Studying the hadron structure in Drell-Yan reactions - concluding remarks

Mauro Anselmino, Torino University \& INFN

$$
\text { 26-27 April } 2010 \text { CERN }
$$

Exploring the 3-dimensional

 phase-space structure of the nucleon with Drell-Yan processes
phase-space (k-b) distribution of partons in nucleons; parton intrinsic motion; spin- k_{\perp} correlations? orbiting quarks?
information encoded in GPDs and TMDs
(exclusive and inclusive processes)

Usual way of exploring the nucleon structure: collinear QCD parton model

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q\left(x, Q^{2}\right) \otimes \frac{\mathrm{d} \hat{\sigma}_{q}}{\mathrm{~d} Q^{2}}
$$

great success, but essentially x and Q^{2} degrees of freedom

The nucleon, as probed in DIS, in collinear

 configuration: 3 distribution functions

Correlator:

$$
\begin{aligned}
& \Phi_{i j}(k ; P, S)=\sum_{X} \int \frac{\mathrm{~d}^{3} P_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
& \Phi(x, S)=\frac{1}{2}[\underbrace{f_{1}(x)}_{\mathrm{q}}) h_{+}+S_{L} \underbrace{g_{1 L}(x)}_{\Delta \mathrm{q}}) \gamma^{5} h_{+}+\underset{\Delta_{T} \mathrm{q}}{h_{11}} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}]
\end{aligned}
$$

integrated parton distribution functions, PDF

H1 and ZEUS Combined PDF Fit

integrated helicity distributions

E. Leader, A. Sidorov and D.B. Stamenov

$$
\Delta q\left(x, Q^{2}\right)=g_{1}^{q}\left(x, Q^{2}\right)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} g_{1 L}^{q}\left(x, k_{\perp}^{2} ; Q^{2}\right)
$$

transversity distributions

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

$$
\Delta_{T} q\left(x, Q^{2}\right)=h_{1}^{q}\left(x, Q^{2}\right)
$$

Extraction from SIDIS (HERMES, COMPASS-D) $+e^{+} e^{-}$ (Belle) data, $h_{1} \otimes H_{1}{ }^{\perp}$
new probes and concepts to explore the nucleon structure

TMDs - Transverse Momentum Dependent (distribution and fragmentation functions)
(polarized) SIDIS and Drell-Yan, spin asymmetries in inclusive
(large p_T) NN processes

$$
f_{a / p}\left(x, \boldsymbol{k}_{\perp} ; \boldsymbol{s}_{a}, \boldsymbol{S}\right)
$$

GPDs - Generalized Partonic Distributions

exclusive processes in leptonic and hadronic interactions

$$
q\left(x, \boldsymbol{b}_{T}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{T}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\boldsymbol{\Delta}_{T}^{2}\right) e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{\Delta}_{T}}
$$

phase-space parton distribution, $W(\boldsymbol{k}, \boldsymbol{b})$

(S. Meissner, Metz, Schlegel) TGPD or GPCF Wigner
function (Belitsky, Ji, Yuan)

$$
\int d^{2} \boldsymbol{k}_{\perp} H(\boldsymbol{k}, \boldsymbol{\Delta})=H\left(x, \xi, \boldsymbol{\Delta}_{T}\right)
$$

$q\left(x, \boldsymbol{k}_{\perp}\right)$

Sivers u and d quark densities in transverse momentum space

proton moving into the screen, polarization along y-axis blue: less quarks red: more quarks $x=0.2 \mathrm{kin} \mathrm{GeV} / \mathrm{c}$

$$
q\left(x, \boldsymbol{b}_{T}\right)
$$

(a)

femtophotography or tomography of the nucleon

courtesy of C. Weiss

TMDs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{aligned}
\Phi\left(x, \boldsymbol{k}_{\perp}\right) & \left.=\frac{1}{2}\left[f_{1} \not h_{+}+f_{1 T}^{\perp} \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L} g_{1 L}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}^{\perp}\right)\right) \gamma^{5} h_{+} \\
& +h_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L}\left(h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}\left(h_{1 T}^{\perp}\right)\right) \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\
& \left.+h_{1}^{\perp} \frac{\sigma_{\mu \nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right]
\end{aligned}
$$

... with partonic interpretation

$f_{1}^{q}\left(x, k_{\perp}^{2}\right)$

$$
q(x)=f_{1}^{q}(x)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

several spin- \boldsymbol{k}_{\perp} correlations in TMDs: $f_{q}\left(x, \boldsymbol{k}_{\perp} ; \boldsymbol{s}_{q}, \boldsymbol{S}\right)$

$$
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}
$$

"Sivers effect"
"Boer-Mulders effect"

The nucleon at twist-2,

similar spin- p_{\perp} correlations in fragmentation process (case of final spinless hadron)

$$
D_{1}^{q}\left(x, \boldsymbol{p}_{\perp}^{2}\right)
$$

$$
\begin{gathered}
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \\
\text { "Collins effect" }
\end{gathered}
$$

$$
\begin{aligned}
D_{q}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}_{q}\right) & =D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

usual 3-dimensional probe of nucleons: SIDIS in parton model with intrinsic motion

$$
\begin{gathered}
\mathrm{d}^{6} \sigma \equiv \frac{\mathrm{~d}^{6} \sigma^{\ell p^{\uparrow} \rightarrow \ell h X}}{\mathrm{~d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} z_{h} \mathrm{~d}^{2} \boldsymbol{P}_{T} \mathrm{~d} \phi_{S}} \\
\boldsymbol{p}_{\perp} \simeq \boldsymbol{P}_{T}-z_{h} \boldsymbol{k}_{\perp}
\end{gathered}
$$

factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{QCD}}$ Two scales: $P_{T}^{2} \ll Q^{2}$

Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz,...

general azimuthal structure of SIDIS cross-section

 (with leading-twist TMDs)$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Kotzinian, NP B441 (1995) 234
many spin asymmetries $\mathrm{d} \sigma(\boldsymbol{S}) \neq \mathrm{d} \sigma(-\boldsymbol{S})$
$F_{S_{B} S_{T}}^{(\ldots .)}$ contain the TMDs

Mulders and Tangermann, NP B461 (1996) 197
Boer and Mulders, PR D57 (1998) 5780 Bacchetta et al., PL B595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 Anselmino et al., in preparation

$F_{u u} \sim \sum_{a}^{e_{2}^{2}(f)} 8 D_{1}^{a}$
$F_{L L} \sim \sum_{a} e_{a}^{2} g_{1 L}^{a} \otimes D_{1}^{a}$
$\left.F_{U U}^{\cos (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1}^{\perp a}\right) \otimes H_{1}^{\perp a}$
$F_{U L}^{\sin (2 \phi)} \sim \sum_{a} e_{a}^{2}\left(h_{1 L}^{\perp a}\right) \otimes H_{1}^{\perp a}$
$F_{L T}^{\cos \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} \xrightarrow[g_{1 T}^{\perp a}]{(1)} \otimes D_{1}^{a}$ chiral-even

$$
\left.\left.F_{U T}^{\sin \left(\phi-\phi_{S}\right)} \sim \sum_{a}^{a} e_{a}^{2} f_{1 T}^{\perp \text { La }}\right) \otimes D_{1}^{a}\right\}
$$

$$
F_{U T}^{\sin \left(\phi+\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} \underbrace{h_{1 T}^{a}} \otimes H_{1}^{\perp a}\} \text { chiral-odd }
$$

$$
F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(h_{1 T}^{\perp a}\right) \otimes H_{1}^{\perp a}
$$

GPDs (8 independent ones)

(recover partonic distributions in the forward limit)

$$
H, E, \tilde{H}, \tilde{E} ; H_{T}, E_{T}, \tilde{H}_{T}, \tilde{E}_{T}(x, \xi, t)
$$

DVCS

hard meson production
exclusive leptonic processes. More possibilities with Drell-Yan production talk by B. Pire

Drell-Yan processes - TMDs

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}} \text {direct product of TMDs }
$$

cross-section: most general pp leading-twist expression

$$
\begin{aligned}
& \frac{d \sigma}{d^{4} q d \Omega}=\frac{\alpha_{e m}^{2}}{F q^{2}} \times \quad \text { S. Arnold, A. Metz and M. Schlegel, arXiv:0809.2262 [hep-ph] } \\
& \left\{\left(\left(1+\cos ^{2} \theta\right) F_{U U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U U}^{2}+\sin 2 \theta \cos \phi F_{U U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U U}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left(\sin 2 \theta \sin \phi F_{L U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L U}^{\sin 2 \phi}\right) \\
& +S_{b L}\left(\sin 2 \theta \sin \phi F_{U L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{U L}^{\sin 2 \phi}\right) \\
& +\left|\vec{S}_{a T}\right|\left[\sin \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T U}^{1}+\left(1-\cos ^{2} \theta\right) F_{T U}^{2}+\sin 2 \theta \cos \phi F_{T U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T U}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{a}\left(\sin 2 \theta \sin \phi F_{T U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T U}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{b T}\right|\left[\sin \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{U T}^{1}+\left(1-\cos ^{2} \theta\right) F_{U T}^{2} \boldsymbol{A} \sin 2 \theta \cos \phi \boldsymbol{H}_{U T}^{\mathrm{Cos} \phi}+\sin ^{2} \theta \cos 2 \phi F_{U T}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{b}\left(\sin 2 \theta \sin \phi F_{U T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{U T}^{\sin 2 \phi}\right)\right] \\
& +S_{a L} S_{b L}\left(\left(1+\cos ^{2} \theta\right) F_{L L}^{1}+\left(1-\cos ^{2} \mathcal{L}^{2}+\sin 2 \theta \operatorname{cs} \phi F_{L L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L L}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left|\vec{S}_{b T}\right|\left[\cos \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{L T} \cos ^{2} 日 F_{L T}^{2}+\sin 2 \theta \cos \phi F_{L T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L T}^{\cos 2 \phi}\right)\right. \\
& \left.+\sin \phi_{b}\left(\sin 2 \theta \sin \phi F_{L T}^{\sin \phi}+\sin { }^{2} \theta \sin 2 \phi F_{L T}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{a T}\right| S_{b L}\left[\cos \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T L}^{1}+\cos ^{2} \theta\right) F_{T L}^{2}+\sin 2 \theta \cos \phi F_{T L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T L}^{\cos 2 \phi}\right) \\
& \left.+\sin \phi_{a}\left(\sin 2 \theta \sin \phi F^{\boldsymbol{Z}}+\sin ^{2} \theta \sin 2 \phi F_{T L}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{a T}\right|\left|\vec{S}_{b T}\right|\left[\cos \left(\phi_{a}+\phi(1)+\cos ^{2} \theta\right) F_{T T}^{1}+\left(1-\cos ^{2} \theta\right) F_{T T}^{2}+\sin 2 \theta \cos \phi F_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T T}^{\cos 2 \phi}\right) \\
& +\cos \left(\phi_{a}-\phi_{b}\right)\left(\left(1+\cos ^{2} \theta\right) \bar{F}_{T T}^{1}+\left(1-\cos ^{2} \theta\right) \bar{F}_{T T}^{2}+\sin 2 \theta \cos \phi \bar{F}_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi \bar{F}_{T T}^{\cos 2 \phi}\right) \\
& +\sin \left(\phi_{a}+\phi_{b}\right)\left(\sin 2 \theta \sin \phi F_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T T}^{\sin 2 \phi}\right) \\
& \left.\left.+\sin \left(\phi_{a}-\phi_{b}\right)\left(\sin 2 \theta \sin \phi \bar{F}_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi \bar{F}_{T T}^{\sin 2 \phi}\right)\right]\right\} \\
& \text { M. Schlegel talk }
\end{aligned}
$$

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.\quad+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper frame

A. Kotzinian, M. Schlegel

Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame
naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$

Decay angular distributions in pion-induced Drell-Yan

E615 Data $252 \mathrm{GeV} \pi+\mathrm{W}$

Phys. Rev. D 39 (1989) 92

$$
p_{T}(\mathrm{GeV} / \mathrm{c})
$$

$$
\lambda \neq 1 \quad \mu, \nu \neq 0
$$

$1-\lambda-2 \nu \neq 0$
(valence quarks ?)
(talk by P. Reimer)

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp}\right) \otimes f_{\bar{q} / p}\left(x_{2}\right) \otimes \mathrm{d} \hat{\sigma}
$$

$$
q=u, \bar{u}, d, \bar{d}, s, \bar{s}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Predictions for A_{N}

Sivers functions as extracted from SIDIS data, with opposite sign

M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078

Crucial role of gauge-links in TMDs
Brodsky, Hwang, Schmidt: Collins: Belitsky, Ji, Yuan: Boer, Mulders, Pijlman process-dependence of Sivers functions

(a)

DIS:
"attractive"

r mor $(g b)$

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

Talks by D. Boer, A. Bacchetta, round table

Sivers function from light-front wave function

> Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163
> Pasquini, Yuan, arXiv:1001.5398

(a)

(b)
in all models one has:

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

whatever the reason, check it!
see also Hwang, arXiv:1003.0867 - incorporation of final state interactions into the light-cone wave function

The dream experiment, D-Y with polarized antiprotons measure transversity via double spin asymmetry $A_{T T}$

PAX proposal: hep-ex/0505054 M.A., V. Barone, A. Drago, N. Nikolaev

$$
\begin{aligned}
& A_{T T} \equiv \frac{d \sigma^{\uparrow \uparrow}-d \sigma^{\uparrow \downarrow}}{d \sigma^{\uparrow \uparrow}+d \sigma^{\uparrow \downarrow}} \simeq \hat{a}_{T T} \frac{\sum_{q} e_{q}^{2} h_{1 q}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)}{\sum_{q} e_{q}^{2} q\left(x_{1}\right) q\left(x_{2}\right)}
\end{aligned}
$$

talk by P. Lenisa, W. Vogelsang

Drell-Yan processes - GPDs and TDAs

exclusive limits of Drell-Yan processes
 (B. Pire)

Conclusions

3-dimensional exploration of nucleon has just started: collect as much data as possible and try to reconstruct the nucleon phase-space structure Drell-Yan processes are cleanest probe ideal machines:
x-range including the valence region,
Q^{2}, M^{2} high enough to control higher-twist corrections P_{T}, Q_{T} ranges large enough to see transition from TMDs to collinear factorization
plenty of challenging theoretical issues....
many thanks to the organizers!

