Multi-Differential top quark pair (tt̄) cross sections and parameter extractions

ZPW2020 workshop, Zurich, 14 Jan 2020 Olaf Behnke, DESY

Multi-Differential tt cross sections $d^m \sigma_{tt}$ with m 2

d^mσ_{tī} vs kinematical & event topological observables: ✓ QCD+EW Test ✓ Sensitive to theory pars

Selected 2016 data analyses in

Dilepton ($t\bar{t} \rightarrow bl^+ v \ \bar{b}l^- \bar{v}$) and Lepton+Jets ($t\bar{t} \rightarrow bl^+ v \ \bar{b}jj$) channels:

Today's menu:

- **1.** CMS Dilepton TOP-18-004 (arXiv:1904.05237)
 - 2D and 3D tt xsecs and NLO extraction of α_s , m_t^{pole} & PDFs
- **2.** ATLAS Lepton+Jets EPJC 79 (2019) 2018:
 - ▶ 2D tt xsecs versus up to NNLO QCD predictions
- 3. ATLAS Dilepton ATLAS-CONF-2019-041 (arXiv:1910.08819)
 - Inclusive $\sigma_{t\bar{t}}$ and lepton differential distributions

1. CMS Dilepton tt analysis TOP-18-004 (arXiv:1904.05237)

Event selection

Kinematic reconstruction

Two reconstruction variants:

(1) Full:

Use all constraints → pt, pt

(2) Loose:

- Omit m_t constraints $\rightarrow p_{t\bar{t}}$
 - \rightarrow reliable for m_t^{pole} extraction

Kinematic distributions

tt signal MC: POWHEGV2 + PYTHIA8

Full Reco

 \Rightarrow with loose reco "see" onset of t production \Rightarrow Nominal MC predicts harder M(tt) spectrum, ~ok within uncert.

Overview of measured cross sections $1/\sigma_{t\bar{t}} \cdot d^m \sigma_{t\bar{t}}$

Results: 2D x-sections $[M(t\bar{t}),\Delta\eta(t,\bar{t})]$

Results: 3D x-sections [N_{jet}^{0,1,2+},M(tt̄),y(tt̄)]

⇒ 'POW+PYT' provides best description
 ⇒ 'POW+HER' predicts too many events with N_{jet}>1

Extraction of theory parameters consists of two parts

(1) Compare theory vs $t\bar{t}$ data using external PDF sets:

- Extracting α_s keeping m_t^{pole} fixed
- Extracting m_t^{pole} keeping α_s fixed
- (2) Simultaneous fit of α_s , m_t^{pole} and PDFs, using $t\bar{t}$ and HERA DIS data:
 - Fully consistent extraction Could be exemplary for future global fits

NLO calculation for $d^3\sigma_{t\bar{t}}$

Fixed order NLO predictions using MadGraph5_aMC@NLO+aMCfast+ApplGrid+xFitter

$\sigma_{t\bar{t}}$ vs [Njets, M(tt), y(tt)] calculations:

 $σ^{NLO}$ (Njets ≥0) $σ^{NLO}$ (Njets ≥1) $σ^{NLO}$ (Njets ≥2) Mangano, Nason, Ridolfi, NPB 373 (1992) 295 Dittmaier, Uwer, Weinzierl, PRL 98 (2007) 262002 Bevilacqua, Czakon, Papadopoulos and Worek, PRL 104 (2010) 162002, PR D 84 (2011) 114017

 $O(\alpha_s^3)$

 $O(\alpha_s^4)$

 $O(\alpha_s^5)$

Details

- $\mu_r = \mu_f = H'/2$, H' = Σ_i m_{T,i}, sum is over all final state partons
- $\gg \mu_r$, μ_f varied by factor 2 (6 variations in total)
- $m_t^{pole} = 172.5 \pm 1 \text{ GeV}$
- ▶ PDFs and α_s from several groups via LHAPDF, vary $\alpha_s \pm 0.001$ for uncertainties
- Multiplied with non-perturbative corrections (<5%) from parton to particle level

Results: $[N_{jet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ vs NLO with different α_s

Results: $[N_{jet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ vs NLO with diff. m_t^{pole}

→ m_t^{pole} sensitivity mainly from first $m(t\bar{t})$ bin • m_t^{pole} extraction technique follows: D0 results [FERMILAB-CONF-16-383-PPD]

Results: $[N_{jet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ vs NLO with diff. PDFs

Results: extraction of α_s from [N_{jet}^{0,1+},M(tt),y(tt)]

Use $m_t^{pole} = 172.5$ GeV in ME for all PDF sets

→ Precise determination of α_s using these data → Dependence on PDF set (correlation between g and α_s)

Results: extraction of mt^{pole} from [N_{jet}^{0,1+},M(tt̄),y(tt̄)]

Use α_s from each PDF set (α_s = 0.118 in CT and HERAPDF, α_s = 0.119 in ABPM)

Simultaneous α_s , m_t^{pole} and PDF fit

- Using HERA DIS data [1506.06042] + our new $d^3\sigma_{t\bar{t}}$ data
- Use xFitter-2.0.0, HERAPDF2.0 settings

 $\alpha_{S}(m_{Z}) = 0.1135 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0004} (\text{model})^{+0.0008}_{-0.0001} (\text{param})^{+0.0011}_{-0.0005} (\text{scale}) = 0.1135^{+0.0021}_{-0.0017} (\text{total})$ $m_{t}^{\text{pole}} = 170.5 \pm 0.7 (\text{fit}) \pm 0.1 (\text{model})^{+0.0}_{-0.1} (\text{param}) \pm 0.3 (\text{scale}) \text{ GeV} = 170.5 \pm 0.8 (\text{total}) \text{ GeV}$

 \rightarrow Two SM parameters determined precisely, weak correlation (ρ =0.3)

 \rightarrow Reduced gluon density uncertainty at large x~0.1-0.4

Limitations in the used NLO theory calculations

NLO is only publicly available theory tool, but it has it limitations:

• Near threshold calculation with soft gluon resummation [EPJ C60 (2009) 375] $\rightarrow \Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim +1\%$, attributing this to our first M(t\bar{t}) bin would lead to $\Delta m_t \sim 0.7 \text{ GeV}$

- Impact of missing FSR resummation is $\Delta m_t \sim 0.5 \text{ GeV}$ [EPJ C73 (2013) 2438]
- EW corrections could be few% near threshold [PR D91 (2015) 014020] [JHEP10 (2017) 186]
- Most wanted is NNLO QCD

Dilepton vs. Lepton+Jets $d^m \sigma_{t\bar{t}}$ analyses (m ≥ 2)

ATLAS and CMS analyses using 2016 data (L~36 fb⁻¹)

	Dilepton	Lepton+Jets	
Diagram	proton q g t b $b\bar{b}$	proton \overline{q} g t W^+ y b \overline{b} antiproton \overline{q} \overline{t} $W^ \overline{q}$	
Analyses	• CMS: arXiv:1908.07305	 ATLAS: EPJC 79 (2019) 2018 CMS: Phys. Rev. D97, 112003 (2018) 	
tt signal events	~200.000	500.000 -1.200.000	
Background fraction	~5-10%	~5-10%	
Dominant backgrounds	tW	single t, Multijets, W+jets	
tt reconstruction main challenge	determine $\boldsymbol{p}_{\boldsymbol{v}}$ and $\boldsymbol{p}_{\bar{\boldsymbol{v}}}$	~40% events with particle- to detector-level unmatched jets	
Kinematic reach	p⊤(t)<600 GeV	$p_T(t) < \sim 1$ (2) TeV resolved (boosted)	
Normal. x-secs total uncert.	~3-15%	~3-15%	
Dominating uncert.	syst.	syst.	
Largest syst. uncert.	tt MC physics modelling	tt MC physics modelling	
Largest exp. syst. uncert.	JES/JER	JES/JER, background	

Dilepton vs. Lepton+Jets $d^m \sigma_{t\bar{t}}$ analyses (m ≥ 2)

ATLAS and CMS analyses using 2016 data (L~36 fb⁻¹)

	Dilepton		Lepton+Jets	
Diagram	proton q g t b $b\bar{q} \bar{q} \bar{t} \mu^{-} \mu^{-}$		proton q g $t\overline{q} \overline{t}\overline{b}\overline{b}\overline{b}\overline{c}$	
Analyses	• CMS: arXiv:1908.07305		 ATLAS: EPJC 79 (2019) 2018 CMS: Phys. Rev. D97, 112003 (2018) 	
tt signal events	~200.000		500.000 -1.200.000	
Background fraction	~5-10%		~5-10%	
Dominant backgrounds	tW		single t, Multijets, W+jets	
tt reconstruction main challenge	determine \mathbf{p}_{v} and $\mathbf{p}_{\overline{v}}$		~40% events with particle- to detector-level unmatched jets	
Kinematic reach	p⊤(t)<600 GeV		$p_T(t) < 1$ (2) TeV resolved (boosted)	
Normal. x-secs total uncert.	~3-15%		~3-15%	
Dominating uncert.	syst.		ovet	
Largest syst. uncert.	tt MC phy	Overall ~comparable performance (ground)		
Largest exp. syst. uncert.	JES/JER			ground
		•		

2. ATLAS Lepton+Jets tīt analysis EPJC 79 (2019) 2018

Show only few selected x-section results at Parton level, many more in the paper, also particle level measurements

→ POWEG+PYTHIA8 predict too hard $p_T(t)$ for larger M($t\bar{t}$) → NNLO improves descriptions (though not perfect)

0.1437.4/16 \rightarrow Models predict softer M(tt) for central y(tt) \rightarrow Data have potential for constraining PDFs

Stat + Syst

Stat Only

 $1.1 \le |y^{t\bar{t}}| < 1.7$

1.0

0.01

0.26

< 0.01

< 0.01

< 0.01

1.5

Scale + PDF unc.

 $1.7 \le |y^{t\bar{t}}| < 2.5$

1.0

Pwg+Py8

 χ^2/NDF

30.9/12

51.8/19

17.6/13

64.4/14

62.6/16

1.5

p-value

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.17

m^{tī} [TeV]

Results Boosted tops p_T(t)>350 GeV

Results: 1D x-sections vs $p_T(t)$, test of EW corrections

 \rightarrow In probed limited p_T(t) range ~small sensitivity to EW corrections

3. ATLAS Dilepton tt analysis ATLAS-CONF-2019-041 (arXiv:1910.08819)

Measurement technique

- $e^{\pm}\mu^{\mp}$ Dilepton channel
- Study tt x-sections vs lepton kinematics
- for each x-section bin:
 - signal acceptance corrections
 - Use N_{b-tag} distribution for simultaneous extraction of o_{tt} and b-tag efficiency

→ inclusive and differential $\sigma_{t\bar{t}}$ → reaching $\mathcal{O}(1\%)$ precision for $1/\sigma_{t\bar{t}} \cdot d^{m}\sigma_{t\bar{t}}$,m=1,2

Results: Ratios of inclusive $\sigma_{t\bar{t}}$ vs sqrt(s) and $\sigma_{t\bar{t}}/\sigma_z$

Compare to predictions based on NNLO+NNLL for $\sigma_{t\bar{t}}$

 σ_{z} measured in fiducial range of Z \rightarrow II

$\sigma_{t\bar{t}}$ Results: 1D cross sections

• POWHEG+PY8 RadDn (RadUp): settings with decreased (increased) initial- and final-state parton shower radiation

Results: 2D cross sections vs [y^{eµ},m^{eµ}]

→ NLO+PS models predict too few events at low m^{eµ} and too many at forward $y^{eµ}$

Results: 2D x-sections vs [y^{eµ},m^{eµ}]: ratio MC/data

NLO+PS Model variations:

 χ^2 data vs. models

- ATLAS and CMS multi-differential tt cross section measurements with 2016 data provide high precision tests of QCD and EW sectors
 - CMS-TOP-18-004: use 3D tt
 cross sections to simultaneously extract at NLO α_s (~2% precision), m_t^{pole} (~0.5% precision) and improving g(x)
 - ATLAS EPJC 79 (2019) 2018: exhaustive set of 1D & 2D cross sections, including boosted tops, NNLO QCD improves description
 - ATLAS-CONF-2019-041: lepton differential distributions reach o(1%) precision and reveal specific NLO+PS MC problems, e.g. POWHEG too hard lepton p_T

Seen in all 3 above analyses: POWHEG too hard top p_T , enhanced at high $m_{t\bar{t}}$

- ATLAS and CMS multi-differential tt cross section measurements with 2016 data provide high precision tests of QCD and EW sectors
 - CMS-TOP-18-004: use 3D tt cross sections to simultaneously extract α_s (~2% precision), m_t^{pole} (~0.5% precision) and improving g(x)
 - ATLAS EPJC 79 (2019) 2018: exhaustive set of 1D & 2D cross sections, including boosted tops, NNLO QCD improves description
 - ATLAS-CONF-2019-041: lepton differential distributions reach o(1%) precision and reveal specific NLO+PS MC problems, e.g. POWHEG too hard lepton p_T

Outlook

Seen in all 3 above analyses: POWHEG too hard top p_T , enhanced at high $m_{t\bar{t}}$

- full RUN II (2016-2018) analyses: ~4 times increased statistics
- whenever NNLO is available \rightarrow compare to/use it to extract pars

Backup slides

Kinematic distributions

tt signal MC: POWHEGV2 + PYTHIA8

⇒ Overall reasonable description of data
⇒ Nominal MC predicts harder spectra for p_T(t), p_T(tt̄) and N_{jet}

⇒ 'POW+PYT' and 'MG5+PYT' predict harder p_T(t) for all y(t) ranges
⇒ 'POW+HER' gives better description

 \rightarrow Reduced gluon density uncertainty at large x~0.1-0.4

xg(x) with using different CMS data sets

TOP-14-013 EPJ C77 (2017) 459:

+ CMS W EPJ C76 (2016) 469

HERA + CMS jets JHEP 03 (2017) 156

- HERA
- HERA + $d^3\sigma_{t\bar{t}}$

→ ~ similar improvements adding $d^3\sigma_{tt}$ (RUN II) or $d^2\sigma_{tt}$ (RUN I) → should fit to all data simultaneously!

Results: 2D cross sections vs $[|\eta^{|}, m^{e\mu}]$

DILEPTON ATLAS-CONF-2019-041 arXiv:1910.08819

 \rightarrow NLO+PS models predict more central $|\eta^{|}|$ for all m^{eµ} ranges