained in LSS’06 analysis [3] one can find

for the spin of the proton (the numbers in brackets correspond to node !G):

Sz =
1

2
=
1

2
!"(Q2)+!G(Q2)+Lz(Q

2) = 0.55(0.15)±0.25(0.49)+Lz(Q
2). (5)

Although the central values of parton contribution are very different in the two cases, in

view of the big uncertainty in (5) coming mainly from the gluons, one cannot make a
definite conclusion about the quark-gluon contribution in the spin of the nucleon.
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integrated helicity distributions

∆q(x, Q2) = gq
1(x, Q2) =

∫
d2k⊥ gq

1L(x, k2
⊥;Q2)



transversity distributions 
M.A., M. Boglione, U. D’Alesio,  A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Soffer’s bound

helicity distribution

∆T q(x, Q2) = hq
1(x, Q2)

Extraction from 
SIDIS (HERMES, 

COMPASS-D) + e+e- 
(Belle) data, h1 ⊗ H1⊥



new probes and concepts to explore 
the nucleon structure 

TMDs - Transverse Momentum Dependent 
(distribution and fragmentation functions) 

(polarized) SIDIS and Drell-Yan,                  
spin asymmetries in inclusive                      

(large p_T) NN processes

fa/p(x,k⊥; sa,S)

k

P, S

k

P, S



GPDs - Generalized Partonic Distributions 
exclusive processes in leptonic and 

hadronic interactions

q(x, bT ) =
∫

d2∆T

(2π)2
Hq(x, 0,−∆2

T )e−ibT ·∆T

P ′, S ′P, S

k′k

x− ξ x + ξ

H(x, ξ,∆T )

P ′ − P = ∆



phase-space parton distribution,  W (k, b)

∫
d2k⊥H(k,∆) = H(x, ξ,∆T )

TMD

q(x,k⊥)

∆ = 0

FT, ∆ ↔ b

Wigner 
functionTGPD or GPCF

W (k, b)H(k,∆)

(Belitsky, Ji, Yuan)

FT, ∆T ↔ bT

∫
d3b

q(x, bT )

∫
d2k⊥

ξ = 0

H(x, 0,∆T )

∫
d2k⊥ dbL

(M. Burkardt)

(S. Meissner, Metz, Schlegel)



Three dimentional picture of the proton

The proton moves along −Z direction (into the screen) and ST is along
Y .
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Sivers u and d quark densities in transverse 
momentum space 

proton moving into the screen, polarization along y-axis
blue: less quarks  red: more quarks   x = 0.2   k in GeV/c

0.0-0.5 -0.5 0.00.5 0.5kx

courtesy of  A. Prokudin

q(x,k⊥)



femtophotography or tomography 
of the nucleon

q(x, bT )

courtesy of C. Weiss



TMDs: the leading-twist correlator, with 
intrinsic k┴, contains 8 independent functions .....  

Φ(x,k⊥) =
1
2

[
f1/n+ + f⊥1T

εµνρσγµnν
+kρ
⊥Sσ

T

M
+

(
SL g1L +

k⊥ · ST

M
g⊥1T

)
γ5/n+

+ h1T iσµνγ5nµ
+Sν

T +
(

SL h⊥1L +
k⊥ · ST

M
h⊥1T

)
iσµνγ5nµ

+kν
⊥

M

+ h⊥1
σµνkµ

⊥nν
+

M

]

... with partonic interpretation

k

P, S

k

P, S



X

q(x) = fq
1 (x) =

∫
d2k⊥ fq

1 (x, k2
⊥)fq

1 (x, k2
⊥)

X

sq

“Sivers effect” “Boer-Mulders effect”
S · (p× k⊥) sq · (p× k⊥) S · sq · · ·

several spin-k┴ correlations in TMDs: fq(x,k⊥; sq,S)



The nucleon at twist-2,    

fq
1 (x,k2

⊥)

gq
1L(x,k2

⊥)

N -Twist 2

hq
1T (x,k2

⊥)

h⊥q
1T (x,k2

⊥)

g⊥q
1T (x,k2

⊥)

h⊥q
1L (x,k2

⊥)

h⊥q
1 (x,k2

⊥)

f⊥q
1T (x,k2

⊥)



similar spin-p┴ correlations in fragmentation process 
(case of final spinless hadron) 

X
Dq

1(x,p2
⊥)

Dq(z, p⊥; sq) = Dq
1(z,p2

⊥) +
1
2

∆NDh/q↑(z,p2
⊥) sq · (p̂q × p̂⊥)

= Dq
1(z, p2

⊥) +
p⊥

zMh
H⊥q

1 (z,p2
⊥) sq · (p̂q × p̂⊥)

X “Collins effect”

sq · (pq × p⊥)



p⊥ ! P T − zh k⊥

6

x

y

z

ϕ

l l′

φh

k⊥

P h

k′

P

p⊥

φS

S

P T

ỹ

x̃

z̃

FIG. 3: Three dimensional kinematics of the SIDIS process.

and

p⊥ =

(
P T − P T · k⊥ + P 3

hk′3

|k′|2
k⊥ , P 3

h − P T · k⊥ + P 3
hk′3

|k′|2
k′3

)
(28)

= P T − zh k⊥ + O
(

k2
⊥

Q2

)
(29)

where k′0, k′3 and |k′| are given in Eqs. (25) and P 3
h = (zh W )/2 − P 2

T /(2zh W ).
Eqs. (26) and (28) allow us to describe the fragmentation process in terms of the variables (zh, P T ):

dz d2p⊥ = dzh d2P T
z

zh
, (30)

so that, finally, the SIDIS cross section (20) can be written in terms of physical observables as:

d5σ!p→!hX

dxB dQ2 dzh d2P T
=

∑

q

∫
d2k⊥ fq(x, k⊥)

dσ̂!q→!q

dQ2
J

z

zh
Dh

q (z, p⊥) (31)

=
∑

q

e2
q

∫
d2k⊥ fq(x, k⊥)

2πα2

x2
B
s2

ŝ2 + û2

Q4
Dh

q (z, p⊥)
z

zh

xB

x

(
1 +

x2
B

x2

k2
⊥

Q2

)−1

·

This is an exact expression at all orders in (k⊥/Q); x is given in Eq. (6) and the full expressions of z and pT in
terms of xB, Q2, k⊥, zh and P T can be derived from Eqs. (25), (26) and (28). Notice that, in the physical variables
xB and zh, the x − z factorization of Eq. (20) is lost, even in our simple parton model treatment; it can be recovered
at O(k⊥/Q) (see Eq. (32) below).

Let us now consider again the issue discussed at the end of Section II A, concerning the azimuthal dependence of the
cross section, by comparing Eqs. (19) and (31). The former equation describes the cross section for jet production and
depends, as we explained, on the azimuthal angle ϕ, that is on the azimuthal angle of the intrinsic k⊥ of the quark in
the proton. Such a dependence is integrated over in Eq. (31), which describes the cross section for the production of a
hadron, resulting from the non collinear fragmentation of the quark. Therefore, there cannot be any ϕ dependence in
this cross section. However, due to relations (26) and (28), the integration over k⊥ at fixed P T = PT (cosφh, sinφh, 0)
introduces a dependence on the azimuthal angle φh of the produced hadron h, that is the angle between the leptonic
and the hadronic plane, Fig. 3. This azimuthal dependence remains in the SIDIS cross section and will be studied in
the next Section (see also Appendix A).

factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

d6σ ≡ d6σ!p↑→!hX

dxB dQ2 dzh d2P T dφS

Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz,...

dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

P 2
T ! Q2Two scales:

usual 3-dimensional 
probe of nucleons: 

SIDIS in parton model 
with intrinsic motion 



dσ

dφ
= FUU + cos(2φ) F cos(2φ)

UU
+

1
Q

cos φ F cos φ
UU

+ λ
1
Q

sinφ F sin φ
LU

+ SL

{
sin(2φ) F sin(2φ)

UL
+

1
Q

sinφ F sin φ
UL

+ λ

[
FLL +

1
Q

cos φ F cos φ
LL

]}

+ ST

{
sin(φ− φS)F sin(φ−φS)

UT
+ sin(φ + φS) F sin(φ+φS)

UT
+ sin(3φ− φS) F sin(3φ−φS)

UT

+
1
Q

[
sin(2φ− φS) F sin(2φ−φS)

UT
+ sinφS F sin φS

UT

]

+ λ

[
cos(φ− φS) F cos(φ−φS)

LT
+

1
Q

(
cos φS F cos φS

LT
+ cos(2φ− φS)F cos(2φ−φS)

LT

)]}
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general azimuthal structure of SIDIS cross-section 
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∑
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1T ⊗Da
1

FLL ∼
∑

a

e2
a ga

1L ⊗Da
1 F sin(φ−φS)

UT
∼

∑

a

e2
a f⊥a

1T ⊗Da
1

F cos(2φ)
UU

∼
∑

a

e2
a h⊥a

1 ⊗H⊥a
1 F sin(φ+φS)

UT
∼

∑

a

e2
a ha

1T ⊗H⊥a
1

F sin(2φ)
UL

∼
∑

a

e2
a h⊥a

1L ⊗H⊥a
1 F sin(3φ−φS)

UT
∼

∑

a

e2
a h⊥a

1T ⊗H⊥a
1
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of chiral symmetry, the large-Nc limit, and their implementation in the chiral quark-soliton model.
It also develops detailed models for GPDs and shows their quantitative effects in the cross sections
for exclusive processes.

It is a good sign for the liveliness of the field (although a source of occasional despair for the
reviewer) that new results have steadily appeared while this article was being written. With some
exceptions we have limited ourselves to work that appeared before the end of 2002. More recent work
will often be pointed out, but not be discussed in detail.

2 In a nutshell

A convenient starting point to introduce GPDs is the description of inclusive deep inelastic scattering
(DIS), ep → eX. In the Bjorken limit, i.e., when the photon virtuality Q2 = −q2 and the squared
hadronic c.m. energy (p + q)2 both become large with the ratio xB = Q2/(2p · q) fixed, the dynamics
factorizes into a hard partonic subprocess, calculable in perturbation theory, and a parton distribution,
which represents the probability density for finding a parton of specified momentum fraction x in the
target. Using the optical theorem to relate the inclusive γ∗p cross section to the imaginary part of the
forward Compton amplitude γ∗p → γ∗p, the relevant Feynman diagrams at leading order in the strong
coupling have the handbag form shown in Fig. 1a. Note that the parton densities appear linearly in
the cross section. They can be thought of as the squared amplitudes for the target fluctuating into
the parton with momentum fraction x and any remnant system—this gives them their meaning as
probabilities in the classical sense, at least to leading logarithmic accuracy in Q2.

The simple factorization of dynamics into short- and long-distance parts is not only valid for the
forward Compton amplitude, but also for the more general case where there is a finite momentum
transfer to the target, provided at least one of the photon virtualities is large. A particular case is
where the final photon is on shell, so that it can appear in a physical state. To be more precise,
one has to take the limit of large initial photon virtuality Q2, with the Bjorken variable (defined as
before) and the invariant momentum transfer t = (p′−p)2 remaining fixed. One then speaks of deeply
virtual Compton scattering (DVCS) and has again handbag diagrams as shown in Fig. 1b, which can
be accessed in the exclusive process ep → eγp. The long-distance part, represented by the lower blob,
is now called a generalized parton distribution (GPD).

An important class of other processes where GPDs occur is the production of a light meson instead
of the γ. If the meson quantum numbers permit, the GPDs for gluons enter at the same order in αs

as those for quarks, see Fig. 2. A second nonperturbative quantity in these processes is the meson

 

(q) (q’)(q)(q)

x!"x+" "+x "!x

#$ #$#$

p p’

$

p

x

p

x

(a) (b) (c)

Figure 1: (a) Handbag diagram for the forward Compton amplitude γ∗p → γ∗p, whose imaginary
part gives the DIS cross section. (b) Handbag diagram for DVCS in the region ξ < x < 1. (c) The
same in the region −ξ < x < ξ. Momentum fractions x and ξ refer to the average hadron momentum
1
2(p + p′). A second diagram is obtained in each case by interchanging the photon vertices.
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Figure 2: Diagrams for hard meson production γ∗p → Mp with (a) quark and (b) gluon GPDs.

distribution amplitude, which describes the coupling of the meson to the qq̄ (or gluon) pair produced
in the hard scattering.

The transformation of a virtual photon into a real photon or a meson requires a finite transfer of
longitudinal momentum, where “longitudinal” refers to the direction of the initial proton momentum
in a frame where both p and p′ move fast (an appropriate frame is for instance the c.m. of the γ∗p
collision). One easily sees that the fraction of momentum lost by the proton is determined by xB. If
momentum fractions are parameterized in the symmetric way shown in Fig. 1b, one has

ξ ≈ xB

2 − xB
(1)

in the Bjorken limit. Proton and parton momenta now are no longer the same on the right- and
left-hand sides of the diagrams. Therefore a GPD no longer represents a squared amplitude (and
thus a probability), but rather the interference between amplitudes describing different quantum
fluctuations of a nucleon. This becomes explicit when representing GPDs in terms of light-cone wave
functions (Section 3.11).

Apart from the longitudinal momentum, various degrees of freedom can differ between the incom-
ing and outgoing hadron state, each revealing a particular aspect of hadron structure.

• The momentum transfer can have a transverse component (which has to be small to fulfill the
condition that t should not be large). This leads to information about the transverse structure of
the target, in addition to probing the longitudinal momentum of partons. An intuitive physical
picture is obtained in the impact impact parameter representation (Section 3.10), where GPDs
describe the spatial distribution of quarks and gluons in the plane transverse to the momentum
of a fast moving hadron. Together with the information on longitudinal parton momentum one
thus obtains a fully three-dimensional description of hadron structure.

• Not only the momentum but also the polarization of the target can be changed by the scattering,
which leads to a rich spin structure of GPDs. We will see in Section 3.6 how this provides ways
to study aspects of the nucleon spin difficult to come by otherwise, in particular the orbital
angular momentum carried by partons.

9

GPDs (8 independent ones)                  
(recover partonic distributions in the forward limit) 

DVCS hard meson production

exclusive leptonic processes. More 
possibilities with Drell-Yan production   

talk by B. Pire

H,E, H̃, Ẽ;HT , ET , H̃T , ẼT (x, ξ, t)



dσD−Y =
∑

a

fq(x1,k⊥1;Q2)⊗ fq̄(x2,k⊥2;Q2) dσ̂qq̄→!+!−

Drell-Yan processes - TMDs              

factorization holds, two scales, M2, and qT << M

p p

Q2 = M2

qT

qL

l+

l–

direct product of TMDs  
no fragmentation process

talks by D. Boer, W. Vogelsang
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l′µCM =
1

2

















(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

















. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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+ SaL |!SbT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |!SaT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |!SaT | |!SbT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ
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dσ

d4q
=

3

4π

1

λ + 3

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)
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UU − F 2
UU

F 1
UU + F 2

UU
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UU
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UU
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UU
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UU
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The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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S. Arnold, A. Metz and M. Schlegel, arXiv:0809.2262 [hep-ph] 
cross-section: most general pp leading-twist expression 



Case of one polarized nucleon only
dσ

d4q dΩ
=

α2

Φ q2

{
(1 + cos2 θ) F 1

U + (1− cos2 θ) F 2
U + sin 2θ cos φ F cos φ

U + sin2 θ cos 2φ F cos 2φ
U

+ SL

(
sin 2θ sin φ F sin φ

L + sin2 θ sin 2φ F sin 2φ
L

)

+ ST

[(
F sin φS

T + cos2θ F̃ sin φS

T

)
sinφS + sin 2θ

(
sin(φ + φS) F sin(φ+φS)

T

+ sin(φ− φS) F sin(φ−φS)
T

)

+ sin2 θ
(
sin(2φ + φS) F sin(2φ+φS)

T + sin(2φ− φS) F sin(2φ−φS)
T

)]}
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λ = 1 µ = ν = 0

1
σ

dσ

dΩ
=

3
4π

1
λ + 3

(
1 + λ cos2 θ + µ sin 2θ cos φ +

ν

2
sin2 θ cos 2φ

)

Unpolarized cross section already very interesting

Collins-Soper frame 

naive collinear parton model:
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q = u, ū, d, d̄, s, s̄

dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p↑(x1,k⊥)⊗ fq̄/p(x2)⊗ dσ̂

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

p p
qT

qL

(p-p c.m. frame) 



10

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.5  0  0.5

A
Ns
in

(!
"-
!

S
)

xF

COMPASS: # p
$ 

4<M<9 GeV
E#=160 GeV GRVPI

#-

#+

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 4  5  6  7  8  9
A

Ns
in

(!
"-
!

S
)

M (GeV)

COMPASS: # p
$ 

0.2<xF<0.5

E#=160 GeV GRVPI

#-

#+

 0

 0.2

 0.4

 0.6

 0.8

-0.5  0  0.5

x
2

xF

COMPASS: # p
$ 

4<M<9 GeV
E#=160 GeV

FIG. 2: The single spin asymmetries A
sin(φγ−φS)
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and 0.2 ≤ xF ≤ 0.5. The results are given for a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right

panel shows the allowed region of x2 values as a function of xF .
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Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 
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process-dependence of Sivers functions 

Major advance in theory:

•  Crucial role of gauge-links in TMDs
Brodsky, Hwang, Schmidt; 

Collins; Belitsky, Ji, Yuan; 

Boer, Mulders, Pijlman

γ∗
γ∗

attractive repulsive

r (gb) r r

(d)(c)

(b)(a)

+

−

γ∗−
γ∗

+

+

−

Figure 1: (a),(b) Simple QED example for process-dependence of the Sivers functions in DIS and

the Drell-Yan process. (c),(d) Same for QCD.

case is “initial-state” and is between the remnant of the transversely polarized “hadron” and the

initial parton from the other, unpolarized, “hadron”. These necessarily have identical charges,

and the interaction is repulsive. As a result, the spin-effect in this case needs to be of opposite

sign as that in DIS.

These simple models are readily generalized to true hadronic scattering in QCD. In DIS, the

final-state interaction is through a gluon exchanged between the 3 and 3̄ states of the struck quark
and the nucleon remnant, which is attractive, as indicated in Fig. 1(c). In the Drell-Yan process,

the interaction is between the 3 and 3 states (or 3̄ and 3̄) and therefore repulsive, as shown in
Fig. 1(d). This is the essence of the – by now widely quoted – result that the Sivers functions

contributing to DIS and to the Drell-Yan process have opposite sign [3, 4, 5, 6]:

fSivers(x, k⊥)
∣∣∣
DY

= −fSivers(x, k⊥)
∣∣∣
DIS

. (1)

In the full gauge theory, the phases generated by the additional (final-state or initial-state) inter-

actions can be summed to all orders into a “gauge-link”, which is a path-ordered exponential of

the gluon field and makes the Sivers functions gauge-invariant. The non-universality of the Sivers

functions is then reflected in a process-dependence of the space-time direction of the gauge-link.

The crucial role played by the gauge link has given rise to intuitive model interpretations of

single-spin asymmetries in terms of spatial deformations of parton distributions in a transversely

polarized nucleon [19]. The process-dependence of the Sivers functions will also manifest itself

in more complicated QCD hard-scattering, albeit in a more intricate way [20]. An example is

the single-spin asymmetry in di-jet angular correlations [21, 22, 23], which is now under inves-

tigation at RHIC [24]. We note that a related initial-state interaction may give rise to azimuthal

angular dependences in the unpolarized Drell-Yan process [25, 26].

The verification of the predicted non-universality of the Sivers functions is an outstanding

challenge in strong-interaction physics. It is most cleanly possible in the Drell-Yan process,

3

DIS: 
“attractive”

D-Y: 
“repulsive”

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY
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y2, !2⊥ x2, k2⊥

x1, k1⊥

yn, !n⊥ xn, kn⊥

FIG. 1: Light-front time-order perturbation Feynman diagrams for the phase contribution from

one-gluon exchange between two constituent quarks.

where
∑

k− represents the sum of all partons energy k−
i , d[i]

′ represents the integral of

(yi, !i⊥). The interaction kernel K can be calculated from the light-front time-order pertur-

bation theory [2]. The wave functions ψn and ψ′
n may differ. From the above expression,

we find that the phase of ψn may come from the wave function in the right hand side ψ′
n

or the interaction kernel K. In the following, we assume that the wave function ψ′
n is real,

for example, from model calculation such as constituent quark model [18]. We will focus on

the contribution from the interaction kernel. We will calculate, in particular, the one-gluon

exchange contribution to the interaction kernel.

At the lowest order of the light-front time-order perturbation theory, we have one gluon

exchange contribution to the interaction kernel. This can be expressed as a sum of all

diagrams with gluon connection between all possible pair of constituents in the light-front

wave function. For example, the contribution from the gluon exchange between the ith and

jth quark can be written as,

K[k; !]ij =
ūλi

(xi, ki⊥)√
xi

γµ
uλ′

i
(yi; !i⊥)
√
yi

dµν
ūλj

(xj, kj⊥)
√
xj

γν
uλ′

j
(yj; !j⊥)
√
yi

×











1

P− − q− − k−
i − !−j −

∑

α$={i,j}
k−
α + iε

θ(q+)

q+

+
1

P− − q′− − k−
j − !−i −

∑

α$={i,j}
k−
α + iε

θ(q′+)

q′+











, (3)

where λ represents the helicity for the associated quarks, q+ = k+
j − !+j and q′+ = k+

i − !+i ,

and the color factors are implicit in the above equation. Similar expression shall hold for the

5

Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163 
Pasquini, Yuan, arXiv:1001.5398 

Sivers function from light-front wave function

see also Hwang, arXiv:1003.0867 - incorporation of final state 
interactions into the light-cone wave function

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY

in all models one has: whatever the 
reason, check it!
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Figure 9: Same as Fig. 8, but for p̄p collider options with
√

S = 14.5 GeV (left) and
√

S = 30 GeV
(right).

with the plus distribution of Eq. (9), would force the average partonic center-of-mass energy still
closer to threshold, and hence reduce the asymmetry even further. We should observe, however,
that the hard scattering function is not a positive-definite cross section, but rather a sum of
plus distributions, given at first nontrivial order in Eq. (9). At NLO, for example, the positive
contribution at z = 1 is from a delta function associated with virtual corrections, while the real-
gluon contribution, ln(1 − z)/(1 − z), is actually negative, due to the subtraction of collinear
divergences in the calculation of the hard scattering [23, 24]. We therefore cannot interpret 〈xa,b〉
as averages in the usual sense. In any case, we do see a more significant decrease in 〈x〉, computed
above, for the unregulated resummed cross section than for fixed order. In fact, the values derived
in this manner are below

√
τ , which would be the lower limit for a positive-definite hard scattering

function, and at the highest M , even below τ , which is the lower limit of the integration range
for the x’s. The caveat against a literal interpretation of 〈x〉 notwithstanding, it is reasonable to
interpret the modest decrease in the asymmetry for the unregulated resummed cross section as
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The dream experiment, D-Y with polarized antiprotons
measure transversity via double spin asymmetry ATT

ATT ≡
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓

PAX proposal: hep-ex/0505054
M.A.,  V. Barone, A. Drago, N. Nikolaev H. Shimizu, G. Sterman,       

W.  Vogelsang, H. Yokoya

s = 30 GeV2

ATT ≡
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓ # âTT

∑
q e2

q h1q(x1) h1q(x2)∑
q e2

q q(x1) q(x2)

âTT =
sin2 θ

1 + cos2 θ
cos(2ϕ)

talk by P. Lenisa, W. Vogelsang



From γ∗N → πN ′ to πN → γ∗N ′

E.Berger,M.Diehl,BP,Phys Lett.B523

Pion beams reveal H̃, Ẽ Generalized Parton distributions

!-xx+! +!x !-x

"#(q) (q’)$

$% $%

~  ~
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$ (q)

H, E
~  ~

N(p’)N(p) N(p’)N(p)

"#(q’)

(a) (b)

Figure 1: Sample Feynman diagrams at leading order in αs for pion electroproduction (a)
and its timelike counterpart (b) in the scaling limit. In both cases three other diagrams
are obtained by attaching the photon to the quark lines in all possible ways. The plus-
momentum fractions x and η refer to the average nucleon momentum 1

2(p + p′).

where s = (p + q)2 is the squared c.m. energy. Here and in the following we neglect the
masses of the pion and the final-state leptons compared with the nucleon mass M .

Among the predictions of the factorization theorem is that in the limit of large vir-
tuality the dominant polarization of the γ∗ is longitudinal in the collision c.m. The
corresponding amplitude for πN → γ∗N scales like 1/Q′ at fixed t and τ , up to logarith-
mic modifications due to radiative corrections. Transverse photon helicity is suppressed
by an extra factor of 1/Q′ in the amplitude. In the limit where it can be neglected the
cross section for the overall process πN → &+&− N is simply

dσ

dQ′2 dt d(cos θ) dϕ
=

αem

256 π3

τ 2

Q′6

∑

λ′,λ

|M0λ′,λ|2 sin2 θ, (2)

where the superscript 0 stands for a longitudinal photon and we have respectively taken
the average and sum over the initial and final nucleon helicities λ and λ′. The decay
angles θ and ϕ of the photon in its rest frame are defined in analogy to timelike Compton
scattering (cf. Fig. 5 of [8]), and the sin2 θ behavior in (2) is the sign of the purely
longitudinal γ∗ polarization. In general the distribution in these angles allows separation
of the contributions to the cross section from longitudinal and transverse photons, as well
as their different interference terms. Along the lines of [10] one can thus test whether Q′2

is large enough to ensure the Q′ behavior and suppression pattern of the different helicity
transitions predicted by the factorization theorem. With polarized nucleon targets one
has further access to different combinations of nucleon helicities, in analogy with the case
of &N → &πN [11].

In the large Q′ limit the helicity amplitudes M0λ′,λ for π−p→ γ∗n read

M0λ′,λ(π−p→ γ∗n) = −ie
4π

3

fπ

Q′

× 1

(p + p′)+
ū(p′, λ′)

[

γ+γ5 H̃du(−η, η, t) + γ5
(p′ − p)+

2M
Ẽdu(−η, η, t)

]

u(p, λ). (3)

3

spacelike timelike
(= Exclusive Limit of Drell Yan process)

JLab or COMPASS physics ⇐⇒ COMPASS or JParc physics

Drell-Yan processes - GPDs and TDAs              

exclusive limits 
of Drell-Yan 
processes

Compass Opportunity

TDA

µ+
µ−

π N’

also with ANTIPROTON beam

(π ↔ N̄ ′)

N

1 < Q2 < 10GeV 2, small t = (pπ − pN ′)2, fixed ξ =
p+
π −p+

N ′
p+
N ′+p+

π

Measure lepton pair momentum ; deduce missing mass2 = M̄2.

Select small M̄2 ≈ M2
p . (antiproton case ≈ M2

π)

Small t = (ptarget − q)2 : lepton pair almost at rest in lab frame

→ factorize timelike versions of backward γ∗N → N ′π

K−N → Λγ∗ πN → N ′γ∗

TDA

µ+
µ−

K− Λ π N ′

N N

at large q2, small t, fixed ξ

N̄N → πγ∗

(B. Pire)



Conclusions
3-dimensional exploration of nucleon has just started: 
collect as much data as possible and try to reconstruct 

the nucleon phase-space structure                            
Drell-Yan processes are cleanest probe 

ideal machines: 
x-range including the valence region, 

Q2, M2 high enough to control higher-twist corrections 
PT, QT ranges large enough to see transition from TMDs 

to collinear factorization
plenty of challenging theoretical issues....

many thanks to the organizers! 


