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Top and precision physics

From PDG:

∆Gµ/Gµ = 5 · 10−7; ∆MZ/MZ = 2 · 10−5;

∆α(MZ )/α(MZ ) =

{
1 · 10−4(Davier et al.; PDG)
3.3 · 10−4(Burkhardt, Pietrzyk)

Now that MH is known, tight constraint on MW -mt ,
(depending on how aggressive is the error on α(MZ )).

But: precision on MW is more important now ...
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Top and vacuum stability

Degrassi et al. 2012
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With current value of Mt and MH the vacuum is metastable.
No indication of new physics up to the Plank scale from this.
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Top and vacuum stability

Degrassi et al. 2012
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Mt = 173.1 ± 0.6 GeV HgrayL
Α3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.3 GeV

ΑsHMZL = 0.1163

ΑsHMZL = 0.1205

Mt = 174.9 GeV

The quartic coupling λH becomes tiny at very high field values,
and may turn negative, leading to vacuum instability.
Mt as low as 171 GeV leads to λH → 0 at the Plank scale.
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Why the Top mass

Better to keep in mind that:

I The vacuum stability issue assumes no new physics up to the
Plank scale (very strong assumption)

I In EW fits the bottleneck seems to be now the W mass.

Yet:

I We get the feeling that top mass is an important parameter.

I Its measurement at hadron colliders is quite challenging, and
thus interesting.
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What exactly do we wish to measure?

The mass of a heavy quark is also carried by its gluon field.

We can decide to include all the field accom-
panying the quark down to infinite distance.
This is the POLE MASS.

Or we can cut it off, keeping only contribu-
tions at distance below some scale 1/µ (i.e.,
keeping only momenta above µ.
These are the SHORT DISTANCE MASSES.

They are related in perturbation theory by a power expansion in αs

with well defined coefficients:

Mpole = M(µ)

(
1 +

∞∑

i=1

ciα
i
s(µ)

)
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What exactly do we wish to measure?

The pole mass includes gluon field contributions at distances near
and above the confinement scales:

∆m|µ>Λ ≈
∫ ∞

1/Λ

(
g2

r2

)2

d3r ≈ g2(Λ)Λ ≈ Λ

Intuitive reasoning tells us that this must imply an ambiguity in the
pole mass of order Λ.

After all: uncalculable confinement effects may cut off this integral
at a scale near Λ, leading to an ambiguity of order Λ.
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Pole mass ambiguity

The relation of the pole mass mp to the MS mass m is
(Marquard,A.V.Smirnov,V.A.Smirnov,Steinhauser, 2015)

mp = m(1 + 0.4244αs + 0.8345α2
s + 2.375α3

s + (8.49± 0.25)α4
s )

The asymptotic behaviour of the coefficients
(Beneke,Braun+Beneke,1994)

N mt(2b0)nΓ(n + 1 + b)

(
1 +

∞∑

k=1

s
k

nk

)
, b =

b1

b2
0

,

yields a good fit to the exact result, so that higher order terms can
be estimated, yielding a very accurate conversion formula, with
typical size

mp = m + 7.557︸ ︷︷ ︸
NLO

+ 1.617︸ ︷︷ ︸
N2LO

+ 0.501︸ ︷︷ ︸
N3LO

+ 0.195︸ ︷︷ ︸
N4LO

+ 0.300︸ ︷︷ ︸
N5,6,..LO

GeV

(Pineda etal, 2001,2014 for bottom;
Beneke,Marquard,Steinhause,PN, 2016 and

Hoang,Lepenik,Preisser, 2017 for top) 9 / 45



Mass renormalon

The O(Λ) ambiguity appears due to the factorial growth (the
Γ(n + 1) factor) of the coefficients of the mass relation (Pole mass
renormalon), leading to an asymptotic expansion.

Some authors have quoted an ambiguity of 1 GeV.

More refined estimates give much smaller results:

I Beneke, Marquard, Steinhauser, PN 2016: 110 MeV.

I Hoang, Lepenik, Preisser, 26 Jun 2017: 250 MeV.

I Pineda etal, 2001,2013,2014 190,200 MeV.
(in a bottom physics context, but valid also for top.)
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What do we wish to measure?

I The top impact on precision physics involves short distance
phenomena, with power corrections (controlled by a
short-distance OPE) of size ≤ Λ2/M2

EW.

I An ambiguity of the top mass of order Λ would translate into
corrections of order Λ/MEW.

I If we aim at precisions better than Λ, we should target a short
distance mass like the MS mass.
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Current Measurements: “Direct Measurements”

165 170 175 180 185
 [GeV]topm

ATLAS+CMS Preliminary  = 7-13 TeVs summary, topm
WGtopLHC

May 2019

World comb. (Mar 2014) [2]

stat
total uncertainty

total  stat

 syst)± total (stat ± topm        Ref.s

WGtopLHCLHC comb. (Sep 2013) 7 TeV  [1] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [2] 0.67)± 0.76 (0.36 ±173.34 

ATLAS, l+jets 7 TeV  [3] 1.02)± 1.27 (0.75 ±172.33 

ATLAS, dilepton 7 TeV  [3] 1.30)± 1.41 (0.54 ±173.79 

ATLAS, all jets 7 TeV  [4] 1.2)± 1.8 (1.4 ±175.1 

ATLAS, single top 8 TeV  [5] 2.0)± 2.1 (0.7 ±172.2 

ATLAS, dilepton 8 TeV  [6] 0.74)± 0.85 (0.41 ±172.99 

ATLAS, all jets 8 TeV  [7] 1.01)± 1.15 (0.55 ±173.72 

ATLAS, l+jets 8 TeV  [8] 0.82)± 0.91 (0.39 ±172.08 

ATLAS comb. (Oct 2018) 7+8 TeV  [8] 0.41)± 0.48 (0.25 ±172.69 

CMS, l+jets 7 TeV  [9] 0.97)± 1.06 (0.43 ±173.49 

CMS, dilepton 7 TeV  [10] 1.46)± 1.52 (0.43 ±172.50 

CMS, all jets 7 TeV  [11] 1.23)± 1.41 (0.69 ±173.49 

CMS, l+jets 8 TeV  [12] 0.48)± 0.51 (0.16 ±172.35 

CMS, dilepton 8 TeV  [12] 1.22)± 1.23 (0.19 ±172.82 

CMS, all jets 8 TeV  [12] 0.59)± 0.64 (0.25 ±172.32 

CMS, single top 8 TeV  [13] 0.95)± 1.22 (0.77 ±172.95 

CMS comb. (Sep 2015) 7+8 TeV  [12] 0.47)± 0.48 (0.13 ±172.44 

CMS, l+jets 13 TeV  [14] 0.62)± 0.63 (0.08 ±172.25 

CMS, dilepton 13 TeV  [15] 0.69)± 0.70 (0.14 ±172.33 

CMS, all jets 13 TeV  [16] 0.70)± 0.73 (0.20 ±172.34 
[1] ATLAS-CONF-2013-102

[2] arXiv:1403.4427

[3] EPJC 75 (2015) 330

[4] EPJC 75 (2015) 158

[5] ATLAS-CONF-2014-055

[6] PLB 761 (2016) 350

[7] JHEP 09 (2017) 118

[8] EPJC 79 (2019) 290

[9] JHEP 12 (2012) 105

[10] EPJC 72 (2012) 2202

[11] EPJC 74 (2014) 2758

[12] PRD 93 (2016) 072004

[13] EPJC 77 (2017) 354

[14] EPJC 78 (2018) 891

[15] EPJC 79 (2019) 368

[16] EPJC 79 (2019) 313

Direct measurements
use as top mass sen-
sitive observable a re-
constructed top mass
from top decay prod-
ucts.
The claimed precision
is around 500 MeV.
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Current Measurements: “Indirect Measurements”

155 160 165 170 175 180 185 190
 [GeV]topm

ATLAS+CMS Preliminary  from cross-section measurementstopm
WGtopLHC Sep 2019

 from top quark decaytopm

ATLAS, 7+8 TeV comb. [11]
CMS, 7+8 TeV comb. [10]

total   stat
 theo)± syst ± tot (stat ± topm Ref.

) n-differential, NLOt(tσ

+1j) differential, NLOt(tσ

) inclusive, NNLO+NNLLt(tσ
ATLAS, 7+8 TeV [1]-2.6

+2.5172.9  

CMS, 7+8 TeV [2]-1.8
+1.7173.8  

CMS, 13 TeV [3] )-1.5
+1.2 1.5  ± (0.1 -2.1

+1.9169.9  

ATLAS, 13 TeV [4]-2.1
+2.0173.1  

ATLAS, 7 TeV [5])-0.5
+1.0 1.4  ± (1.5 -2.1

+2.3173.7  

CMS, 8 TeV [6])-1.6
+3.6  -3.1

+2.5 (1.1  -3.7
+4.5169.9  

ATLAS, 8 TeV [7])-0.3
+0.7 0.9  ± (0.4 -1.0

+1.2171.1  

ATLAS, n=1, 8 TeV [8] 1.2)± 0.8 ± 1.6 (0.9 ±173.2 

CMS, n=3, 13 TeV [9] 0.8±170.9 

[1] EPJC 74 (2014) 3109

[2] JHEP 08 (2016) 029

[3] EPJC 79 (2019) 368

[4] ATLAS-CONF-2019-041

[5] JHEP 10 (2015) 121

[6] CMS-PAS-TOP-13-006

[7] arXiv:1905.02302 (2019)

[8] EPJC 77 (2017) 804

[9] arXiv:1904.05237 (2019)

[10] PRD 93 (2016) 072004

[11] EPJC 79 (2019) 290

The so called
“Indirect methods”
make use of vari-
ous cross sections or
distributions as top
mass sensitive ob-
servables.
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I Direct measurements are certainty affected by linear power
corrections, i.e. corrections of order Λ, that may be estimated
as variations in the results due to changes in the Monte Carlo
model as far as its low energy component is concerned
(hadronization, shower-hadronization matching, colour
reconnection, etc.).

I Among the indirect measurements, only the one using the
total cross section may be considered a candidate for a
measurement free from linear power corrections; but not a
very useful one, considering its large error.
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On current measurements

I A longstanding tradition leaves the indirect mass
determination without an appropriate mass definition
(the summary plot does not say anything like “Pole Mass” or
“MS mass”, contrary to the plot of indirect measurements.)

I There is now some consensus among theorists that direct
measurements can be considered as Pole Mass measurements,
as long as one keeps in mind that they are affected by
corrections of order Λ that need to be estimated in some way
(which is also the case for the “indirect” measurements).
See the contribution on “Top Mass: Theoretical issues”,
G. Corcella, P. Nason, A. Hoang and H. Yokoya,
from: Report from Working Group 1:
Standard Model Physics at the HL-LHC and HE-LHC, 2019,
CERN Yellow Rep.Monogr. 7 (2019) 1-220, arXiv:1902.04070.
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On current measurements

Keep in mind that as long as we are not at the level of reaching
precision near typical hadronic scales:

I Direct measurements should be (and are!) considered pole
mass measurements.

I Scheme differences (between the pole and MS mass, for
example) are of order αsmt . So, a mass scheme for the direct
measurements MUST BE SPECIFIED.

All problems and subtleties arise if we want to reach precision at or
below typical hadronic scales. In this framework, many things are
debatable, and much more work from theorists is needed.
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An example: O(Λ) effects in direct measurements

R = 0.4R = 0.4R = 0.4R = 0.4R = 0.4R = 0.4R = 0.4R = 0.4

bb̄4` + Py8.2
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R = 0.5R = 0.5R = 0.5R = 0.5R = 0.5R = 0.5R = 0.5R = 0.5

−1.0 −0.5 0.0 0.5
mmax
Wbj
−mmax

Wbj

(
bb̄4` + Py8.2

)
[GeV]

R = 0.6R = 0.6R = 0.6R = 0.6R = 0.6R = 0.6R = 0.6R = 0.6

(Ježo,Oleari,Ferrario
Ravasio,P.N.2019)
Focus upon the
groups of squares
(our best generator)
at fixed R. They
span a range not
larger than 250 MeV.
This yields a lower
bound on the
intrinsic theoretical
error associated with
O(Λ) ambiguities.
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Prospecs: HL LHC
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We will have the
opportunity to
increase precision.
But in order to reach
the 100 MeV
accuracy, the
problem of linear
power corrections
must be addressed
and solved.
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Precision below Λ: boosted top jets.

Hoang and collaborators, in a long sequel of publications have
addressed the problem considering as top mass sensitive observable
the mass of an ultrarelativistic top jet.

This observable is affected by linear power corrections. However,
via SCET techniques, they argue that these power corrections can
be parametrized in terms of those that arise for light jets.
(see Hoang,Lepenik,Stahlhofen 2019 and references therein.)

Although it may be difficult to reach the desired precision with
boosted top jets, this works gives an example of a relation between
the short distance top mass and a hadronic observables that can
be controlled in a sound theoretical framework.
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Precision below Λ: boosted top jets.

Connection with Shower generators:

I The availability of precise calculations of the jet mass for
highly boosted top jets also allow for a comparison with
shower Monte Carlo describing the same regime, in an
attempt to relate the mass parameter in the Shower model
with a well-defined, theoretical short distance mass in the
SCET calculation (see Hoang,Plätzer,Samitz, 2018).

I At the moment, far from application at hadronic colliders.
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Linear Power Corrections: the Renormalon perspective

Renormalons provide a context where we can study power
corrections in their relation to the asymptotic behaviour of the
perturbative expansion.

I When an OPE exists for a process, renormalons can be
associated to the VEV of the operators.

I When no OPE exists (or when it is not known), renormalons
can give an indication on the presence and nature of power
corrections.

The full renormalon structure of QCD is not known. There are,
however, simplified frameworks where renormalons can give useful
information. They have been applied to the study of quark current
correlators, structure function sum rules, heavy flavour studies and
jet studies by a large number of researchers (see Beneke, 1998).
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitude of the form

∫ m

0

dkp αS(k2) =

∫ m

0

dkp αS(m2)

1 + b0αS(m2) log k2

m2︸ ︷︷ ︸
Landau Pole

= αS(m2)
∞∑

n=0

(2b0αS(m2))n
∫ m

0

dkp logn m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.

I Minimal term at nmin ≈ 1
2pb0αS (m2)

.

I Size of minimal term: mpαS(m2)
√

2πnmine
−nmin ≈ Λp

QCD.

I Typical scale dominating at order αn+1
S : m exp(−np).
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Renormalons and Linear Power Corrections in top decay

Ferrario Ravasio, Oleari, P.N.2019

I We have investigated renormalon induced linear power
corrections in top production and decays.

I We have considered a simplified production and decay
process. However, we consider kinematic regions that are
commonly accessible at the LHC, and we take into account
top finite width.

I We rely on the so called large b0 approximation renormalon
framework.
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Motivation

I Linear (i.e. p = 1) renormalons may affect top mass
measurements at order Λ (near the present experimental
accuracy).

I Previous to this work, only the top pole mass renormalon has
received some attention.

I Several other sources of linear renormalons come into play in
top mass measurements (for example, from jet requirements).
Our aim is to understand their structure, and their interplay
with the pole mass renormalon.
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Our work: compute top mass sensitive observables in
leading Nf one gluon correction.

We consider a simplified production framework W ∗ →Wtb̄:

W ∗

W

b

b̄

(i.e. no incoming hadrons). However:

I The b is taken massless, the W is taken stable, but the top is
taken unstable, with a finite width.

I We can examine any infrared safe observable, no matter how
complex.
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Diagrams up to leading Nf one gluon correction
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All-order result

For any (IR safe) final state observable O we compute:

〈O〉b = N(0)

∫
dΦb σb(Φb)O(Φb) ,

(
where N(0) =

[∫
dΦb σb

]−1
)
,

Ṽ (λ) = N(0)

∫
dΦb σ

(1)
v (λ2,Φb)

[
O(Φb)− 〈O〉b

]
,

R̃(λ) = N(0)

∫
dΦg∗ σ

(1)
g∗ (λ2,Φg∗)

[
O(Φg∗)− 〈O〉b

]
,

∆̃(λ) =
3π

αSTF

λ2 N(0)

∫
dΦqq̄ δ(k2

qq̄ − λ2)σ
(2)
qq̄ (Φqq̄)× [O(Φqq̄)− O(Φg∗)]

〈O〉b + Ṽ (λ) + R̃(λ) is the average value of O in a theory with a
massive gluon with mass λ, accurate to order αS .

Notice: Ṽ (λ) + R̃(λ) has a finite limit for λ→ 0, while each
contribution is log divergent.
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defining T̃ (λ) ≡ Ṽ (λ) + R̃(λ) + ∆̃(λ), our final result is

〈O〉 = 〈O〉b+
3π

αSTF

∫ ∞

0

dλ

π

d

dλ

[
T̃ (λ)

]
atan


 αSπb0

1 + αSb0 log λ2

µ2e5/3




(1)
If we have:

T̃ (λ) = a + b λ+O
(
λ2
)

(2)

the integration has an ambiguity of order bΛQCD, due to the value
of λ where the denominator in the argument of the atan function
vanishes (i.e. again the Landau pole).

If we expand the result in powers of αS , we recover the factorial
growth corresponding to linear power corrections.
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Comments

I The need to include the ∆ term has a long story:
I Seymour,P.N. 1995, I.R. renormalons in e+e− event shapes.
I Dokshitzer,Lucenti,Marchesini,Salam, 1997-1998 Milan factor

I We compute T (λ) numerically. The λ→ 0 limit implies the
cancellation of two large logs in V and R. However, the
precise value at λ = 0 can also be computed directly by
standard means (which we do).

I We can easily switch to the MS scheme,
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Total cross section
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The red line is the correction to be subtracted from our result when
switching to the MS scheme. No linear renormalon in MS scheme!
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Total cross section

I For k < Γ: no renormalon in the physics! The top finite width
screens the soft sensitivity of the cross section.
The renormalon is there only if it is present in the mass
counterterm; thus, it is not there in the MS scheme.

I What about k � Γ?
This is the narrow width limit: the cross section factorizes
into a production cross section and a partial width.
The former has no physical renormalons for obviour reasons.
The latter does not have them for less obvious reasons.

So, the mass from the total σ is free of linear power corrections.

31 / 45



Total cross section with cuts
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The renormalon is there also in MS scheme!
The 1/R behaviour of the renormalon coefficient arises from jet
requirements (Dasgupta,Magnea,Salam,2008)
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Reconstructed top mass
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Leptonic Observables
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Consider 〈EW 〉.
For k � Γ, the slope is
roughly 0.45.
The MS conversion
would add −0.067.
It seems that physical
linear renormalons are
present also in leptonic
observables.

But, for λ� Γ, the slope of T (λ) decreases, approaching 0.067!
The renormalon seems to cancel in the MS scheme!
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Leptonic Observables

Two questions:

I Our narrow width result seems to be in contrast with what
found in heavy flavour inclusive decays, where no renormalons
are present for leptonic observables if the heavy flavour mass
is expressed in the MS scheme (Beneke,Braun,Zakharov,1994;
Bigi etal,1994).
We have verified, however, that if 〈EW 〉 is computed in the
top rest frame, no renormalons are present.
So: no contradiction there.

I About the renormalon cancellation for finite width:
we have also verified it for larger width values,
and also proved it theoretically.
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Prospects

I With some work, the renormalon approach can help to search
for top mass observables that are free from linear renormalons.

I One may discuss calibration of jets on a theoretically sound
ground.

I The fact that top CM leptonic distributions are free from
linear renormalon may be exploited further.
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Top CM Leptonic distributions

Kawabata,Shimizu,Sumino,Yokoya,2013,2014 have proposed a
method to measure physical parameters in the decay of a massive
object involving a light lepton using only the lepton spectrum, and
have proposed to apply it for the measurement of the top mass.

Defining a weight function

W (E`,m) =

∫
dE D0(E ,m)

1

E El
×
(

odd function of log
El

E

)

where D0(E ,m) is the lepton spectrum in the top rest frame for a
top of mass m. It turns out that the quantity

I (m′) =

∫
dEl D(El ,m

′)W (El ,m),

where D(E ,m′) is the lepton spectrum in the laboratory for a top
of mass m′, vanishes if m = m′.
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I This observable only depends upon the lepton spectrum in the
top rest frame, and is thus free from linear renormalon.

I In order for it to be useful, we must be able to compute it
with sufficient accuracy.

I Assuming a NNLO calculation of the lepton spectrum, the
N3LO correction should lead to a mass error that is smaller
than a typical hadronic scale.

I We can check if this is the case in our model, since we can
also compute all the coefficients of the perturbative expansion.
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Conclusions

I Top mass measurements at hadron colliders, when the
precision approaches few hundred MeV’s, pose difficult and
profound theoretical problems, involving our understanding of
non-perturbative corrections in QCD, and of how they are
implemented in shower generators.

I The traditional method: aim at an observable, measure it,
extract its value from a perturbative calculation, and estimate
power corrections using a shower Monte Carlo, is still a
valuable strategy to follow, as long as better ways of doing it
are not in sight.

I Theoretical studies on the form of linear power corrections
and to what extent they can/are implemented in shower
Monte Carlo are at a primitive stage, but they are promising.
They can help us to understand the limitations of current
measurements, and they can help to identify better
observables.
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Backup Slides
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About the absence of renormalons in top CM leptonic observables:

I A b quark in a B meson undergoes Fermi motion, i.e. it has
momentum of order Λ. But its kinetic energy is of order
Λ2/mb, because it is non-relativistic. So, no linear power
corrections there.

I The decay can take place in a time fraction when the b is in a
virtual state associated with the emission of a soft gluon.

The decay product are boosted with velocity
v = k/mb, where k is the soft gluon momen-
tum. The corresponding change in the lepton
momentum is δpl ≈ vp cos θ. But this effect
linear in v vanish under azimuthal average.

As a result, the semileptonic spectrum has no linear power
corrections if expressed in terms of a short distance mass

(This explanation also holds for heavy quarks produced on-shell, since

their soft radiation pattern does not depend upon its spin.)
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A look at the expansions
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A look at the expansions

Reconstructed mass
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A look at the expansions
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I The “benefit” of the renormalon-free expansion is visible
starting with the NNLO term in the total cross section: terms
beyond NNLO are smaller in the MS scheme.

I For the reconstructed mass both the MS and pole scheme
have problems. For large radii (most of the mass of the decay
products is captured) the pole mass is better.

I For EW the improved behaviour is visible starting from order
6-7, as expected, corresponding to virtualities of the order of
the top width.

45 / 45


