### Effective Field Theory: Top and Higgs

### Eleni Vryonidou CERN TH



Zurich Phenomenology Workshop Zurich 13/01/20

## The global nature of the EFT



# Focussing on top-Higgs



ZPW, 13/1/20

### Global fit results

### 1. Higgs+WW+EWPO



Ellis, Murphy, Sanz, You arXiv:1803.03252

Biekotter, Corbett, Plehn arXiv:1812.07587

Higgs+Weak final states

ZPW, 13/1/20

### Global fit results

### **2.Top**



Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang arXiv:1901.05965

Run II, ATLAS+CMS, 68% and 95% C.L.



Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606

### Top final states



Current approach (EFT fits) largely ignores the interplay between top and Higgs

**Questions:** 

- 1. Should we keep the two sectors separate?
- 2. Can we keep the two sectors separate?

### Can a combination help?



Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

### Breaking degeneracies





### The impact of differential information



Maltoni, EV, Zhang arXiv:1607.05330



Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460 See also Grazzini et al 1612.00283

#### **Different shapes for different operators**

#### E.Vryonidou

ZPW, 13/1/20

### Present and future prospects



Maltoni, EV, Zhang arXiv:1607.05330



# How to extract maximal information?

$$\begin{split} O_{t\phi} &= y_t^3 \left( \phi^{\dagger} \phi \right) \left( \bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left( \phi^{\dagger} \phi \right) G^A_{\mu \nu} G^{A \mu \nu} \end{split}$$

Lots of processes Combination:

- inclusive H
- boosted Higgs
- ttH
- HH
- off-shell Higgs



Azatov, Grojean, Paul, Salvioni arXiv:1608.00977

## Towards experimental SMEFT analysis

Theorists have been looking at this interplay for some time...

#### ATLAS-CONF-2019-029



| Measured region                                                                  | $\sigma_{ m int}/\sigma_{ m SM}$ |
|----------------------------------------------------------------------------------|----------------------------------|
| $gg \rightarrow H (0\text{-jet})$                                                | $35.0 \cdot c_{HG}$              |
| $gg \rightarrow H (1\text{-jet}, p_{\mathrm{T}}^{H} < 60 \mathrm{GeV})$          | $28.3 \cdot c_{HG}$              |
| $gg \rightarrow H (1\text{-jet}, 60 < p_{\mathrm{T}}^{H} < 120 \mathrm{GeV})$    | $26.1 \cdot c_{HG}$              |
| $gg \rightarrow H (1\text{-jet}, 120 < p_{\rm T}^H < 200 {\rm GeV})$             | $23.1 \cdot c_{HG}$              |
| $gg \rightarrow H \ (\geq 2\text{-jet}, p_{\mathrm{T}}^{H} < 200 \mathrm{GeV})$  | 16.0 · <i>c<sub>HG</sub></i>     |
| $gg \rightarrow H \ (\geq 1 \text{-jet}, p_{\mathrm{T}}^{H} > 200 \mathrm{GeV})$ | $15.6 \cdot c_{HG}$              |

ATL-PHYS-PUB-2019-042



Where is the top Yukawa?

### **Double Higgs production**



### HH in the EFT





top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

#### The present

Given the current constraints on  $\sigma(HH)$ ,  $\sigma(H)$  and the ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

#### The future

Precise knowledge of other Wilson coefficients will be needed to bound  $\lambda$  as the bound gets closer to SM

Differential distributions will also be necessary

### HH in the EFT



$$\begin{split} O_{t\phi} &= y_t^3 \left( \phi^{\dagger} \phi \right) \left( \bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left( \phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

#### The present

Given the current constraints on  $\sigma(HH)$ ,  $\sigma(H)$  and the ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

#### The future

Precise knowledge of other Wilson coefficients will be needed to bound  $\lambda$  as the bound gets closer to SM

Differential distributions will also be necessary

### HH in the EFT



$$\begin{split} O_{t\phi} &= y_t^3 \left( \phi^{\dagger} \phi \right) \left( \bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left( \phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

#### The present

Given the current constraints on  $\sigma(HH)$ ,  $\sigma(H)$  and the ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

#### The future

Precise knowledge of other Wilson coefficients will be needed to bound  $\lambda$  as the bound gets closer to SM

Differential distributions will also be necessary

### Differential results for HH



E.Vryonidou

ZPW, 13/1/20

### Differential results for HH



E.Vryonidou

ZPW, 13/1/20

# Top-Higgs interplay in HH

### **Future prospects for Higgs self-coupling:**





Di Vita et al. arXiv:1704.01953 and HH white paper

Degeneracy with Yukawa and contact ggH operators worsens HHH sensitivity

# Exploring the interplay further

### Top EW couplings

#### Typically searched for in

#### Also relevant for:

$$\begin{aligned} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \end{aligned}$$







New Higgs interactions

relevant for tHj, gg>HZ gg>ZZ, H>Zγ

Aren't these constrained from top fits?

ZPW, 13/1/20

### A detour into top EFT fits



How can each process help?



### Observables and theory predictions



### Top-pair production W-helicities

4 tops, ttbb, toppair associated production

> Single top t-channel, schannel, tW, tZ

| Dataset                                       | ndat |
|-----------------------------------------------|------|
| ATLAS_tt_8TeV_1jets [ $m_{t\bar{t}}$ ]        | 7    |
| $CMS_tt_8TeV_1jets [y_t]$                     | 10   |
| CMS_tt2D_8TeV_dilep [ $(m_{t\bar{t}}, y_t)$ ] | 16   |
| CMS_tt_13TeV_1jets2 [ y <sub>tf</sub> ]       | 8    |
| CMS_tt_13TeV_dilep [ y <sub>ti</sub> ]        | 6    |
| CMS_tt_13TeV_1jets_2016 [ yt ]                | 11   |
| ATLAS_WhelF_8TeV                              | 3    |
| CMS_WhelF_8TeV                                | 3    |
| CMS_ttbb_13TeV                                | 1    |
| CMS_tttt_13TeV                                | 1    |
| ATLAS_tth_13TeV                               | 1    |
| CMS_tth_13TeV                                 | 1    |
| ATLAS_ttZ_8TeV                                | 1    |
| ATLAS_ttZ_13TeV                               | 1    |
| CMS_ttZ_8TeV                                  | 1    |
| CMS_ttZ_13TeV                                 | 1    |
| ATLAS_ttW_8TeV                                | 1    |
| ATLAS_ttW_13TeV                               | 1    |
| CMS_ttW_8TeV                                  | 1    |
| CMS_ttW_13TeV                                 | 1    |
| CMS_t_tch_8TeV_dif                            | 6    |
| $ATLAS_t_tch_8TeV [y_t]$                      | 4    |
| ATLAS_t_tch_8TeV [ y <sub>f</sub> ]           | 4    |
| ATLAS_t_sch_8TeV                              | 1    |
| $CMS_t_tch_13TeV_dif[y_t]$                    | 4    |
| CMS_t_sch_8TeV                                | 1    |
| ATLAS_tW_inc_8TeV                             | 1    |
| CMS_tW_inc_8TeV                               | 1    |
| ATLAS_tW_inc_13TeV                            | 1    |
| CMS_tW_inc_13TeV                              | 1    |
| ATLAS_tZ_inc_13TeV                            | 1    |
| CMS_tZ_inc_13TeV                              | 1    |
| Total                                         | 102  |

One distribution from each dataset, to avoid double counting

### Theoretical predictions

| Process         | SM                              | SMEFT                        |
|-----------------|---------------------------------|------------------------------|
| tł              | NNLO QCD                        | NLO QCD                      |
| single-t (t-ch) | NNLO QCD                        | NLO QCD                      |
| single-t (s-ch) | NLO QCD                         | NLO QCD                      |
| tW              | NLO QCD                         | NLO QCD                      |
| tZ              | tZ NLO QCD LO QCI<br>+ NLO SM K |                              |
| $t\bar{t}W(Z)$  | NLO QCD                         | LO QCD<br>+ NLO SM K-factors |
| tīh             | NLO QCD                         | LO QCD<br>+ NLO SM K-factors |
| tītī            | NLO QCD                         | LO QCD<br>+ NLO SM K-factors |
| tībb            | NLO QCD                         | LO QCD<br>+ NLO SM K-factors |

Baseline fit includes:

- Best available SM predictions
- NLO EFT predictions
- O(1/\(\Lambda\)<sup>4</sup>) terms

### Global fit Setup



#### E.Vryonidou

#### ZPW, 13/1/20



## Global top fit results (1)



Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965 (SMEFiT analysis)

#### E.Vryonidou

ZPW, 13/1/20

## Global top fit results (2)



Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606 (SFitter analysis)

E.Vryonidou

LHCTopWG, 14/11/19

# Going back to the interplay

- Top fits show that several top operators are poorly constrained
- This is particularly true for the operators modifying the top-Z interaction

What does that mean for Higgs production? Which processes do we have to look at (worry about)?

### Example1: HZ in gluon fusion

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left( \varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} &= y_t^3 \left( \phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

Sensitive also to the relative phase of the top and Z Higgs couplings



Hespel, Maltoni, EV arXiv:1503.01656

ZPW, 13/1/20

# HZ in gluon fusion



# Example 2: Off-shell Higgs production



The background

The signal The Higgs width

### **Higgs operators**

| $\mathcal{O}_{\varphi G}$ | cpG  | $\left( \varphi^{\dagger} \varphi - \frac{v^2}{2} \right) G^{\mu  u}_A G^A_{\mu  u}$ | $\mathcal{O}_{\varphi W}$  | cpW  | $\left( \varphi^{\dagger} \varphi - \frac{v^2}{2} \right) W_{I}^{\mu  u} W_{\mu  u}^{I}$ |
|---------------------------|------|--------------------------------------------------------------------------------------|----------------------------|------|------------------------------------------------------------------------------------------|
| $\mathcal{O}_{\varphi B}$ | cpBB | $\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)B^{\mu\nu}B_{\mu\nu}$          | $\mathcal{O}_{\varphi WB}$ | cpWB | $(\varphi^{\dagger}\tau_{I}\varphi) B^{\mu u}W^{I}_{\mu u}$                              |
| $\mathcal{O}_{\varphi}$   | ср   | $\left( \varphi^{\dagger} \varphi - \frac{v^2}{2} \right)^3$                         | $\mathcal{O}_{_{arphi d}}$ | cdp  | $\partial_{\mu}(\varphi^{\dagger}\varphi)\partial^{\mu}(\varphi^{\dagger}\varphi)$       |
| $\mathcal{O}_{\varphi D}$ | cpDC | $(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$       |                            |      |                                                                                          |

100000

100000

### **Top operators**

| $\mathcal{O}_{t\varphi}$      | ctp  | $\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\varphi} + \text{h.c.}$    | $\mathcal{O}_{tW}$        | ctW | $i(\bar{Q}\tau^{\mu\nu}\tau_I t)\tilde{\varphi}W^I_{\mu\nu}$ + h.c.                        |
|-------------------------------|------|-------------------------------------------------------------------------------------------------|---------------------------|-----|--------------------------------------------------------------------------------------------|
| $\mathcal{O}_{tG}$            | ctG  | $ig_{s}\left(\bar{Q}\tau^{\mu\nu}T_{A}t\right)\tilde{\varphi}G^{A}_{\mu\nu}+\text{h.c.}$        | $\mathcal{O}_{tB}$        | -   | $i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$ + h.c.                                 |
| $\mathcal{O}^{(3)}_{arphi Q}$ | cpQ3 | $i(\varphi^{\dagger}\overleftrightarrow{D}_{\mu}\tau_{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q)$ | $\mathcal{O}_{tZ}$        | ctZ | $-\sin \theta_W \mathcal{O}_{tB} + \cos \theta_W \mathcal{O}_{tW}$                         |
| $\mathcal{O}_{arphi Q}^{(-)}$ | срQМ | ${\cal O}^{(1)}_{arphi Q} - {\cal O}^{(3)}_{arphi Q}$                                           | $\mathcal{O}_{\varphi t}$ | cpt | $i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{t} \gamma^{\mu} t)$ |

#### E.Vryonidou

#### ZPW, 13/1/20

# Top couplings in gg>ZZ



Current bound from top processes:  $c \sim 10$ O(1) effects allowed in the tail

# A new source of information on ttZ



4-parameter fit:

 $c_t, c_g, c_V, c_A$ 

Constraint from gg to ZH Englert et al arXiv:1603.05304

Constraints on ttZ couplings competitive with ttZ process

Azatov, Grojean, Paul, Salvioni arXiv:1608.00977 See also: Englert, Soreq, Spannowsky arXiv:1410.5440

### Loops for tree-level processes

Are we measuring





NLO EW in SMEFT may not be small:

 $\mathcal{O}(lpha_{EW}/\pi\cdot C_t/C_H)$  instead of  $\mathcal{O}(lpha_{EW}/\pi)$ 



Weak corrections can be important for unconstrained operators

### Towards weak loops in the EFT



$$O_{t\varphi} = \bar{Q}t\tilde{\varphi} (\varphi^{\dagger}\varphi) + h.c.,$$

$$O_{\varphi Q}^{(3)} = (\varphi^{\dagger}iD_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q),$$

$$O_{\varphi tb} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + h.c.,$$

$$O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} + h.c.,$$

$$O_{\varphi t} = (\varphi^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}t),$$

$$O_{\varphi Q}^{(1)} = (\varphi^{\dagger}iD_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q),$$

$$O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\varphi}W_{\mu\nu}^{I} + h.c.,$$

Current constraints from top LHC measurements



Poor knowledge of top couplings leads to uncertainties on Higgs measurements at the LHC:

|                            | $\gamma\gamma$ | $\gamma { m Z}$ | bb            | $WW^*$        | $ZZ^*$        |
|----------------------------|----------------|-----------------|---------------|---------------|---------------|
| $\mathbf{g}\mathbf{g}$     | (-100%, 1980%) | (-88%, 200%)    | (-40%, 48%)   | (-40%, 47%)   | (-40%, 46%)   |
| VBF                        | (-100%, 1880%) | (-88%,170%)     | (-6.1%,5.3%)  | (-6.8%, 6.7%) | (-8.8%, 9.2%) |
| WH                         | (-100%,1880%)  | (-88%,170%)     | (-5.5%, 4.2%) | (-6.1%, 5.6%) | (-7.8%, 7.9%) |
| ZH                         | (-100%, 1880%) | (-87%,170%)     | (-6.5%,5.9%)  | (-7.1%,7.1%)  | (-9.4%,9.9%)  |
| -                          | loop-ind       | duced           |               |               | tree-level    |
| EV, Zhang arXiv:1804.09766 |                |                 |               |               |               |
|                            |                |                 |               |               |               |

# Conclusions

Current approach (EFT fits) largely ignores the interplay between top and Higgs

1. Should we keep the two sectors separate? No, top-Higgs interplay helps us break degeneracies.

2. Can we keep the two sectors separate? No, with limited information on top couplings one-loop Higgs processes can be significantly modified

## Conclusions

Current approach (EFT fits) largely ignores the interplay between top and Higgs

1. Should we keep the two sectors separate? No, top-Higgs interplay helps us break degeneracies.

2. Can we keep the two sectors separate? No, with limited information on top couplings one-loop Higgs processes can be significantly modified

### Let's not forget the loops

### Thank you for your attention

### EFT Loops in Monte Carlo

### Aim to obtain a complete Monte Carlo implementation based on:

- Warsaw basis
- Degrees of freedom for top operators as in arXiv:1802.07237 (LHCTopWG)

### **Current status:**

- 73 degrees of freedom (top, Higgs, gauge):
  - CP-conserving
  - Flavour assumption:  $U(2)Q \times U(2)U \times U(3)d \times U(3)L \times U(3)e$
- 0/2F@NLO operators validated (with previous partial NLO implementations)
   http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
- 4F@NLO operators validation: on-going

### **Future plans**

- Full NLO model release (4F@NLO)
- Other flavour assumptions
- CP-violating effects

Work in progress with: C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, C. Zhang