
T T̄ deformations and holography∗

Monica Guica

Abstract

This is a set of introductory lectures to the T T̄ deformation and its holographic interpretation.
The first two lectures review very basic field-theoretical aspects of the T T̄ deformation, such as
its definition, its universal effect on the energy levels in finite volume and on the S-matrix. In
the third lecture, we review the holographic dictionary for T T̄ deformed CFTs, and also explain
its relation to the sharp geometric cutoff proposal of McGough et al. In the fourth lecture, we
sketch the basics of a single-trace analogue of the T T̄ deformation, which provides a tractable
holographic dual to a non-asymptotically AdS spacetime.
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1. Introduction

The subject of these lectures is the T T̄ deformation of two-dimensional QFTs and, in particular,
CFTs. Unlike operator deformations that are commonly studied, the T T̄ deformation is irrelevant.
Usually, when adding an irrelevant operator to a QFT, the deformed theory does not make sense in
the UV on its own. What makes the T T̄ deformation special is that the deformed QFT appears to be
well-defined up to arbitrary scales, is solvable in a certain sense, and the effect of the deformation on
various physical observables can be computed without much effort for finite values of the deformation
parameter.

The deformation is defined by incrementally adding to the action the T T̄ operator, constructed
from the components of the stress tensor, as

∂S

∂µ
= −2

∫
d2z(TzzTz̄z̄ − T 2

zz̄)µ

(1.1)

This definition specifies the operator
that is turned on at each point along
the flow. Since the deforming opera-
tor has dimension four in two dimen-
sions, the coupling µ has dimensions
of (length)2.

This deformation has a number of remarkable properties:

• it is universal (one can deform an arbitrary local 2d QFT/CFT)

• even though the deformed QFT has a length scale,
√
µ, at which it becomes non-local, certain

observables (e.g., the S-matrix) appear to be well-defined up to arbitrarily high energies

• to the extent that T T̄ -deformed QFTs are UV complete, their UV behaviour is not captured by
a local UV fixed point. This new type of UV behaviour has been termed asymptotic fragility

There are multiple reasons that T T̄ -deformed QFTs are interesting - here we list just a few of them:

• there are strong indications that the deformed theory is UV complete, yet intrinsically non-local.
It is thus very interesting to gain a theoretical understanding of this new type of UV behaviour

• they exhibit certain features expected of theories of 2d quantum gravity, such as a time delay
in scattering proportional to the energy, as well as a minimum length. However, it is not yet
clear whether T T̄ -deformed QFTs entirely lack off-shell observables, as expected in a theory of
gravity

• they posses many special properties: universality, integrability, solvability and, possibly, more
special structures to be discovered

• they are closely related to the effective string theory approach to study the QCD string and
provide a very computationally effective approach for comparison with lattice QCD data

• they have interesting applications to holography, as tractable irrelevant deformations ofAdS3/CFT2:
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– T T̄ - deformed CFTs defined as in (1.1) are holographically dual to AdS3 gravity with mixed
boundary conditions for the (non-dynamical) graviton. In typical states, the T T̄ -deformed
observables coincide with those measured by bulk observers at a fixed radial position in
AdS3

– a single-trace variant of the T T̄ deformation, defined in a particular string-theoretical set-
ting, provides a tractable example of non-AdS holography and shows interesting connections
to little string theory. This example also suggests that there exist generalizations of T T̄ -
deformed QFTs that are less universal, yet share the same type of UV behaviour

• the construction can be generalized to deformations produced by different combinations of con-
served currents (e.g., JT̄ ), which share many of the remarkable properties of T T̄ deformations
(such as solvability, UV completeness), yet have different physical properties (e.g., partially pre-
served conformal symmetry) and applications (e.g., to the holographic understanding of extremal
black holes), which makes them interesting to study in their own right.

The plan for these lectures is as follows:

1. Definition and basic properties of T T̄

This lecture is mainly based on [1, 2]. We derive the exact flow equation for the deformed
finite-size spectrum of T T̄ -deformed QFTs, and solve it explicitly in the special case of CFTs.

2. T T̄ - deformed free boson(s)

This is the simplest concrete example of a T T̄ deformation, yet it exhibits extremely rich physics
and an interesting relation to the worldsheet theory of a bosonic string. The theory is integrable
and the S-matrix, captured by a simple scattering phase, can be computed exactly and has
non-trivial physical effects. Largely based on [3].

3. Holographic dictionary for T T̄ -deformed CFTs

We explain how to derive the holographic dictionary for T T̄ - deformed CFTs via a straightfor-
ward application of the rules of holography in presence of double-trace deformations. We then
clarify the relation between this dictionary and the geometric bulk cutoff proposal of [4]. Based
on [5].

4. A single-trace variant of T T̄ and non-AdS holography

I will start with a very brief review of the NS5-F1 system and its connection to little string
theory. Then, I will sketch the main idea behind the single-trace variant of the T T̄ deformation
proposed in [6] and mention an interesting set of observables that have been studied.

2. Definition and basic properties

2.1 The T T̄ operator

Consider a local 2d QFT on Euclidean flat space, R2, with coordinates xα = (σ, τ). Assuming that the
QFT action is translationally invariant, one can define a conserved stress tensor, Tαβ , as the Noether
current associated with translations along xβ , ∂αTαβ = 0 . Assuming in addition that the QFT is
Lorentz invariant, this tensor can also be chosen to be symmetric, Tαβ = Tβα.

In this QFT, consider the following two-point correlation function

Cvac(x, y) = −1

8
εαβεγδ〈Tαγ(x)Tβδ(y)〉vac (2.1)

This correlator has the remarkable property that it is independent of x, y.
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Proof: Using the two-dimensional identity εαβVρ + εβρVα + εραVβ = 0 with Vα = ∂α, we find

∂xρCvac(x, y) = −1

8
∂xρεαβε

γδ〈Tαγ(x)T βδ(y)〉 = −1

8
(ερβ∂xα + εαρ∂xβ )εγδ〈Tαγ(x)T βδ(y)〉

(2.2)
The first term vanishes by conservation of the stress tensor. We are left with

∂xρCvac(x, y) = −1

8
εαρ(∂xβ + ∂yβ − ∂yβ )〈Tαγ(x)T βδ(y)〉 = 0 (2.3)

where the sum of the first two terms vanishes because of the translational invariance of the
vacuum state, which implies that Cvac(x, y) = Cvac(x − y), and the last term vanishes by the
conservation of the stress tensor.

Thus, we find the remarkable fact that the expectation value, in an arbitrary 2d QFT in the vacuum
state, of this particular combination of stress tensor components, is entirely independent of the in-
sertion points. Note that by taking y → ∞ and using cluster decomposition, one can show that the
correlator (2.1) factorizes

Cvac(x, y) = −1

8
εαβεγδ〈Tαγ(x)〉vac〈Tβδ(y)〉vac (2.4)

Note that due to Lorentz invariance, the vacuum expectation value of all components of the stress
tensor but the trace vanishes.

Exercise: Show that for any two conserved currents, J
(A)
α , J

(B)
β , the correlator

CABvac (x, y) = εABε
αβ〈J (A)

α (x)J
(B)
β (y)〉vac (2.5)

is independent of the insertion points (and thus factorizes on R2).

Notice that the T T̄ correlator is just a special case of this, with J
(A)
α = Tα

A (the generator of

translations along xA) and J
(B)
β = Tβ

B .

Implications for the OPE

The operator product expansion (OPE in short) captures the short-distance behaviour as two operators
approach each other

lim
x→y
Oi(x)Oj(y) ∼

∑
k

Cijk(x− y)Ok(y) (2.6)

and is best justified when the UV of the theory is controlled by a CFT fixed point, case in which the
coefficient functions Cijk behave as (negative) power laws at short distances.

Consider now the operator

Ĉ(x, y) = −1

8
εαβεγδTαγ(x)Tβδ(y) (2.7)

whose vacuum expectation value we were computing before. We take x 6= y. A series of identical
manipulations to the ones above shows that

∂xρ Ĉ(x, y) = −1

8
εαρ(∂xβ + ∂yβ ) εγδTαγ(x)T βδ(y) (2.8)

Thus, the xρ derivative of this operator is a total derivative (the same holds for the yρ derivative).
Taking x → y and assuming that the product of stress tensors in (2.7) has an OPE expansion of
the type (2.6), we immediately conclude that either the coefficient functions are constant, or they
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multiply an operator that is a total derivative (this follows just from the translation invariance of the
coefficient functions). Given this, we can define the T T̄ operator as

lim
x→y
Ĉ(x, y) = OT T̄ (y) + derivative terms (2.9)

where we have set the constant in front of this operator to one. The reason for the name is that if we
work in complex coordinates, z = σ − iτ , we have1

OT T̄ (z, z̄) = lim
ε→0

Tzz(z + ε)Tz̄z̄(z)− Tzz̄(z + ε)Tzz̄(z) (2.10)

which indeed corresponds to “T T̄” in the CFT limit Tzz̄ = 0. However, more generally this operator
would rather correspond to a “detT” operator.

Notice that our previous argument concerning the independence of the vacuum expectation value
of Ĉ(x, y) of x, y extends to any translationally invariant state. In the limit x → y, the expectation
value of Ĉ(x, y) reduces to that of the T T̄ operator. If it is also possible to take the points x, y to have
an arbitrarily large separation, then we can use cluster decomposition to argue that the expectation
value of the T T̄ operator factorizes in such states

〈OT T̄ 〉 = 〈Tzz〉〈Tz̄z̄〉 − 〈Tzz̄〉2 (2.11)

in terms of the one-point functions of the stress tensor components. This relation is valid in any 2d
QFT.

2.2 Expectation value of T T̄ in an energy eigenstate on the cylinder

Let us now place the 2d QFT on an euclidean cylinder of circumference R, with z = σ− iτ , σ ∼ σ+R.
Consider an eigenstate |n〉 of the energy and momentum

H|n〉 = En|n〉 , P|n〉 = Pn|n〉 (2.12)

Since the state |n〉 is translationally-invariant, our previous results show that

Cn(x, y) ≡ −1

8
εαβεγδ〈n|Tαγ(x)Tβδ(y)|n〉 (2.13)

is independent of x, y. However, since the coordinate σ is now compact, we can no longer use cluster
decomposition to argue for factorization of the expectation value of the T T̄ operator in this state.

Factorization does, nevertheless, hold, as was shown in [1]. To see this, insert a complete set of
energy-momentum eigenstates in the above correlator, with x = (σ, τ)

Cn(x, x′) = −1

8
εαβεγδ

∑
n′

〈n|Tαγ(σ, τ)|n′〉〈n′|Tβδ(σ′, τ ′)|n〉 (2.14)

= −1

8
εαβεγδ

∑
n′

e−(En−En′ )(τ
′−τ)−i(Pn−Pn′ )(σ−σ

′)〈n|Tαγ(σ, τ)|n′〉〈n′|Tβδ(σ, τ)|n〉

The only way for the correlator Cn to be independent of σ′, τ ′ is if the terms in the sum with En 6= En′ ,
Pn 6= Pn′ , cancel among each other. Assuming the spectrum to be non-degenerate, this implies that
only states with |n′〉 = |n〉 contribute to the sum. Consequently, the correlator factorizes

Cn = 〈n|OT T̄ |n〉 = −1

8
εαβεγδ〈n|Tαγ |n〉〈n|Tβδ|n〉 (2.15)

1In our conventions, τ = it.
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Thus, we found that the expectation value of the T T̄ operator in an energy eigenstate on the cylinder
factorizes in terms of the one-point functions of the stress tensor components. This relation can be
alternatively written as

〈n|OT T̄ |n〉 =
1

8

(
〈n|Tαβ |n〉〈n|Tαβ |n〉 − 〈n|Tαα|n〉2

)
= −1

4

(
〈n|Tττ |n〉〈n|Tσσ|n〉 − 〈n|Tτσ|n〉2

)
(2.16)

In turn, the one-point functions 〈n|Tαβ |n〉 are related to the global conserved charges of the state as

〈n|Tττ |n〉 = −En(R)

R
, 〈n|Tτσ|n〉 = − iPn(R)

R
, 〈n|Tσσ|n〉 = −∂En(R)

∂R
(2.17)

which simply follow from the definition of the energy and momentum conserved charges and transla-
tional invariance of the one-point functions.

Exercise: Show that 〈n|Tσσ|n〉 = −∂REn(R). (Hint: consider the QFT on the euclidean torus and
interchange the labeling of space and time.)

To summarize, what we have shown in this subsection is that the expectation value of the T T̄ operator
in an energy eigenstate on the cylinder factorizes and is determined solely by the global conserved
charges of the state, as

〈n|OT T̄ |n〉 = − 1

4R

(
En

∂En
∂R

+
P 2
n

R

)
(2.18)

a relation we obtained by combining (2.16) and (2.17). This relation is universally valid.

2.3 Deforming two-dimensional QFTs by T T̄

We have so far discussed properties of the T T̄ operator in an arbitrary 2d QFT that was assumed to
have usual ultraviolet behaviour (e.g., governed by a UV CFT fixed point). We would now like to
do something somewhat different – and possibly less well-defined – which is to deform a 2d QFT by
the T T̄ operator. The deformation is defined by incrementally adding to the already deformed QFT
action the T T̄ operator constructed from the stress tensor of the deformed theory

∂SE(µ)

∂µ
= −2

∫
d2z (OT T̄ )µ (2.19)

Since the deforming operator is irrelevant, this procedure can (and will) change rather drastically the
UV behaviour of the QFT. Usually, an irrelevant deformation gives rise to an effective field theory
with a cutoff set by the irrelevant coupling. However, as we will argue in the next lecture, the T T̄
deformation is special in that it rather seems to produce a UV complete theory. The latter will become
non-local 2 at a scale set by the dimensionful parameter µ, whose units are [µ] = (length)2. Thus, in
order for the above definition to make sense, we should restrict ourselves to length scales much longer
than

√
|µ|, at which the QFT can be treated quasi-locally. This will allow us to associate a conserved

Noether current Tαβ to the translational symmetries, which can then be used to construct the T T̄
operator.

As mentioned in the introduction, one reason that the T T̄ deformation is interesting is that
many observables can be computed exactly. In the following, we show how to compute one such
observable, which is the exact spectrum of energies, En(µ,R), of the deformed QFT placed on a circle
of circumference R, for a finite deformation parameter µ.

2This non-locality can be seen very explicitly in the example discussed in the next lecture, where the T T̄ deformation
is shown to generate an infinite number of higher-derivative interactions.
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Spectrum of T T̄ -deformed QFTs on the cylinder

As beautifully shown in [2] (see also [7]), using the result (2.18) for the expectation value 〈n|OT T̄ |n〉
of the T T̄ operator in an energy eigenstate on the cylinder, one can easily obtain a universal equation
for how the energy spectrum En(µ,R) depends on µ.

Concretely, as µ is infinitesimally changed, the definition of the deformed QFT by the addition of
the instantaneous T T̄ operator implies that the change in the energy of the nth energy eigenstate is
given by usual quantum-mechanical first order perturbation theory

∂En(µ,R)

∂µ
= −4〈n|

∫ R

0

dσ (OT T̄ )µ|n〉 = −4R〈n|(OT T̄ )µ|n〉 (2.20)

where the additional factor of 2 with respect to (2.19) comes from the change of measure, d2z = 2dτdσ.
Combining this with (2.18), we find

∂En(µ,R)

∂µ
= En(µ,R)

∂En(µ,R)

∂R
+
P 2
n(R)

R
(2.21)

This is the universal flow equation that we were looking for. While this derivation has the advantage
of being quite intuitive, it is somewhat heuristic, since the deforming “potential” contains an infinite
number of derivatives. A more rigorous derivation can be found in e.g. [8], who carefully evaluate the
torus partition function of the deformed QFT and extract the energy spectrum from it.

Equation (2.21) can be recognised as the inviscid Burger’s equation, with the momentum squared
playing the role of a forcing term. Notice that the dependence of the momentum on µ and R is entirely
fixed by the fact that σ ∼ σ +R, so it must obey the quantization condition

Pn =
2πkn
R

, kn ∈ Z (2.22)

In particular, the momentum cannot depend on the continuous parameter µ.
If the finite-size spectrum of the seed QFT at µ = 0 is known (as a function of R), then one can

integrate the Burger’s equation to find the spectrum at arbitrary finite µ. This is particularly easy to
see for those states that have Pn = 0, for which the following holds:

Exercise: Show that for states with Pn = 0, the function En(µ,R) = En(0, R + µEn(µ,R)) solves
Burger’s equation (2.21) with the correct initial condition.

For general Pn, the solution can be obtained via similar manipulations [7]. In the following, we discuss
the explicit solution for the case of T T̄ -deformed conformal field theories, where the R - dependence
of the undeformed energy spectrum is particularly simple, being fixed by conformal invariance.

The spectrum of T T̄ -deformed CFTs

In a CFT, the state-operator correspondence maps the energy and momentum of a state on the
cylinder to the conformal dimension ∆ and spin s of the corresponding CFT operator on the plane,
as

E∆,s(0, R) = 2π
∆− c

12

R
, P∆,s(R) =

2πs

R
(2.23)

where the label n has now been replaced by ∆, s. The shift by −c/12 is the usual Casimir energy
on the cylinder, where c is the CFT central charge. We would now like to solve the equation (2.21),
subject to the above initial condition.
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Let us first concentrate on zero-momentum states, s = 0. Then, the general result proven in the
last exercise implies that

E∆(µ,R) = 2π
∆− c

12

R+ µE∆(µ,R)
(2.24)

which yields a quadratic equation for the energy, with solution

E∆(µ,R) = − R

2µ
±
√(

R

2µ

)2

+
2π(∆− c

12 )

µ
(2.25)

In order to have a smooth limit to the CFT spectrum as µ→ 0, one needs to select the upper sign if
µ > 0, and the lower sign if µ < 0.

More generally, for states with non-zero momentum, the solution for the deformed energy is3

E∆,s(µ,R) =
R

2µ

−1 +

√
1 +

8πµ(∆− c
12 )

R2
+

(
4πµs

R2

)2
 (2.26)

Let us now briefly discuss the salient properties of this solution, focussing for simplicity on the case
s = 0. If µ > 0, then for those states which have ∆ < c/12 (such as the ground state, which has
∆ = 0) the deformed energy becomes complex if µ/R2 > 1/(8π|∆ − c/12|). For a seed CFT with a
discrete spectrum, this represents a finite number of states. In particular, the ground state energy
becomes complex for

R < Rc ≡
√

2πµc

3
(2.27)

Since the energy of excited states with ∆ < c/12 would acquire an imaginary part at radii smaller
than Rc, we conclude that for positive µ, T T̄ - deformed CFTs can be placed on a circle, provided its
circumference is larger than Rc. Notice that for CFTs with a large central charge, Rc is much larger
than the non-locality scale

√
µ set by the T T̄ coupling.

For µ < 0 on the other hand, the formula for the deformed energy implies that for fixed |µ| and
R, an infinite number of energy eigenstates, namely all levels with

∆ > ∆max ≡
c

12
+

R2

8π|µ| (2.28)

acquire an imaginary energy. This is a far more worrisome behaviour, as it is present for any finite R,
no matter how large it is.

The above maximum value of ∆ corresponds to an upper bound on the energy

Emax =
R

2|µ| (2.29)

attained just before the complex energy states set in - see figure 2. This maximum energy is sometimes
referred to as the “UV cutoff” of T T̄ - deformed CFTs with µ < 0, in the sense that states of the
finite volume system whose energies are below Emax are to be kept, while states that acquire complex
energies are to be discarded. This terminology requires some qualification. Usually, a UV cutoff
denotes a high energy or short distance scale beyond which the given description stops making sense,
and various pathologies may start appearing. If the T T̄ - deformed CFT were an effective field
theory with cutoff set by the deformation parameter, one would estimate it to be Emax ∼ 1/

√
|µ|.

3We have chosen the branch with a smooth µ → 0 limit. However, for states with large momentum at µ fixed, the
other branch may become relevant. See e.g. [5] for details.
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Figure 1: The dimensionless energy ER as a
function of the dimensionless coupling µ/R2

for µ > 0.

Figure 2: The dimensionless energy ER as a
function of the dimensionless coupling µ/R2

for µ < 0.

The maximum energy (2.29) is quite different from this expectation, in that the IR scale R enters
explicitly in the expression for Emax, and in particular the complex energies disappear if we take
R→∞ first; indeed, the T T̄ deformation has no effect on the spectrum in infinite volume.

An alternative interpretation of the complex energies for µ < 0 was given in [9]. There, it was
pointed out that the µ < 0 theory exhibits superluminal propagation around positive energy back-
grounds. While in two dimensions, superluminality does not immediately imply the existence of closed
timelike curves (CTCs), it does lead to CTCs if the theory is placed in finite volume. In particular,
∆max corresponds to the value of the energy for which the time advance gained in propagating once
around the circle is comparable to the circumference of the circle. Since, for any given µ and R, there
are always states in the original CFT with ∆ > ∆max, CTCs will always form if R is finite. Thus, it
is inconsistent to place the µ < 0 T T̄ - deformed CFT in finite volume, and the complex energy states
are simply a manifestation of this inconsistency. It is not clear whether manually removing the states
around which CTCs appear makes the truncated theory well-defined.

Even if µ < 0 T T̄ - deformed CFTs appear to not make sense in finite volume, they may still
be well defined in infinite volume4. Nonetheless, as discussed in [9], such theories with superluminal
propagation are rather peculiar.

The R - dependence of the deformed energies, and in particular of the ground state energy, indicates
that T T̄ - deformed CFTs have a rather unusual behaviour in the UV; in particular, they are not
governed by a local CFT fixed point. Indeed, if that were the case, then in the R→ 0 limit the ground
state energy should have behaved as −c/(12R), which is not the case for either sign of µ.

In the above, we only discussed the spectrum for s = 0. The analysis can be straightforwardly
extended to general states, see [9] or [5] for a discussion.

Thermodynamics

When the parameter µ of the irrelevant deformation is small, T T̄ -deformed CFTs should have a
behaviour close to that of the original CFT. It is though interesting to ask how the entropy S(E)
behaves for large energy and finite µ. We will concentrate on the case µ > 0, where the finite size
spectrum is well-defined at large energies.

In the undeformed CFT, the degeneracy of states at large enough conformal dimension is given by
Cardy’s formula

S(h, h̄) = 2π

√
c

6

(
h− c

24

)
+ 2π

√
c

6

(
h̄− c

24

)
, h, h̄ =

∆± s
2

(2.30)

4This is precisely what happens for JT̄ - deformed CFTs, for which the spectrum on the cylinder also contains an
infinite number of complex energy states, but the spectrum of conformal dimensions on the plane, while non-trivially
deformed, does not suffer from any obvious inconsistency [10].
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Using the relation (2.23) between ∆ and E, this leads to S(E) ∼
√
cER at large energies.

Since, according to the exact formula (2.26), each energy level is smoothly deformed and does not
cross other levels as µ is varied, the number of states within a fixed interval δ∆, δs centered around
a given (∆, s) does not change with µ, since these are the invariant labels of the state. To compute
the entropy S(E,P ), i.e. the log of the degeneracy of levels per unit energy (and momentum) interval
δE, δP , we simply need to replace ∆ in (2.30) by its expression in terms of the deformed energy,
obtained by inverting (2.26). Concentrating, for simplicity, on states with s = 0, we find5

S(E) = 2π

√
c

3

(
∆(E)− c

12

)
= 2π

√
c

6π
(ER+ µE2) (2.31)

The first term is nothing but the CFT Cardy entropy and dominates for E << R/µ . At very high
energies, the entropy exhibits Hagedorn behaviour, S(E) = βHE, where the Hagedorn temperature
is given by

βH = T−1
H =

√
2πµc

3
(2.32)

An entropy proportional to the energy means that in the canonical ensemble, the system cannot be
in equlibrium at temperatures larger than TH . Notice that βH precisely equals the critical radius
Rc defined in (2.27): thus, the fact that T T̄ - deformed CFTs do not make sense on circles whose
size is smaller than Rc maps (via a modular transformation) to the fact that it cannot be brought
to temperatures higher than TH . Hagedorn growth is of course familiar from the behaviour of the
partition function of a free string at high temperatures. In fact, as we will see in the next lecture, there
is a close connection between T T̄ - deformed CFTs and the worldsheet theory on a free string. Note
however that while in string theory, the Hagedorn growth is superseded by non-perturbative effects
and there is a phase transition before TH is reached, it is not clear this would be the case in T T̄ . The
behaviour of the heat capacity close to the transition can give us more insights into its behaviour.

Exercise: Compute the heat capacity and show that it is positive and divergent as T → TH . What
happens if one includes the first logarithmic correction to the Cardy entropy formula?

3. T T̄ -deformed free boson(s)

In this section, we discuss the simplest example of a T T̄ -deformed CFT: the T T̄ -deformed free bo-
son(s). Despite its simplicity, this model has surprisingly rich physics, and captures all of the repre-
sentative physical properties of T T̄ -deformed QFTs: the preservation of integrability, the universal
modification of the S-matrix, the field-dependent coordinate transformation that relates the deformed
and undeformed theories. Moreover, this model displays a rather interesting connection to the world-
sheet theory of an infinitely long free bosonic string.

In the following, we explicitly derive the classical Lagrangian of a T T̄ -deformed free boson (the
generalization to several bosons being straightforward) and relate it to the Nambu-Goto action for a
string in a particular gauge. Using the Nambu-Goto perspective, we show that the deformed and the
undeformed theories are related via a field-dependent coordinate transformation. In 3.2, we turn to
the quantum case and describe the calculation of the deformed S-matrix, which is just a phase, using
integrability techniques. Next, in 3.3 we discuss the basic physical manifestations of the scattering
phase: a time delay in scattering proportional with the energy and the existence of a minimum length,
both of which point towards a (quantum) - gravitational interpretation of T T̄ - deformed QFTs. A
large part of this section is based on [3]. In 3.4, we very briefly comment on deforming more general
QFTs.

5The fact that we now measure the number of states in an interval δE, as opposed to the number of states in an
interval δ∆ does not affect the exponential factor that yields the leading contribution to the entropy.
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3.1 T T̄ -deformed free boson(s): classical analysis

We start with the Lorentzian action for a free boson, given by

S0 =
1

2

∫
dtdσ

[
(∂tφ)2 − (∂σφ)2

]
≡ 1

2

∫
dtdσ

(
φ̇2 − φ′2

)
(3.1)

Under the T T̄ deformation, the Lorentzian action flows as6

∂SL[µ]

∂µ
= +

1

2

∫
d2σ
√
γ (TαβTαβ − T 2) =

∫
dtdσ (TttTσσ − T 2

tσ) (3.2)

In these notes, we follow the conventions of [5]. The stress tensor is defined as

Tαβ =
∂L

∂(∂αφ)
∂βφ− Lδαβ (3.3)

where L is the Lagrangian density. Since the T T̄ deformation preserves Lorentz invariance, the
symmetries of the problem and dimensional analysis imply that the deformed action must take the
form

SL[µ] =
1

µ

∫
dtdσF(µ ηαβ∂αφ∂βφ) ≡ 1

µ

∫
dtdσF (x) (3.4)

for some function F(x), x ≡ µ (φ′2−φ̇2), whose expansion around x = 0 starts as F(x) = −x/2+O(x2).
The canonical stress tensor computed using this action reads

Ttt = −T tt = L − φ̇∂L
∂φ̇

=
F + 2µφ̇2F ′

µ
, Tσσ =

−F + 2µφ′2F ′
µ

, Tσt = 2φ′φ̇F ′ (3.5)

The flow equation (3.2) reduces to

∂µ(F/µ) =
xF ′ −F

µ2
=

2xFF ′ −F2

µ2
(3.6)

with solution F(x) = 1
2 (1 ±

√
1 + cx) for some constant c. We take µ to be positive. The solution

with the correct behaviour as x→ 0 corresponds to choosing the lower sign and c = 2.
Thus, the classical T T̄ -deformed free boson action is

SL[µ] =
1

2µ

∫
dtdσ

(
1−

√
1 + 2µ (φ′2 − φ̇2)

)
(3.7)

When expanding this action in µ, it contains an infinite number of higher derivative terms. However,
these higher derivative terms turn out to have a highly constrained structure, since (3.7) precisely
coincides with the Nambu-Goto action

SNG = − 1

`2s

∫
d2σ
√
−det γαβ , γαβ = ηµν

∂Xµ

∂σα
∂Xν

∂σβ
, `2s = 2πα′ (3.8)

in three Minkowski target space dimensions in static gauge, i.e.

X0 = t , X1 = σ , X2 =
√

2µφ (3.9)

Indeed, in this gauge the induced metric on the string worldsheet is

6Notice the sign difference with respect to the euclidean definition (2.19) in the previous section. It follows from the
fact that τE = it.
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γαβ =

(
−1 + 2µ φ̇2 2µ φ̇ φ′

2µ φ̇ φ′ 1 + 2µφ′2

)
(3.10)

and the square root of the metric determinant agrees with (3.7) (up to a constant shift), provided we
identify µ = `2s/2.

Thus, at classical level, the action of a T T̄ -deformed free boson is nothing but the Nambu-Goto
action for an infinitely long string embedded in three-dimensional Minkowski space in static gauge.
It is not hard to show that the connection between the T T̄ deformation and the Nambu-Goto action
persists if we deform several free bosons

Exercise: Show that the T T̄ -deformed action for n free bosons is the Nambu-Goto action for a string
in D = n+ 2 Minkowski target space dimensions in static gauge.

The Nambu-Goto action is invariant under ISO(D − 1, 1), the Poincaré symmetries of the target
space, of which the Lorentz boosts are non-linearly realised. Whether these non-linearly realised
boost symmetries are preserved at quantum level is an interesting question addressed in [11] that we
briefly comment on in the next subsection. In any case, notice that in the particular case D = 26, we
recover the action for a free infinitely long bosonic string in the critical dimension, which is known to
preserve the target space Lorentz symmetry at the full quantum level.

As a simple check of this equivalence, one can show that the target space energy of a critical
bosonic string with N left-moving and Ñ right-moving oscillators turned on and with winding one
around X1 ∼ X1 +R (which in static gauge is the same as the worldsheet energy)

E(N, Ñ,R) =

√√√√(R
`2s

)2

+
4π

`2s

(
N + Ñ − D − 2

12

)
+

(
2π(N − Ñ)

R

)2

(3.11)

precisely coincides7 with the T T̄ deformed energy (2.26) of 24 free bosons, for which ∆ = N + Ñ ,
s = N − Ñ , c = D−2 = 24 and, as before, µ = `2s/2. The connection with the bosonic string provides
a physical interpretation for the complex energy of the ground state of the T T̄ - deformed free bosons
on a circle of size smaller than Rc in (2.27) in terms of the well-known tachyonic instability of the
bosonic string: when the radius is large with respect to `s, the winding energy of the string dominates
over the tachyonic contribution and the system is stable. At small radii though, the tachyon wins and
the system becomes unstable.

The bosonic string picture, explored at length in [3], gives important insights into the physics of
the T T̄ deformation.

Exercise: Starting from the Nambu-Goto action with Minkowski target space

SNG = −`−2
s

∫
dtdσ

√
(ẊµX ′µ)2 − (ẊµẊµ)(X ′µX

′µ) (3.12)

show that the canonical variables satisfy the following primary constraints

ΠµX ′µ = 0 , Π2 +X ′2 = 0 , Πµ ≡ ∂L

∂Ẋµ
(3.13)

Write down the conditions for conformal gauge and show they are compatible with the
constraints. Do these gauge conditions completely fix the reparametrization symmetry?
Show that in conformal gauge, Xµ satisfy the free wave equation.

7Away from the critical dimension, (3.11) can be identified with the target space energy of a string computed using
lightcone gauge, which in general will not have target space Lorentz symmetry.
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As is well known, in conformal gauge (γαβ ∝ ηαβ), the string dynamics reduces to that of 24 free
bosons, which parametrize fluctuations in the transverse directions to the string. Thus, from the
point of view of the T T̄ deformation, the undeformed CFT (describing 24 free bosons) corresponds
to the Nambu-Goto action in conformal gauge, while the deformed CFT corresponds to the Nambu-
Goto action in static gauge. We conclude that there should be a change of coordinates on the string
worldsheet that takes the deformed CFT to the undeformed one, which we will now exemplify for a
string in three target space dimensions (single boson).

Let U = σ + t = X1 + X0, V = σ − t = X1 −X0 be the worldsheet coordinates in static gauge
(which are identified with two null coordinates in the target space), and u, v be the corresponding null
worldsheet coordinates in conformal gauge. In static gauge (3.9), the induced worldsheet line element
takes the form

ds2 = dUdV + 2µ(∂UφdU + ∂V φdV )2 (3.14)

Let us now change the coordinates on the worldsheet to u, v

ds2 = (∂uU du+ ∂vU dv) (∂uV du+ ∂vV dv) + 2µ(∂uφdu+ ∂vφdv)2 (3.15)

=
(
∂uU∂uV + 2µ(∂uφ)2

)
du2 +

(
∂vU∂vV + 2µ(∂vφ)2

)
dv2 + (∂uU∂vV + ∂vU∂uV + 4µ∂uφ∂vφ) dudv

and set γuu = γvv = 0, as required by the conformal gauge condition. These equations are not
sufficient to fix the map between U, V and u, v, so we additionally require that ∂uU = ∂vV = 1, a
condition that is compatible with both the conformal gauge equations of motion for U, V (which, as
shown in the exercise, are ∂u∂vU = ∂u∂vV = 0) and the requirement that as µ → 0, we have U = u
and V = v. We thus find

U = u− 2µ

∫ v

Tvvdv , V = v − 2µ

∫ u

Tuudu (3.16)

where Tuu = (∂uφ)2 and Tvv = (∂vφ)2 are the non-zero components of the stress tensor of the free
boson. Written in the form above, the transformation (3.16) will generalize to any T T̄ - deformed
CFT.

Exercise: Show that the solutions φ[µ](U, V ) of the deformed CFT (3.7) equal those of the un-
deformed one at the field-dependent values (3.16) of the coordinates: φ[µ](U, V ) =
φ[0](u(U, V ), v(U, V )).

Thus, the T T̄ - deformed free boson is related to the undeformed free boson via the above field-
dependent coordinate transformation8, which involves the integral of the stress tensor. As we will
see, much of the physics of the T T̄ deformation is encoded in this field-dependent coordinate trans-
formation. A signature effect that is visible already at the classical level is a universal time delay
proportional to the energy.

To see this, consider for simplicity a purely left-moving classical background φ(U) = φ(u)9. The
relation between the T T̄ coordinates U, V and the conformal gauge ones is, in this background

U = u , V = v − 2µ

∫
Tuu du (3.17)

Consider now the propagation of left/right-moving waves on the worldsheet immersed in this back-
ground, which by definition propagate on lines of u = const, v ∈ (∞,−∞) and respecively v = const,

8The field-dependent coordinate transformation maps the equations of motion to each other, though not the action
itself.

9This can be seen to solve the T T̄ -deformed equations of motion, using the result of the above exercise and the fact
that for a purely left-moving background, we have U = u.
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u ∈ (−∞,∞). It is clear that the presence of the background does not at all affect the left-moving
excitations. As for the right-moving ones, they acquire a shift

∆V = −2µ

∫ ∞
−∞

Tuudu = −2µ∆EL (3.18)

where ∆EL is the total left-moving energy of the background. If we wait for the wave to arrive at the
same position σ near infinity, ∆V = −∆t, where

∆t = 2µ∆EL (3.19)

is the time delay (for µ > 0) for the wave to arrive, as compared to if no background had been present.
A time delay proportional to the energy is typical of gravitational scattering, reason for which it has
been proposed that the T T̄ -deformation turns the orginal QFT into a gravitational theory. The time
delay is present if µ > 0; for µ < 0 one obtains instead a time advance, which is related to the fact
discussed at the end of the first lecture, that T T̄ -deformed CFTs with µ < 0 exhibit superluminal
propagation [9]. While this behaviour is unusual, it is not immediately inconsistent, provided one
stays in infinite volume.

3.2 The S-matrix of the T T̄ -deformed free bosons CFT

In this section, we move on to the quantum theory and consider the scattering of worldsheet excitations
around the long string background.

There are several ways in which the S-matrix for this scattering process has been computed: via
brute force perturbative calculations [11, 13]; by promoting the field-dependent coordinate transfor-
mation (3.16) to an operator equation and evaluating its effect on the S-matrix [15]; via integrability
techniques [3]. The latter two methods produce the full answer for the S-matrix, whereas the direct
perturbative calculation has been so far been carried out up to two loops. In this lecture, we follow
the integrability - based approach, which is both very powerful and connects nicely with the results
of the first lecture.

The free boson theory is a trivial example of an integrable theory - in particular, it has an infinite
number of conserved charges, roughly given by

∫
dσ(∂φ)n. Since, as we have seen above, the T T̄ -

deformed free boson is related to the undeformed free boson by a simple change of gauge, the deformed
theory is also integrable10. This can be also seen explicitly from the exact spectrum (3.11): since states
with a definite particle number, N, Ñ are exact energy eigenstates, one concludes there should be no
particle production in scattering.

Consider now the 2 → 2 scattering of the worldsheet bosons, taken to be identical for simplicity.
In the free boson CFT, the S-matrix is simply one, and can be defined despite the absence of a mass
gap because the particles do not interact. Since the deformed CFT is integrable, the 2→ 2 S-matrix
will be given by a phase, S = eiδ(pi), where pi are the particles’ momenta.

Now, in an integrable theory, it is possible to relate the scattering phase δ(pi) to the ground state
energy in finite-size, E0(R), via the so-called Thermodynamic Bethe Ansatz (TBA) equations. We
will not use the full TBA equations herein but, following [3], we will use a simpler argument, to find
the effect of the deformation on the S-matrix.

Remember that the energy E(N, Ñ,R) of N left-moving and Ñ right-moving T T̄ -deformed free
bosons on a cylinder of circumference R is given by (3.11). Consider a two-particle eigenstate of

the Hamiltonian on the cylinder (e.g., a†−N ã
†
−Ñ |0〉) with zero total momentum, so Ñ = N . In the

Schrödinger picture, the time evolution of this state is

|N,N, t〉 = e−iE(N,N,R) t|N,N, 0〉 (3.20)

10It is in fact possible to show, on very general grounds, that the T T̄ deformation always preserves integrability [2].
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The same state can be thought of as describing two massless particles, one left-moving and one right-
moving, which circle around the cylinder in opposite directions and interact every ∆t = R/2. At each
interaction, the two-particle wavefunction picks up a phase shift eiδ(pi), which can be taken to be the
flat space scattering phase if R is very large. It will be convenient to work in terms of the Mandelstam
variable

s = (p1 + p2)2 = E2
cm =

16π2N2

R2
(3.21)

The scattering phase only depends on the external momenta pi though s due to the special 2d kine-
matics. From the point of view of the two particles, the state at time t >> R can be written as

|N,N, t〉 = e−i(∆E(N,0,R)+∆E(0,N,R)+E(0,0,R))t+iδ(s)2t/R|N,N, 0〉 (3.22)

where ∆E(N, Ñ,R) is the energy of the respective state with respect to the vacuum, whose energy is
E(0, 0, R). Equating the two exponents, we find that

δ(s) = lim
R→∞

R

2
(∆E(N, 0, R) + ∆E(0, N,R) + E(0, 0, R)− E(N,N,R)) (3.23)

i.e., the scattering phase is nothing but the binding energy of the two-particle state. As we send
R → ∞, we would like to keep the particles’ momenta, 2πN/R fixed, which yields in the following
result for δ(s)

δ(s) =
8π2N2µ

R2
=
µs

2
(3.24)

Thus, the exact S-matrix takes the extremely simple form

S = eiµs/2 (3.25)

This expression can also be derived using the TBA equations [3].
Despite its unusual form, the above S-matrix is perfectly consistent with the S-matrix axioms

(unitarity, analyticity, crossing). It takes the form of a CDD factor - a meromorphic function (in
this case, a phase factor polynomial in s, which is generally set to zero in order to avoid exponential
behaviour of the S-matrix as s → ∞), by which one can multiply the S-matrix while still satisfying
the axioms. Its peculiar, non-polynomial behaviour as s → ∞ indicates that the S-matrix does not
correspond to the S-matrix of a local QFT. This will be clearly seen in the next section, where we
show the theory exhibits a minimum length.

Did we not have access to the string theory description, the static gauge Nambu-Goto action
would naively appear to correspond to a non-renormalizable theory, due to the presence of an infinite
number of higher derivative terms. However, given that the associated S-matrix for scattering of
worlsheet excitations can be computed exactly for arbitrarily large s and appears to be well-defined
at all energies, we learn that static gauge Nambu-Goto rather corresponds to a UV complete theory.
At least for D = 26, this is of course obvious from the string picture.

Comments on the brute force calculation of the S-matrix

The integrability-based approach allows one to compute the exact scattering phase via the magic of
the TBA equations, which relate it to the known finite-size spectrum. One can alternatively perform
the calculation of the S-matrix the hard way, i.e. using perturbation theory in µ, which is the approach
initially undertaken in [11]. The usefulness of this exercise is that it renders more transparent the
various assumptions at play, the structure of divergences one encounters and the possible choices of
counterterms needed to subtract them, the role played by integrability and what is special about the
critical dimension.
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We will take D to be arbitrary. The static gauge Nambu-Goto action has manifest SO(D − 2)
flavour symmetry, which requires the amplitude for scattering particles i, j into k, l to take the form

Mij,kl = Aδijδkl +Bδikδjl + Cδilδjk , i, j, k, l ∈ {1, . . . , D − 2} (3.26)

where A is the amplitude for annihilation, B for transmission, and C for reflection. They are functions
of the Mandelstam variables s, t, u and the string coupling `2s and are related by crossing. Due to a
peculiarity of 2d kinematics, one has either t = 0 with u = −s, or u = 0 with t = −s.

As we noted earlier in this section, the classical T T̄ - deformed free boson action posesses non-
linearly realised target space Poincaré symmetry for any D. An interesting question, adressed in [11],
is whether this symmetry survives in the full quantum theory.

The answer is generally no, except if D = 3, 26. The rough argument is that the formula (3.11),
which represents the exact spectrum of D − 2 T T̄ deformed free bosons, indicates that states with
the same level, but different SO(D − 2) quantum numbers are exactly degenerate, from which one
concludes that the annihilation part, A, of the amplitude should be zero. In [11], the coefficients
A,B,C above were computed up to one loop, using the derivative expansion of the Nambu-Goto
actionand regulating divergences using dimensional regularization. It was found that

Atree = 0 , Btree =
l2s
2
s2 , A1−loop = −D − 26

192π
l4ss

3 , B1−loop = i
l4s
16
s3 (3.27)

As advertised, in D = 26 the annihilation part of the amplitude vanishes and the Nambu-Goto action
plus counterterms can (and does) equal the T T̄ - deformed bosons. The case D = 3 is special, as
the index i only takes one value, so it only makes sense to talk about the contribution to the full
amplitude A + B + C, which does vanish. One can easily check that the transmission part of the
amplitude, B, precisely equals the expansion of (3.25) with µ = `2s/2 up to this order.

In all other dimensions, in order to have A = 0, one needs to add to the action a so-called
Polchinski-Strominger (PS) term [12], which to this order in static gauge takes the form

SPS = −D − 26

192π

∫
d2σ ∂α∂βX

i∂α∂βXi ∂γX
j∂γXj (3.28)

This term explicitly breaks the non-linearly realised Lorentz symmetry. Thus, we conclude that the
non-linearly realised Poincaré symmetry of the classical Nambu-Goto action is not preserved at the
quantum level, except for D = 3, 26. In all other dimensions, the T T̄ deformation of D−2 free bosons
is an integrable theory, whose exact S-matrix is given by (3.25) and is associated, via integrability, to
the exact spectrum (3.11). The action perturbatively reproducing this amplitude is SNG +Sct +SPS ,
which also contains the higher order analogues of the PS term required to cancel the Nambu-Goto
contribution to the annihilation amplitude up to the desired order. As for the counterterms, one
needs ever new ones as the loop level is increased (an infinite number of them), and the only rule that
appears to fix their finite part is to require integrability, i.e. match to (3.25).

Requiring integrability for any D at the expense of the target space Lorentz symmetry is natural
from the T T̄ point of view. However, as mentioned in the introduction, one is sometimes interested
in the Nambu-Goto action as a departure point for an effective string description of the QCD string.
In that case, one would instead like to preserve the non-linearly realized Lorentz symmetry at the
expense of integrability, and therefore does not add the PS term to the action. The (low-order)
S-matrix is still quite constrained by approximate integrability, as e.g. non-polynomial contributions
to the amplitude only start appearing at three loops [13].

3.3 Physical manifestations of the scattering phase

In this subsection, we discuss two important physical effects of the scattering phase, still in the context
of the T T̄ -deformed free bosons: time delay and the presence of a minimum length.
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To see them, we consider the scattering of two Gaussian wavepackets, one left-moving and one
right-moving, with profile functions fL(pL) and fR(pR) given by11

fL(pL) =
1√

∆pL
√
π

exp

(
− (pL − p̄L)2

2(∆pL)2

)
(3.29)

and similarly for fR. The in state, prepared at t→ −∞, takes the form

|in〉 =

∫ ∞
0

dpLdpRfL(pL)fR(pR) a†(pL)ã†(pR)|0〉 (3.30)

where a† and ã† are the creation operators for left/right-moving modes. As t→∞, we have

|out〉 =

∫ ∞
0

dpLdpRfL(pL)fR(pR) e2iµ pLpR a†(pL)ã†(pR)|0〉 (3.31)

since s = 2 ηαβpL,αpR,β = 4 pLpR. The momentum-space reduced density matrix for the left-movers,
obtained after tracing out the right-moving modes, is given by

ρ(pL, p
′
L) = TrRM |out〉〈out| = f(pL)f?L(p′L)

∫ ∞
0

dpR|fR(pR)|2e2iµ(pL−p′L)pR

= f(pL)f?L(p′L) e2iµ(pL−p′L)p̄R−µ2(pL−p′L)2∆p2
R (3.32)

The probability density to find the left-moving wavepacket (whichat some xL (large and negative) for
t large, is given by the Fourier transform of the above expression

ρ(xL, xL, t) =

∫
dpLe

−ipL(t+xL)

∫
dp′Le

−ip′L(t+xL)ρ(pL, p
′
L) ≈ e−

(t+xL−2µp̄R)2

(∆xL)2 (3.33)

where ∆xL is given by

(∆xL)2 = µ2(∆pR)2 +
1

4(∆pL)2
(3.34)

The answer above has several rather interesting features. The first feature is the time delay: if in
absence of the deformation, the probability would have peaked at t ≈ −xL, in presence of the defor-
mation it peaks later by an amount 2µp̄R proportional to the energy of the right-moving wavepacket.
This is the quantum version of the effect we have seen earlier at classical level, which was induced by
the field-dependent coordinate transformation.

The second very interesting effect is the existence of a minimum length. As we see from above, the
width of the wavepacket after the scattering is given by ∆xL, and there will be a similar expression
for the post scattering width ∆xR of the right-moving wavepacket. The two satisfy the inequality

∆xL∆xR ≥ µ (3.35)

which was nicknamed a “stringy uncertainty principle” in [3] and indicates that it is impossible to
resolve lengths smaller than

√
µ. A third interesting effect one can already notice from the momentum-

space expression (3.32) is that the off-diagonal matrix elements of the density matrix are highly
suppressed, implying that the outgoing wavepackets are highly entangled with each other after the
scattering. In [3] this has been likened with a very toy version of black hole evaporation.

Thus, even though the S-matrix is an extremely simple phase, it encodes some surprisingly rich
physics, which shows that the T T̄ deformation produces a non-local theory with certain gravitational
properties.

11For p̄ >> ∆p, we can replace the integration range to be (−∞,∞), instead of (0,∞).
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3.4 Comments on general T T̄ -deformed QFTs

The definition (1.1) of the T T̄ deformation discussed in the first lecture has the advantage of being
based on an action, and allows one to compute the exact spectrum of the deformed QFT; however,
this definition only makes sense at distances much longer than the non-locality scale

√
µ, where the

QFT can be treated quasi-locally and one is able to associate a stress tensor to the translational
symmetries.

The fact that the deformed QFT could actually be UV complete was instead seen, at least for the
case of the T T̄ - deformed free bosons, from the exact expression (3.25) for the S-matrix, which is
well-defined up to arbitrarily high energies. Given this, one may be lead [16] to provide an alternative
definition of the T T̄ deformation, based on its effect on the S-matrix:

Sµ(pi) = eiµ
∑
i<j ε

abpiapjbSQFT (pi) (3.36)

where the particles are naturally ordered according to their rapidities. This expression is the natural
generalization of the scattering phase to massive particles. This S-matrix-based definition makes the
UV completeness manifest; it nonetheless has the drawback of not being based on an action principle.

In the following, we briefly sketch how these two approaches could be unified. First, for the special
case of integrable QFTs, one can explicitly check the equivalence of these two definitions by using
the TBA equations. Then, we mention a general, path-integral definition of the T T̄ deformation
of arbitrary QFTs on flat space, which is able to reproduce both the deformed spectrum and the
deformed S-matrix.

Integrable QFTs

In integrable QFTs, the finite-size spectrum is related to the scattering phase via the Thermodynamic
Bethe Ansatz (TBA) equations. Since, as shown in [2], the T T̄ deformation preserves integrability
if initially present, we can hope to relate the universal modification of the spectrum to a universal
modification of the scattering phase. Below, we briefly sketch the argument.

We consider the scattering of massive particles with mass m in an integrable QFT, so the S-matrix
is well-defined. It is convenient to write the particles’ momenta in terms of the rapidities, β

p0
i = m coshβi , p1

i = m sinhβi (3.37)

In the integrable case, the 2→ 2 S-matrix is a pure phase, S = eiδ(βi), with

δ(βi) = δQFT (βi) + δµ(βi) , δµ(β1, β2) = µ εαβp
α
1 p

β
2 = µm2 sinh(β1 − β2) (3.38)

where δQFT is the scattering phase of the undeformed QFT and δµ is the additional shift due to the
T T̄ deformation.

Let us now very briefly review the TBA approach. As beautifully explained in [14], the derivation
of these equations proceeds in two steps. The first step is to consider the partition function of the 2d
QFT on a torus of size (L,R), where L >> R. Depending on the choice of euclidean time direction,
this partition function can be approximated as either the ground state energy in finite volume, or the
finite-temperature free energy in infinite volume

Z(L,R) ≈ e−LE0(R) ≈ e−Rf(R)L (3.39)

In the second step, the free energy in infinite volume is estimated by doing statistics over the particles.
The scattering phase δ(pi, pj) enters in the quantization condition for their momenta as

mL sinhβi +
∑
j 6=i

δ(βi, βj) = 2πni , ni ∈ Z (3.40)
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In the limit of a large number of particles, it is convenient to introduce the particle and level densities,
which are constrained by the above equation. The free energy is computed using usual thermodynamic
considerations and then minimized. Specializing to the “bosonic” case, at the minimum one finds

E0(R) = Rf(R) =
m

2π

∫
dβ coshβ ln(1− e−ε(β)) (3.41)

where the “pseudoenergy” ε is constrained to obey

ε(β) = mR coshβ +
1

2π

∫
dβ′

∂δ(β′, β)

∂β′
ln(1− e−ε(β′)) (3.42)

We assume that the momentum P = m
∫
dβ sinhβ ln(1− e−ε(β)) = 0.

Let us now turn to the T T̄ deformation. Using the expression (3.38) for the scattering phase, it is
easy to see that the solution for ε(β) in the deformed QFT is related to ε(β) in the undeformed one by
the formal replacement R→ R+ µE. Remember from section 2.3 that the finite-size energies of the
deformed theory (with momentum set to zero, for simplicity), could be obtained from the finite-size
energies of the undeformed QFT by replacing R → R + µE(µ,R). This establishes the link between
the scattering phase (3.38) and the deformed spectrum. A generalization to non-zero momentum and
to excited states is also possible [7].

T T̄ as coupling to topological gravity

It is interesting to ask whether the action-based definition of T T̄ valid at large scales and the S-
matrix-based non-perturbative definition (3.36) can be unified also for non-integrable QFTs. This
was achieved in [17], who proposed a path integral definition of the T T̄ deformation

ZT T̄ [µ] =

∫
DXaDeaα exp

[
− 1

2µ

∫
d2x e εab ε

αβ(∂αX
a − eaα)(∂βX

b − ebβ) + SQFT (eaα)

]
(3.43)

which can be thought of as coupling the original quantum field theory to a topological theory of
gravity.

This formula can be justified by treating the T T̄ deformation using the Hubbard-Stratonovich
method, which in this case amounts to coupling the original QFT to a dynamical metric. However,
as shown in [18], the conservation of the stress tensor implies that the path integral reduces to one
only over flat metrics, at least infinitesimally. When passing from metrics to vielbeine, a simple way
to enforce this constraint is to introduce the auxiliary fields Xa as above, whose equations of motion
impose the flatness condition ∂αe

a
β = 0. The vielbein equations of motion impose

∂αX
a = eaα + µ εabεαβT

β
b (3.44)

which is nothing but the generalization of the field-dependent coordinate transformation from static
(∂αX

a = δaα) to conformal gauge (eaα = δaα) that we have seen before in the Nambu-Goto action. This
equation points to interpreting the T T̄ deformation as providing a set of dynamical coordinates, Xa,
through which the underlying QFT dynamics is seen [19].

By computing the torus partition function using the above definition, [17] were able to derive a
flow equation for the partition function, which precisely reproduces the flow equation (2.21) on the
energy levels. Concommitently, in [15] it was shown that the effect of coupling to the non-dynamical
vielbein precisely reproduces the dressing (3.36) on the S-matrix. Thus, the path integral above is
indeed able to unify the two previous definitions of the T T̄ deformation.
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4. The holographic dictionary for T T̄ -deformed CFTs

So far, we have been focussing on basic quantum field theoretical properties of the T T̄ deformation:
its definition, the deformed spectrum, the S-matrix. The remarkable lesson that we have learned is
that these observables are exactly computable at finite µ, despite the deformation being irrelevant.

In this lecture, we will discuss the T T̄ deformation in the holographic context. Consequently, we
will restrict our attention to seed CFTs with a large central charge c >> 1 and a large gap in the
spectrum of conformal dimensions, known as a holographic CFTs (see e.g. [20] for a nice introduction).
From the perspecive of a low-energy observer, the holographic dual of such a CFT consists of Einstein
gravity in AdS3 coupled to some light matter fields. The question that we would like to answer in
this lecture is:

What is the holographic dual of the T T̄ deformation of a holographic CFT?

As we will see, the answer is extremely simple and predictable. T T̄ is a double-trace deformation in
holographic parlance, and double-trace deformations have long been known to coorrespond to mixed
boundary conditions for the dual bulk fields. As we will show, the holographic dictionary for the T T̄
deformation can be derived at precision level12, and follows from a straightforward application of the
rules of holography in presence of double-trace deformations.

The plan of this lecture is as follows. We start by reviewing double-trace deformations in AdS/CFT
and how the holographic dictionary for them is derived. In 4.2, we apply this procedure to the T T̄
deformation and use it to derive the holographic dictionary. We then exemplify how this holographic
dictionary reproduces the finite-size energy spectrum (2.26) in the T T̄ - deformed CFT. In subsection
4.3, we explain the relation between the holographic dictionary and an earlier proposal that links the
T T̄ deformation to AdS3 gravity in presence of a sharp radial cutoff.

4.1 Double-trace deformations in holography

Brief review of usual AdS/CFT

The AdS/CFT holographic dictionary states that the partition function of a d-dimensional CFT in
presence of sources, J , for its single-trace operators, O, equals the partition function of the dual d+1-
dimensional gravitational theory with prescribed (usually Dirichlet) boundary conditions on the dual
bulk fields Φ. Taking Φ to be a free scalar (which is usually a good approximation near the boundary),
its asymptotic equation of motion fixes the radial dependence to be of the Fefferman-Graham form

Φ(z, xµ) = φ(0)(xµ) zd−∆ + . . .+ φ(∆)(xµ)z∆ + . . . (4.1)

where z is the Poincaré radial coordinate, with the conformal boundary of AdS lying at z = 0. The
mode proportional to φ(0) is non-normalizable, and is identified with the CFT source J(xµ) via the
AdS/CFT dictionary

ZCFT [J ] =

∫
Dψ e−SCFT [ψ]−

∫
JO[ψ] = Zgrav[φ

(0) = J ] (4.2)

Because it is non-normalizable, the coefficient φ(0) is to be kept fixed and provides the boundary
conditions that the gravitational path integral obeys.

The one-point function of O in the CFT is given by

〈O(xµ)〉 =
δW [J ]

δJ(xµ)
(4.3)

12The restriction to large c, large gap is mostly in order to have a manageable holographic dual; the effect of T T̄ can
likely be followed through exactly.
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where W [J ] = − lnZCFT [J ] is the generating functional of connected CFT correlators. In the classical
approximation, the gravitational path integral with fixed boundary conditions φ(0) is approximated by
the exponential of the holographically renormalized on-shell action Srenon−shell[φ

(0)], which is therefore

equated with W [J ]. Taking the functional derivative, one finds that the mode φ(∆)(xµ), which is
normalizable and thus allowed to fluctuate, is identified13 with the expectation value of the dual
operator in the particular state that the CFT finds itself in

δSrenon−shell[φ
(0)]

δφ(0)(xµ)
= φ(∆)(xµ) = 〈O(xµ)〉 (4.4)

Note that since our discussion is rather schematic, we have neglected all normalization factors.

Review of double-trace deformations in AdS/CFT

According to the above discussion, if we want to add a source J for a single-trace CFT operator, all
we need to do in the holographic dual is to impose the boundary condition φ(0) = J when computing
the gravitational path integral. What happens if we simultaneously add a source for the double-trace
operator O2 to the CFT action?

The generating functional of connected correlators in the deformed CFT now reads

e−Wµ[J [µ]] =

∫
Dψ e−SCFT [ψ]−µ2

∫
O[ψ]2−

∫
J [µ]O[ψ] (4.5)

where J [µ] is the (tunable) source for the single-trace operator O in the CFT deformed by the double-
trace coupling µO2/2, where µ is kept fixed14.

The standard way to treat these deformations is to use the Hubbard-Stratonovich method, which

consists of first inserting a resolution of the identity 1 = (detµ)−1/2
∫
dσ̃ e

1
2µ

∫
σ̃2

into the path integral,
and then shifting the integration variable as σ̃ = σ′ − µO, with the result

e−Wµ[J [µ]] = (detµ)−1/2

∫
DψDσ′ e−SCFT [ψ]−

∫
(J [µ]+σ′)O[ψ]+ 1

2µ

∫
σ′2

= (detµ)−1/2

∫
Dσ e 1

2µ

∫
(σ−J [µ])2

e−W0[σ] ≈ e−W0[J [µ]+µ〈O〉]+µ
2

∫
〈O〉2 (4.6)

where the last step involves a saddle point approximation at large N , which yields the saddle-point
value σ∗ = J [µ] + µ〈O〉. Thus, we find that at large N , the source in the deformed theory is shifted
with respect to the one in the undeformed CFT by the expectation value of the operator

J [µ] = J [0] − µ〈O〉 , Wµ = W0 −
µ

2

∫
〈O〉2 (4.7)

and the generating function is shifted by minus the double trace. The expectation value 〈O〉 stays the
same. Notice that (4.7) follows from a purely field-theoretical argument. The large N approximation
is only used for the evaluation of the saddle point, but exact results are in principle possible.

The implications of the above shifts for the holographic dictionary in presence of the double-trace
deformation are straightforward. Since all we did was to add the boundary term (4.7), the bulk
theory is the same, all that can change are the boundary conditions. Before the deformation, J [0] was
identified with the non-normalizable mode φ(0) of the bulk field, while 〈O〉 was identified with the
normalizable mode φ(∆). Since the new source J [µ] is a linear combination of the old source J [0] and
the expectation value, we find that the deformed CFT corresponds to the same gravitational theory
as before, but with mixed boundary conditions on the bulk fields, namely. the linear combination

13This is true for free scalars; more generally, 〈O〉 will be a function of both Φ(∆) and φ(0).
14From now on, an underscript or a superscript in square brackets will indicate whether the corresponding quantity

belongs to the deformed or undeformed CFT.
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φ[µ] ≡ φ(0)−µφ(∆) of the normalizable and the non-normalizable modes is held fixed. The holographic
dictionary reads

Zµ,QFT

[
J [µ]

]
= Zgrav

[
φ(0) − µφ(∆) = J [µ]

]
(4.8)

The functional derivative of Zgrav with respect to the new source φ[µ] will produce the gravity dual
of the expectation value of O in the deformed CFT which, in the simple example of the scalar field,
will equal φ(∆).

To summarize, the holographic dictionary in presence of double-trace deformations proceeds in
two steps:

1. a purely field-theoretical step, in which one uses the Hubbard-Stratonovich method and large N
to derive the relation between sources and expectation values before and after the deformation

2. the interpretation of the new sources and expectation values in terms of the coefficients in the
asymptotic expansion of the dual bulk field, which consists of simply plugging in the undeformed
holographic dictionary into the results of step 1

Variational principle approach

There exists an alternate - and, in practice, much simpler - approach for finding the relation between
the deformed and undeformed CFT data, which I will call the ‘variational principle’ approach. It is
nicely explained in [21] and it works at the level of the classical AdS/CFT dictionary, involving only
(super)gravity fields.

By definition, the variation of the undeformed/deformed generating functional with respect to the
source is

δW0 =

∫
〈O〉0δJ [0] , δWµ =

∫
〈O〉µδJ [µ] (4.9)

From (4.7) we have that Wµ = W0 − Sd.tr.. Taking the variation, we have

δW [µ] = δW [0] − µ

2
δ

∫
O2 =

∫
O δ(J [0] − µO) (4.10)

Equating this with δWµ in (4.9) and separately matching the terms inside the variation and their
coefficients, we can effectively read off the same holographic dictionary as above. Clearly, this is a
much simpler way to derive the dictionary, and it is particularly useful as we consider more complicated
operators, e.g. those carrying spin, and expectation values that shift under the deformation.

This exercise is very naturally phrased in bulk language. From the point of view of the canonical
formulation of gravity in AdS, in the radial Hamiltonian formalism, where z plays the role of time, φ(0)

should be viewed as a generalized coordinate on the initial surface z = 0, while φ(∆) represents the
(holographically renormalized) canonically conjugate momentum. As before, W [J ] is identified with
the classical on-shell renormalized gravitational action Srenon−shell[φ

(0)]. The addition of the double
trace boundary term induces a canonical transformation of the above phase space variables, which
can be read off from the variational principle as above, under the identifications W → S, J → φ(0)

and O → φ(∆).
The main message is that, rather than performing the steps of the Hubbard-Stratonovich proce-

dure, followed by the saddle point approximation to find the relation between the new sources and
expectation values and the undeformed ones, at large N , when W [J ] is well approximated by the clas-
sical on-shell action Srenon−shell[φ

(0)], we can derive the same data from the (much simpler to handle)
variational principle approach. We emphasize that the two procedures are equivalent at large N .
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4.2 The holographic dictionary for T T̄ -deformed CFTs

We are now ready to derive the classical holographic dictionary for T T̄ -deformed holographic CFTs.
This simply amounts to applying the recipe described in the previous section to the double-trace T T̄
deformation15.

As explained in the previous subsection, the first step of the recipe is purely field-theoretical and
uses the Hubbard-Stratonovich method to find the deformed sources and expectation values in terms of
the original ones. Since, as we argued, for the purpose of deriving the classical holographic dictionary,
the Hubbard-Stratonovich method is equivalent with the much simpler variational principle approach,
in the following we will use the latter to find the desired field-theoretical relation.

Step 1: the relation between the deformed and undeformed sources and vevs

The definition of the T T̄ deformation was to incrementally add to the QFT action the T T̄ operator
of the deformed theory

∂µS
[µ]
QFT = −1

2

∫
d2x
√
γ(TαβTαβ − T 2)µ (4.11)

Here the source coupling to the stress tensor is the background metric γαβ and, by definition, we
have δS = 1

2

∫
d2x
√
γ Tαβδγ

αβ . These definitions make sense in the classical, large N limit; indeed,
outside this limit it is not clear if the operator can be defined on a non-flat background metric. We
are working in euclidean signature and follow the conventions of [5]. The variations of the generating
functionals in two nearby T T̄ - deformed CFTs related by infinitesimally changing µ→ µ+∆µ satisfy

δW [µ+∆µ] = δW [µ] −∆µ δS(T T̄ )µ =
1

2

∫
d2x
√
γ T

[µ]
αβ δγ

αβ
[µ] −∆µ δS(T T̄ )µ

≡ 1

2

∫
d2x

(√
γ Tαβδγ

αβ
)

[µ+∆µ]
(4.12)

In the limit ∆µ→ 0, this equation can be rewritten as

∂µ

(
1

2

∫
d2x
√
γ T

[µ]
αβ δγ

αβ
[µ]

)
= δ

(
1

2

∫
d2x
√
γ(TαβTαβ − T 2)µ

)
(4.13)

We need to solve this for an arbitrary variation of the sources γ[µ]. Separately equating the terms
under the variations and their coefficients, one obtains the following flow equations for the source and
the expectation value of the stress tensor (see [5] for details)

∂µγαβ = −2(Tαβ − γαβT ) ≡ −2 T̂αβ , ∂µT̂αβ = −T̂αγ T̂βγ , ∂µ(T̂αγ T̂β
γ) = 0 (4.14)

This set of equations is trivial to integrate, and the solution is

γ
[µ]
αβ = γ

[0]
αβ − 2µ T̂

[0]
αβ + µ2T̂ [0]

αρ T̂
[0]
σβ γ

[0]ρσ

T̂
[µ]
αβ = T̂

[0]
αβ − µ T̂ [0]

αρ T̂
[0]
σβ γ

[0]ρσ (4.15)

15The story is a bit more complicated than this. In the usual case of scalar deformations, one normally requires that
O2 be a relevant or marginal operator, so that its effect is tractable. This implies that the dimension of O is ≤ d/2.
Such an operator corresponds to a bulk field quantized with Neumann boundary conditions, or alternate quantization.
The case of T T̄ is in a certain sense simpler, in that one deforms the theory in the usual quantization. The reason that
the effect of this irrelevant double-trace operator is still tractable from a holographic point of view is that the dual bulk
field is the 3d metric, which is not dynamical. In particular, its non-normalizable part is pure gauge and thus does not
backreact on the local geometry, even at full non-linear level.
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which represent the relations between the sources and expectation values in the T T̄ - deformed CFT
and the undeformed one. The expectation value of the deformed stress tensor is determined by that
of T̂ via

T
[µ]
αβ = T̂

[µ]
αβ − γ

[µ]
αβ T̂

[µ] (4.16)

Notice these relations are rather non-linear and the change in the expectation value of the stress tensor
is non-trivial. We emphasize these relations follow from the definition of the T T̄ deformation via a
purely (large N) field theoretical derivation. The flow equations (4.14) can be additionally used to
show that ∂µ(R

√
γ) = 0, that the deforming operator does not flow, ∂µ(

√
γOT T̄ ) = 0, and the trace

relation T [µ] = c/24πR[µ] − µO[µ]

T T̄
. See [5] for more details.

One can in principle add sources for “matter” fields, here taken for simplicity to be scalars. Since
the double-trace deformation only involves the stress tensor, the variation with respect to the matter
operator sources just goes along for the ride - at infinitsimal level at least - as can be seen from the
variational principle ∫

(
√
γOδJ)[0] =

∫
(
√
γOδJ)[µ] (4.17)

This implies that the sources for matter operators are unaffected by the deformation, while the
expectation values are related via O[µ] = O[0]

√
γ[0]/γ[µ].

Step 2: the holographic dictionary

Having found the relation between the deformed and undeformed stress tensor data at large N , the
second step of the holographic dictionary consists in interpreting these data in terms of the asymptotic
values of the bulk fields in the dual asymptotically AdS3 spacetime. For this, we need to briefly review
the holographic dictionary for the stress tensor in the context of AdS3/CFT2.

As explained at the beginning of this section, the holographic dual to a large c, large gap CFT2 is 3d
Einstein gravity coupled to various light matter fields. We will concentrate on the gravitational sector,
which is the one that captures the dynamics of the stress tensor in the dual CFT. The asymptotic
solution for the three-dimensional metric is simplest in the so-called Fefferman-Graham gauge (gρρ =
`2/4ρ2, gρα = 0, where ρ is the radial coordinate and ` is the AdS3 length) and is given by the
following expansion

ds2 = `2
dρ2

4ρ2
+

(
g

(0)
αβ (xα)

ρ
+ g

(2)
αβ (xα) + . . .

)
dxαdxβ (4.18)

This expansion holds at non-linear level provided the matter fields satisfy reasonable boundary con-
ditions (i.e., the non-normalizable mode φ(0) is set to zero beyond linearized level; however, arbitrary
normalizable modes of the matter fields are allowed at full non-linear level). The two leading terms
written above are universal and correspond to the source and expectation value of the dual CFT2

stress tensor. More precisely,

g
(0)
αβ = γ

[0]
αβ , g

(2)
αβ = 8πG` T̂

[0]
αβ (4.19)

The asymptotic Einstein equations fix the trace and divergence of g(2) in terms of g(0); these correspond
to the holographic Ward identities of the CFT stress tensor - see e.g. [22] for details. The dots
correspond to terms that are subleading in the ρ expansion. They are non-universal and depend on
the particular matter field expectation values that have been turned on.

We now have all the ingredients to describe the holographic dictionary for T T̄ - deformed CFTs.
The coefficients g(0,2) above encode the source and the expectation value of the stress tensor in the
undeformed CFT, so they should be identified with γ[0] and respectively T̂ [0] in (4.15). The source
for the deformed stress tensor (i.e., the background metric) in the T T̄ - deformed CFT is γ[µ], given
in (4.15). Using the undeformed holographic dictionary (4.19), we find the following expression for
γ[µ] in terms of the coefficients appearing in the asymptotic metric expansion
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γ
[µ]
αβ = g

(0)
αβ −

µ

4πG`
g

(2)
αβ +

µ2

(8πG`)2
g(2)
αγ g

(0) γδg
(2)
δβ (4.20)

Since we are supposed to keep the source γ[µ] in the deformed theory fixed, we find that the fluctuations
of the dual bulk metric satisfy a mixed and rather non-linear boundary condition, given by the right-
hand side of the above equation. Note that both the normalizable and non-normalizable (boundary
metric) mode of the metric are allowed to fluctuate, as long as the above combination is held fixed.

To summarize, the holographic dictionary for T T̄ -deformed CFTs is

ZT T̄ -def. CFT

[
J [µ], γ[µ]

]
= Zgrav

[
φ(0) = J [µ], g(0) − µ g(2) +

µ2

4
g(2)g−1

(0)g
(2) = γ[µ]

]
(4.21)

where, to ease the notation, we have measured µ in units of 4πG`. The first argument indicates that
all matter fields have same boundary conditions as before the deformation.

Using (4.15) and (4.19), we find that the expectation value of the stress tensor in the deformed
theory is given by (4.16), with γ[µ] given in (4.20) and

T̂
[µ]
αβ =

1

8πG`
g

(2)
αβ −

µ

(8πG`)2
g(2)
αγ g

(0) γδg
(2)
δβ (4.22)

A few comments are in place:

i) just like in the undeformed case, the expectation value of the stress tensor only involves the
universal asymptotic metric coefficients g(0) and g(2) that encode the energy and momentum
density of the initial state in the undeformed CFT.This will ultimately be responsible for the
universality of the deformed energy formula, as we will show.

ii) unlike in the undeformed CFT case, T̂αβ bears a rather non-linear relation to the asymptotic
data, and is computed by a different formula than in AdS3 with Dirichlet boundary conditions

iii) the boundary conditions for matter field are unaffected, as follows from (4.17)

Building the gravitational phase space

Having established what the sources and expectation values in the T T̄ - deformed CFT correspond
to in terms of the asymptotic behaviour of the metric components, the next natural question is
to understand the phase space of the bulk theory, i.e. what are the most general allowed metric
fluctuations for a given, fixed metric γ[µ] in the T T̄ - deformed CFT. Knowing the answer for arbitrary
γ[µ] is useful, e.g. for computing correlation functions of the stress tensor by repeated functional
differentiation of the holographic one-point function.

For µ = 0, the answer to this question is well-known: one allows for all tensors g(2) that are
compatible with the holographic Ward identities, which fix its trace and divergence in terms of the
boundary metric g(0), which is held fixed. For µ 6= 0, the problem is significantly more complicated,
since one needs to find the most general solution for g(0,2), subject to the holographic Ward identities
and the non-linear boundary condition (4.20). Solving this set of non-linear algebraic and differential
equations for general γ[µ] appears rather cumbersome. We will therefore concentrate on the much

simpler problem of finding the most general g(0,2) for which γ
[µ]
αβ = ηαβ . The price to pay is that since

we restrict the T T̄ metric to be flat, we will not have access to arbitrary correlation functions of the
stress tensor, but only to the one-point functions (4.22).

In the particular case γ
[µ]
αβ = ηαβ , i.e. when the T T̄ -deformed CFT lives on flat space, there is a

trick to solve the general equations, which we will now explain. Using the fact that the combination
R
√
γ is constant along the flow and that R[γ[µ]] = 0, we conclude that R[g(0)] = 0, so g(0) and γ[µ]
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are diffeomorphic to each other (this is not generally the case). Since the Ricci scalar of the boundary
metric g(0) vanishes, this implies that there exists a coordinate system in which the metric γ(0) equals
the two-dimensional Minkowski metric η.

Let U, V be the coordinates of the T T̄ -deformed CFT, in terms of which γ[µ] = η, and u, v be the
auxiliary set of coordinates, in terms of which g(0) = η. The asymptotic solution for the bulk metric
in the u, v coordinate system is extremely simple, as the holographic Ward identities can be solved
explicitly in terms of two arbitrary functions L(u) and L̄(v)

ds2 =
`2

4

dρ2

ρ2
+
dudv

ρ
+ L(u) du2 + L̄(v) dv2 + . . . (4.23)

where the . . . are O(ρ) and are non-universal. The functions L(u) and L̄(v) are proportional to the
expectation values of the holomorphic and, respectively, antiholomorphic stress tensor components
Tuu and Tvv. Plugging in the coefficients g(0,2) read off from above into (4.20), we obtain the following
expression for γ[µ] in the u, v coordinate system

γ
[µ]
αβdx

αdxβ = dudv + ρc(L(u)du2 + L̄(v)dv2) + ρ2
cL(u)L̄(v)dudv =

(
du+ ρcL̄(v)dv

)
(dv + ρcL(u)du)

(4.24)
where we have introduced the shortcut notation

ρc ≡ −
µ

4πG`
(4.25)

The line element (4.24) must equal the Minkowski line element dUdV in terms of the T T̄ coordinates
U, V . This yields the following relation between the two sets of coordinates

U = u+ ρc

∫ v

L̄(v)dv , V = v + ρc

∫ u

L(u)du (4.26)

which is precisely the field-dependent coordinate transformation (3.16), now rederived from hologra-
phy.

Thus, the most general g(0,2) satisfying the holographic Ward identities and the boundary condition
γ[µ] = η are given by the asymptotic metric coefficients encoded in (4.23), translated back to the U, V
coordinate system. Explicitly, we have

g
(0)
αβ dx

αdxβ = dudv =
(dU − ρcL̄(v)dV )(dV − ρcL(u)dU)

(1− ρ2
cL(u)L̄(v))2

(4.27)

g
(2)
αβ dx

αdxβ = L(u)du2 + L̄(v)dv2 =

(
1 + ρ2

cL(u)L̄(v)
)

(L(u) dU2 + L̄(v) dV 2)− 4ρcL(u)L̄(v) dUdV(
1− ρ2

cL(u)L̄(v)
)2

The expectation value of the stress tensor can be read off from (4.22), and is given by

T
[µ]
αβdx

αdxβ = (T̂
[µ]
αβ − ηαβ ηγδT̂

[µ]
γδ ) dxαdxβ =

L(u)dU2 + L̄(v)dV 2 + 2ρcL(u)L̄(v)dUdV

8πG`(1− ρ2
cL(u)L̄(v))

(4.28)

in the U, V coordinate system.
Thus, we find that, just like in the case of AdS3 with Dirichlet boundary conditions, the space of

bulk solutions satisfying the mixed boundary conditions with γ[µ] = η is parametrized by two arbitrary
functions, L(u) and L̄(v), where now the coordinates u, v are field-dependent and are determined via
(4.26). In addition, one can have arbitrary matter expectation values turned on, which appear at
subleading order. The solutions are still asymptotically locally AdS3, since the non-normalizable
mode of the metric (4.27) is pure gauge.
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Holographic calculation of the deformed energies

In the first section, we derived the exact formula (2.26) for the T T̄ -deformed energy spectrum on a
cylinder, which is a function of µ,R and only the initial energy and momentum of the state. As a
basic check of the proposed holographic dictionary, we would like to reproduce this formula from a
holographic calculation.

Since we need to compute the energies in finite volume, we take the AdS3 boundary to be a cylinder,
with U, V = σ ± t where σ ∼ σ + R, and consider an energy-momentum eigenstate, characterized by
L(u) = Lµ and L̄(v) = L̄µ, both constant. The deformed energy and angular momentum are given by

Eµ =

∫ R

0

dσ T
[µ]
tt =

R

8πG`

Lµ + L̄µ − 2ρcLµL̄µ
1− ρ2

cLµL̄µ
, Jµ =

∫ R

0

dσ T
[µ]
tσ =

R

8πG`

Lµ − L̄µ
1− ρ2

cLµL̄µ
(4.29)

where we simply plugged in the expression (4.28) for the stress tensor components.
The formula (2.26) expresses the enegy of an energy-momentum eigenstate in the deformed CFT

in terms of the energy of the “same” eigenstate in the undeformed one, where by “same” we mean that
the two states are connected by adiabatic evolution as µ is increased from zero to its final value. Let
the corresponding state in the undeformed CFT be characterized by the left/right-moving energies
L0, L̄0. In order to reproduce (2.26), we need to find a way to relate L0, L̄0 to Lµ, L̄µ.

This question is not as simple as it may seem, since we are comparing states in different theories,
i.e. belonging to different gravitational phase spaces, where the asymptotic metric satisfies different
boundary conditions. A good strategy is to look for quantities that are invariant along the T T̄ flow.
For example, the momentum of the state is constant along the flow, being quantized, which gives one
relation: Jµ = J0 = R(L0 − L̄0)/(8πG`).

Another quantity that is invariant along the flow is the degeneracy of states around a state labeled
by the CFT conformal dimensions h, h̄; this was discussed in the first lecture. For h, h̄ >> c/24, this
degeneracy is computed by the horizon area of the black hole characterized by h, h̄. Note that this
black hole need not be dual to the CFT state whose energy we are computing (which can be atypical,
represented e.g. by a matter field configuration in the bulk); we are simply using it as an auxiliary
tool to estimate the degeneracy of states of similar energy to the CFT state of interest.

To calculate the area of the black hole horizon, we need the full bulk solution. This is fixed by
the fact that black holes are solutions of pure 3d gravity, for which the Fefferman-Graham expansion
happens to truncate at O(ρ) [23]

ds2 =
`2

4

dρ2

ρ2
+

1

ρ

(
g

(0)
αβ + ρ g

(2)
αβ +

ρ2

4
g(2)
αγ g

(0) γδg
(2)
δβ

)
dxαdxβ (4.30)

For the deformed black holes, g(0) and g(2) are given in (4.27). The horizon is located at ρh =
(LµL̄µ)−1/2 and its area is given by

Aµ = R

√
Lµ +

√
L̄µ

1 + ρc
√
LµL̄µ

(4.31)

Equating this to the original area A0 = R(
√L0 +

√
L̄0) yields an second relation between Lµ, L̄µ and

L0, L̄0, which allows one to solve for the first in terms of the latter16. Plugging this into (4.29), one
finds precisely the QFT answer (2.26). The details of the calculationcan be found in [5].

Thus, we find that the proposed holographic dictionary perfectly reproduces the QFT answer for
the deformed energies. This match works for both signs of µ. Remember from our discussion in the
first lecture that for µ > 0, the vacuum and the states close to it can acquire complex energy, whereas

16The exact, if unilluminating expression is: Lµ =
∓(1+(L0−L̄0)ρc)

√
ρ2
c(L0−L̄0)2−2ρc(L0+L̄0)+1+ρ2

c(L0−L̄0)2−2L̄0ρc+1

2L0ρ2
c

.
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for µ < 0 all states above a certain energy (2.29) do so. From the point of view of our calculation,
what accounts for this behaviour is that in these parameter ranges, there is no real, CTC-free bulk
metric that satisfies the mixed boundary conditions. This is simply a bulk manifestation of the fact
that for µ > 0, the deformed theory cannot be put on a circle of radius smaller than Rc, whereas for
µ < 0, it cannot be put in finite volume at all.

It is important to emphasize that the deformed energy only depends on the asymptotic value of
the metric, encoded by Lµ, L̄µ, and so this derivation works also if matter fields are turned on. This
makes perfect sense from the point of view of the deformed energy, as a universal energy formula in
the QFT can only depend on the universal asymptotic data in the bulk.

Asymptotic symmetries

In gravity, on a manifold with a (conformal) boundary, the conserved charges are given by boundary
integrals over a fixed time slice. Given a set of boundary conditions on the metric and other fields,
it is natural to ask what are the associated asymptotic symmetries - the set of diffeomorphisms that
are allowed by the boundary conditions and carry non-trivial conserved charges - as well as the Dirac
bracket algebra of these charges, known as the asymptotic symmetry group (ASG). For example, in
AdS3 with usual Dirichlet boundary conditions, the ASG is famously known to be infinite-dimensional,
and consists of two commuting copies of the Virasoro algebra, with central charge c = 3`/2G.

We can equally well perform the ASG analysis for the mixed boundary conditions associated to
T T̄ -deformed CFTs. As we saw, the most general bulk solution is parametrized by two arbitrary
functions L(u), L̄(v) of the auxiliary coordinates u, v defined in (4.26). The diffeomorphisms that are
allowed yet non-trivial act on the coordinates U, V of the T T̄ - deformed CFT by shifts depending on
arbitrary functions of these state-dependent coordinates, i.e.

U → U + εf(u) , V → V + εf̄(v) (4.32)

The conserved charges are computed using the usual formulae

Qf =

∫ R

0

dσ T
[µ]
tα ξαf , Q̄f̄ =

∫ R

0

dσ T
[µ]
tα ξαf̄ (4.33)

After some rather tedious calculations, it can be shown that the charge algebra for the Fourier modes
of f, f̄ consists of two commuting copies of the Virasoro algebra, with the same central extension as
in the undeformed CFT. Since in the holographic context, the ASG of the bulk gravitational theory
is identified with the symmetries of its boundary QFT dual, this calculation strongly suggests that at
least in the classical large N limit, T T̄ -deformed CFTs possess full Virasoro × Virasoro symmetry.
These symmetries are however unusual, in that they depend on the field configuration. If the existence
of these symmetries is confirmed at non-perturbative level, it could lead to an interpretation of T T̄ -
deformed CFTs as non-local generalizations of a usual CFT.

4.3 Demystifying the finite bulk cutoff proposal

In the above, we presented a first principles derivation of the large N holographic dictionary for T T̄ -
deformed CFTs, for both signs of µ, by simply applying the rules of AdS/CFT to this particular case.
We would now like to comment on the relation between this dictionary and an earlier proposal by [4],
according to which T T̄ - deformed CFTs with µ < 0 (in our conventions) are dual to AdS3 gravity
with a sharp radial cutoff.

For the sake of clarity, it will be useful to split the proposal and results of [4] into two logically
distinct steps:

i) the (highly non-trivial) observation that various T T̄ observables (such as the deformed energy
spectrum, the speed of sound, the thermodynamic relations) match the measurements of a bulk
observer sitting at a fixed radial position rc ∼ 1/

√
|µ| in the background of a BTZ black hole
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ii) the proposal that the bulk degrees of freedom outside the rc surface be removed: this is the
geometric cutoff proposal proper, which is motivated by the presence of complex energies for
µ < 0.

Remember from the discussion in the first lecture that there is a maximum energy, Emax (2.29),
above which all states acquire complex energies. The authors of [4] made the interesting ob-
servation that for a black hole whose mass is at the threshhold Emax, its Schwarzschild radius
reaches the rc surface. Thus, by excluding black holes supported on radii larger than rc, it
appears that one excludes the complex energy states from the spectrum. The energy Emax was
interpreted as UV cutoff in the deformed CFT, and the finite number of states below this cutoff
would correspond to the finite number of states of bulk quantum gravity in a finite region.

The relation between a radial cutoff in the bulk and a UV cutoff in the boundary has a long history in
terms of the holographic renormalization group [24, 25, 26] : integrating out degrees of freedom above
some UV scale in the boundary would correspond to integrating out the fluctuations of the bulk fields
outside a given radius. However, the relation between the field-theory cutoff and the bulk radius was
never made precise.

Notice that for the case at hand, the reduction in the number of degrees of freedom implicit in
holographic RG would be in conflict with the integrability and likely UV completeness of T T̄ - deformed
two-dimensional CFTs we have been arguing for. Therefore, from this point of view, the proposal
that the dual bulk theory should have bulk degrees of freedom removed is at least counterintuitive.

In this section, we will discuss the proposal of [4] from the perspective of the holographic dictionary
we have described. Concretely:

i) we show that when µ < 0 and we concentrate on on-shell solutions of pure gravity, the mixed
boundary conditions (4.20) effectively reduce to Dirichet boundary conditions at a specific bulk
radius, independent of the energy. Also, all T T̄ observables coincide with the measurements of
an observer at this fixed radius.

Thus, all the checks performed in step i) of [4]’s proposal are simply checks of this effective
Dirichlet boundary condition, which follows from the mixed ones under the particular circum-
stances listed above. From the point of view of the mixed boundary conditions, the match to
the observations at finite bulk radius is a pure coincidence - albeit a fascinating one - having to
do with the particular way the asymptotic solution is extended into the bulk. This coincidence
no longer happens once matter field profiles are turned on.

ii) we argue that the current evidence for a sharp geometric cutoff in the bulk is uncompelling:

– from a field-theoretical perspective, the geometric cutoff proposal is in tension with the
integrability and UV completeness of T T̄ - deformed CFTs

– it is not clear that Emax in (2.29) should be interpreted as a UV cutoff, due to the explicit
appearance of the IR scale.

– we show that once matter fields are turned on, a holographic dictionary of the form sug-
gested by [4]

ZT T̄ [µ] = Zgrav[r < rc] (4.34)

cannot hold: the energies do not match and moreover, the onset of the complex energy
states can be shown to have nothing to do with a bulk distance or the presence of a horizon

– to the extent that the central charge of the ASG we discussed is a measure of the number
of degrees of freedom in the T T̄ - deformed CFT, the fact that it is a µ - independent
constant that equals the original CFT central charge is nicely consistent with integrability,
but not clearly consistent with a UV cutoff interpretation

We will now proceed to explaining these points in turn. For details of the calculations, see [5].
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Relation to an observer at a fixed radial distance in the bulk

The analysis in section 4.2 was completely general: in particular, arbitrary (normalizable) matter
field profiles could be turned on. We will now concentrate on pure gravity solutions, i.e. those
satisfying Rµν + 2`−2gµν = 0 everywhere, and not only asymptotically. Because pure 3d gravity has
no propagating degrees of freedom, such solutions are locally diffeomorphic to AdS3.

For pure gravity solutions, the Fefferman-Graham expansion for the metric truncates, and the
most general form of the metric is given by (4.30). It is then easy to notice that for µ < 0, the T T̄
metric γ[µ] in (4.20) precisely happens to coincide with the induced metric on a surface of constant
ρ = ρc, with

ρc = − µ

4πG`
(4.35)

Thus, for pure on-shell gravity solutions with µ < 0 only, the mixed boundary conditions at infinity
that we have derived coincide with Dirichlet boundary conditions at ρ = ρc. The coincidence further
extends to the stress tensor, as it can be shown that under the same conditions, the expression (4.16),
(4.22) for the stress tensor coincides with the Brown-York stress tensor computed on the ρ = ρc
surface, with a particular counterterm added

Tαβ = − 1

8πG
(Kαβ − gαβK + `−1gαβ) (4.36)

where Kαβ is the extrinsic curvature of the ρ = ρc surface and gαβ = γ
[µ]
αβ/ρc is the induced metric.

Exercise: By explicitly computing the extrinsic curvature of the ρ = ρc surface in the metric (4.30),
show that the right-hand side of (4.36) precisely coincides with (4.16), (4.22).

This coincidence explains why the deformed energy computed with this stress tensor agrees with the
energy measured by an accelerated bulk observer on the ρ = ρc surface. Notice that this interpretation
is only possible for CFT states dual to black holes in the bulk. However, since we expect that high-
energy typical states are modelled by black holes, we see that the interpretation of [4] that T T̄ “moves
the CFT into the bulk” does hold for the vast majority of CFT high-energy states, as indicated in the
figure below.

 

In typical high energy states, the
T T̄ -deformed CFT still has the
interpretation of describing the
experience of an accelerated ob-
server’s laboratory in the bulk, lo-
cated at fixed radial coordinate rc.

It is worth pointing out that even for the case of pure gravity, the details of the energy calculation in
[4] and [5] are not the same. In the calculation described in section 4.2, the black holes at different
values of µ belonged to different phase spaces, with different asymptotic boundary conditions given
by (4.27). The surface where γ[µ] = η corresponded to ρc ∝ |µ| in Fefferman-Graham coordinates for
these metrics.

By contrast, in [4] the energies that are matched are measured on a surface of fixed Schwarzschild
coordinate rc ∝ |µ|−1/2, in the background of the usual BTZ black hole (for which g(0) = η) for all
µ. Since the relation between the Fefferman-Graham and the Schwarzschild coordinate, as well as
that between (4.27) and BTZ, depends on the parameters of the black hole, it is not clear whether
the ρc and rc surfaces are the same, and thus why the energy calculation matches. In [5], the relation
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between the Schwarzschild and the Fefferman-Graham radial coordinate was worked out, which is
indeed field-dependent, and reads

r2(ρ) =

(
1 + Lµ(ρ− ρc)− L̄µLµρρc

) (
1 + L̄µ(ρ− ρc)− L̄µLµρρc

)
ρ
(
1− ρ2

cLµL̄µ
)2 (4.37)

Notice that precisely for ρ = ρc, the dependence on the black hole parameters drops out and the
surface corresponds to rc, explaining why the two energy calculations agree. This looks like another
remarkable coincidence.

Including matter

It should be clear from our discussion that the coincidence between the T T̄ observables and the
measurements at the finite radius in the bulk no longer happens if matter field profiles are turned on.
[5] analysed an extremely simple setup to exemplify this point. It consists of a thin shell of matter
with mass M and radius rsh, taken to be much larger than the associated Schwarzschild radius, rSchw.
The geometry is BTZ for r > rsh, and vacuum AdS3 inside the shell.

We now consider the state dual to this geometry in the T T̄ - deformed CFT. Since the calculation
(explained in section 4.2) of the deformed energy using the mixed boundary conditions only takes as
input the two leading coefficients in the asymptotic metric expansion, which for the state at µ = 0 are
given by their values in BTZ, it is clear that for any µ (positive or negative), the result will reproduce
the universal energy formula (2.26) in the deformed CFT.

It is also easy to see that for µ < 0, Dirichlet boundary conditions on the rc ∼ 1/
√
|µ| surface do

not correctly reproduce the boundary QFT prediction for the deformed energy of this state. Indeed,
if |µ| is large enough so that rc < rsh, the geometry inside the shell is just vacuum AdS3, which does
not have the correct energy. Thus, the coincidence between the predictions of the mixed boundary
conditions and the effective Dirichlet one at rc only happens for states described by purely gravitational
configurations, where the asymptotic solution is extended into the bulk in the particular way (4.30).

AdS

BTZ

r = ∞

rsh

rc

A constant-time slice through the thin shell
geometry, which equals BTZ in the shaded
outer region and vacuum AdS inside. When
the rc surface is inside the shell, the induced
stress tensor is just that of vacuum AdS.
The energy on this surface does not agree
with the field theory answer for the energy
of the deformed theory.

Comments on the finite bulk cutoff proposal

As explained, the authors of [4] went on further to propose that the bulk geometry outside the rc
surface be removed. One reason that one may be tempted to identify the bulk rc ∼ 1/

√
|µ| surface

with a sharp radial cutoff is that the mass of a black hole whose horizon reaches this surface coincides
precisely with the maximum energy (2.29) before the onset of the complex energies. Thus, by removing
the geometry outside this radius, one can remove the complex energy states.

It should be clear that this argument only works for black hole states, for which there is a fixed
relation between their size (the horizon radius) and their mass. For more general configurations con-
taining matter fields, their spatial support is generally much larger than their associated Schwarzschild
radius, and this intuitive picture does not apply, as we now exemplify using the thin shell toy model.

31



Consider again the thin matter shell configuration, with µ chosen so that rc < rsh, and then start
increasing the mass of the shell. The complex energy states should set in when the Schwarzschild
radius of the shell reaches rc; however, nothing special happens to the geometry at this value of the
mass, and in particular there is no horizon17.

However, the QFT formula (2.26) predicts that the energy will become complex. The way that the
mixed boundary conditions reproduce this is that they require the solution to belong to the deformed
phase space, satisfying the deformed boundary condition (4.20). When the mass is large enough so
that rSchw > rc, there is simply no real solution for the metric satisfying this boundary condition.
Thus, the complex energies are related to a breakdown that happens near the AdS boundary, which
only depends on the energy and is unrelated to the presence of a horizon deep inside the bulk.

Note that in order to reach the complex energy states without the shell turning into a black hole,
we needed to take rc < rsh. One may argue that since in the proposal of [4], the geometry outside
rc is to be removed, then this configuration is not the correct one to consider. We only see two other
options, both of which are problematic. If one decides to keep the shell states with rSchw < rc but
simply remove the region outside rc in the bulk dual, then the cut off bulk geometry is just vacuum
AdS, whose energy does not match that in the dual QFT. One can alternatively discard these states
altogether, though there is no particular reason to do so from the boundary QFT point of view, given
that their energy is real and lower than Emax. While the thin shell example is somewhat unrealistic,
these conclusions would hold whenever the bulk contains non-trivial configurations of matter fields.

Thus, we conclude that the relation between the complex energy states and a geometric cutoff at
rc can only hold in pure gravity, for black hole states. Since most known holographic CFTs do contain
operators dual to matter fields, this significantly constrains the theories to which the proposal of [4]
could apply.

Let us also remark that the terminology “UV cutoff” may be employed with different meanings
in the holographic context. In the usual holographic RG literature, it denotes a scale beyond which
the bulk/boundary degrees of freedom are integrated out. It is this interpretation of the cutoff that is
in tension with the integrability of the T T̄ deformation. The second meaning appears to be specific
to the example of T T̄ , and represents the maximum finite-size energy before it becomes complex. Of
course, this notion of “cutoff” is consistent with the properties of the T T̄ deformation. However, as
explained in the first lecture, a more reasonable interpretation is that the µ < 0 theory does not make
sense in finite volume, and Emax is simply the energy beyond which the time advance characteristic
of it leads to the formation of CTCs. The match of energies for E < Emax does not necessarily imply
that the theory with the complex energy states removed is consistent.

Higher dimensions

Following the bulk cutoff proposal for two-dimensional T T̄ - deformed CFTs, a number of higher-
dimensional generalizations were proposed for large N CFTd’s [27, 28]. Since an operator with the
special properties of T T̄ likely does not exist in higher dimensions, these references chose a general-
ization inspired by the radial flow equation in the bulk, and used large N factorization to obtain an
analogue of the energy flow equation (2.21). The resulting energies, which also become complex at
large level, were shown to precisely match the energies of bulk black holes as measured by an observer
at a fixed radial distance rc ∼ |µ|−1/d. It was subsequently proposed that this higher-dimensional
generalization of the T T̄ deformation should match bulk gravity with a sharp radial cutoff at rc.

An important difference with two dimensions is that the higher-dimensional T T̄ operator is only
defined perturbatively in 1/N , using the dual bulk description; there is no independent QFT definition
for it. Since the deformation is chosen so that it matches the predictions of gravity with a sharp radial
cutoff, this leads to a different treatment of matter fields. Specifically, while in two dimensions the fact
that the deforming operator was exactly T T̄ implied that matter fields would continue to have Dirichlet

17Following the prescription of [4], we are working with the undeformed, asymptotically BTZ geometry (with g(0) = η)
even though we are studying the deformed CFT.
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boundary conditions at infinity, in the higher-dimensional case it is natural to require that they have
Dirichlet boundary conditions at the cutoff surface, which results in deforming the boundary QFT by
additional multitrace operators associated to matter. Adding these irrelevant multitrace operators to
the CFT action likely results in an EFT with a cutoff related to the irrelevant couplings. This cutoff
is in principle different from the maximum energy attained before the complex energy states set in,
which only exists in finite volume and depends explicitly on the size of the box.

Since the only available definition of the T 2 operator and the rest of the boundary QFT action
is through the dual gravitational theory in presence of a sharp radial cutoff, it is not clear whether
the above-mentioned match of the energy, as well as subsequent matches of the entanglement entropy,
represent checks of an interesting holographic duality, or simply a rewriting of a number of bulk
manipulations in a suggestive field-theoretical form. Besides the QFT not having an independent
definition, it is also not clear whether the gravitational side of the would-be duality is defined beyong
leading order in 1/N , due to difficulties in imposing hard Dirichlet boundary conditions in presence
of gravity. It is certainly interesting though to think of a more encompassing definition of both sides.

5. A single-trace analogue of T T̄ and non-AdS holography

In the previous lecture, we discussed the usual, double-trace T T̄ deformation, whose main effect was
to change the asymptotic boundary conditions for the non-dynamical metric. The new boundary
data are simply a reinterpretation of the usual AdS/CFT ones, which explains the universality of the
deformed spectrum from a holographic perspective. The price to pay for this universality is that the
holographic dictionary is a bit boring, at least at the level of (super)gravity, as the geometry stays
locally AdS3.

In this lecture, we will discuss a single-trace variant of the T T̄ deformation [6]. Unlike the usual
T T̄ deformation, which can be performed universally on any CFT, this single-trace analogue is defined
in a specific string-theoretical setting, in which the boundary CFT2 takes the form of a symmetric
product orbifold; this structure is essential to be able to define the deformation.

The construction of [6] is very interesting because: i) it provides a rare example of tractable non-
AdS holography; ii) it shows that there exist deformations with very similar properties, particularly
in what concerns the UV behaviour, to T T̄ , which are less universal and thus more interesting for
gaining insight into general asymptotically fragile theories; iii) it provides a concrete description of a
two-dimensional compactification of little string theory.

In this lecture, we start by reviewing the relevant string theory setup, which is the NS5-F1 system.
Then, we briefly sketch the construction of the single-trace analogue of the T T̄ operator and list a
number of checks and predictions.

5.1 The NS5-F1 system

The main player in this string-theoretical story is the NS5-F1 system. I will start with a short review
of NS5-branes and then add the F1 strings.

NS5 branes are solitonic objects in string theory, which are magnetically charged under the B-
field. In type IIB, they are related to D5-branes via S-duality, while in type IIA they are related to
M5-branes via uplift. It is interesting to ask whether there exists a limit in which the modes on the
NS5 branes decouple from gravitational physics. Unlike for D-branes, where this limit is a low energy
limit (α′ → 0), for NS5 branes the limit is, rather

gs → 0 , α′ fixed (5.1)

The worldbrane theory obtained in this limit, called little string theory (LST), is non-trivial and its
properties depend strongly on whether we are in type IIA or type IIB, see [29] for a review. Some
of its properties are: it is non-local, and in particular it exhibits T-duality (since NS5-branes are left
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invariant by T-duality along their worldvolume, and gs = 0 is a fixed point of T-duality), it is not
gravitational (no masslesss spin two excitation is present in the spectrum), it exhibits a Hagedorn
growth of states at high energies. The latter property is best seen from holographic dual.

The background that is holographically dual to LST is obtained from the backreacted solution for
N5 NS5-branes, which in string frame reads

ds2 = dxµdxµ +

(
1 +

N5α
′

r2

)
(dr2 + r2dΩ2

3) , e2Φ = g2
s

(
1 +

N5α
′

r2

)
, H = ?4dΦ (5.2)

where xµ ∈ R1,5 span the directions along the brane and r is the radial coordinate in the transverse
R4. In the decoupling limit, the value of the dilaton at infinity, gs → 0, with r̃ ≡ r/gs fixed. The
spacetime becomes

R5,1 × Rφ × S3 , φ ≡
√
N5α′ ln r̃ (5.3)

with a linear dilaton, Φ = −φ/√N5α′. In the asymptotic region, the string coupling is small , so the
bulk can be analysed in string perturbation theory. The worldsheet CFT is exactly solvable in this
region. However, as we approach r → 0, the dilaton grows without bound and the string description
breaks down.

As mentioned above, it is easy to exhibit the Hagedorn growth of states using the holographic
dual. If the NS5 branes are made near-extremal, the metric becomes18

ds2 = −fEdt2 + ds2
R5 +N5α

′
(
dr2

r2fE
+ dΩ2

3

)
, fE = 1− r2

0

r2
(5.4)

where r0 is the location of the horizon, which is assumed to be large enough so that the string coupling,
N5α

′/r2
0, is still small there.

Exercise: By analytically continuing to euclidean time, show that the temperature associated to this
black brane is independent of r0 and is given by T−1

H = 2π
√
N5α′.

A temperature that is independent of the energy implies that S ∝ E, i.e. Hagedorn behaviour.

So far for the little strings. Let us now turn to the setup of [6]. The first step is to get rid of the
strong coupling region at small r. One way to achieve this is to add N1 F1 strings to the system,
which extend along one of the NS5 brane directions, denoted x1 with x1 ∼ x1 + R, and compactify
the remaining directions of the NS5 branes on a T 4. The metric and dilaton then become

ds2 =
−dt2 + dx2

1

f1
+N5α

′
(
dr2

r2
+ dΩ2

3

)
+ ds2

T 4 , e2Φ =
N5α

′

r2f1
, f1 = 1 +

r2
1

r2
, r2

1 =
N1α

′

v
(5.5)

where v is the volume of the T 4 in units of (2π)4α′2. The solution is also supported by a B-field. The
string coupling at r = 0 is inversely proportional to N1 , so for a very large number of F1 strings, the
coupling is small everywhere and we can trust string perturbation theory.

The background (5.5) interpolates between AdS3 × S3 × T 4 in the IR (r → 0) and Rφ × Rt ×
S1
x1
× S3 × T 4 in the UV (r → ∞). The worldsheet sigma model for a string propagating in this

background is known exactly. The IR geometry is described by an SL(2,R)× SU(2)× U(1)4 WZW
sigma model (plus fermions). The full background can be shown to correspond to an exactly marginal
J−J̄− deformation of this worldsheet CFT, where J− is a null component of the SL(2,R) current.
The coefficient of this deformation is in principle tunable and will be denoted as λ.

18From now on, r is rescaled by a factor of gs with respect to its value at asymptotically flat infinity.
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It is also interesting to note that the full background (5.5) can be obtained via a TsT transformation
of the near-horizon F1-NS5 solution.

Exercise: Show that the full background (5.5) can be obtained via a TsT transformation of the IR
AdS3 solution, where TsT stands for: T-duality along x1, a shift s: t+λx̃1, where x̃1 is the
T-dual coordinate to x1, followed by a T-duality back. Determine the value of λ.

5.2 Holographic description of the NS5-F1 system

We would now like to understand the holographic description of the above background. The IR
AdS3 region is described by a dual CFT2, as expected. The departure away from AdS3 is by a
non-normalizable mode, so it corresponds to an irrelevant deformation of the dual CFT. The deep
UV corresponds to a 2d compactification of LST. The main progress achieved in [6] was to propose
a holographic dual the full background (5.5), thus providing a concrete description of compactified
LST.

The holographic dual to the AdS3 region

Let us first concentrate on the r → 0 region, where the geometry becomes AdS3
19 supported by purely

NS-NS three-form flux. For N1 very large, the dual CFT is conjectured to be a free symmetric product
orbifold CFT, of the form (M6N5

)N1/SN1
, where M6N5

is a CFT with central charge 6N5.
Since the background (5.5) is weakly coupled, it can be studied using peturbative worldsheet

techniques. The holographic dictionary provides in this case a map between single-trace operators in
the boundary CFT and vertex operators in the worldsheet WZW model

Obnd(x) =

∫
d2zOw−sheet(x, z) (5.6)

In particular, the stress tensor of the boundary CFT is given by the following expression

T (x) =
1

2N5

∫
d2z(∂xJ(x, z)∂xΦ1(x, z) + 2∂2

xJ(x, z)Φ1(x, z))J̄(x̄, z̄) (5.7)

where J(x, z) is a convenient packaging of the worldsheet SL(2,R) WZW currents, with spacetime
scaling dimension (−1, 0)

J(x, z) = e−xJ
−
0 J+(z)exJ

−
0 = x2J− − 2xJ3 + J+ (5.8)

and Φh(x, z) is an operator with spacetime scaling dimension (h, h), which is a primary both on the
worldsheet and in the boundary CFT. It is then easy to check that the stress tensor has the correct
dimension (2, 0) from the boundary point of view.

Since the boundary CFT is a symmetric product orbifold, the total stress tensor takes the form

T (x) =

N1∑
i=1

Ti(x) (5.9)

where Ti is the stress tensor in a single copy of the M6N5 CFT. A similar expression holds for the
antiholomorphic stress tensor. Note that the (double-trace) T T̄ operator is, in this boundary CFT

T T̄ =
∑
i

Ti
∑
j

T̄j (5.10)

Using the dictionary (5.6), this operator would correspond to a double worldsheet integral.

19More precisely, massless BTZ.
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A single-trace analogue of T T̄

Having described the CFT dual to the IR AdS3 region, one would now like to understand the holo-
graphic dual to the full exact string background (5.5). From the point of view of the IR CFT, one
turns on an irrelevant deformation by an operator of dimension (2, 2).

Exercise: By expanding e.g. the dilaton in (5.5) around the IR AdS3 background, show that infinites-
imally away from AdS, the deformation corresponds to turning on an operator of dimension
(2, 2).

It was proposed in [6] that the deforming operator is

D(x) =

∫
d2z(∂xJ∂xΦ1 + 2∂2

xJΦ1)(∂x̄J̄∂x̄Φ1 + 2∂2
x̄J̄Φ1) (5.11)

which has the correct spacetime scaling dimension, (2, 2), and upon integration satisfies
∫
d2xD(x) =∫

d2z J−J̄−, as required. This operator looks like T on the left and like T̄ on the right; however, it
is single-trace because it involves a single worldsheet integral. Given these properties, [6] naturally
conjectured that in the dual CFT, this operator corresponds to

D(x) ∝
N1∑
i=1

TiT̄i (5.12)

It is useful to let the parameter of the deformation be a free parameter, λ, even though in (5.5) it
has a fixed value. The identification of the leading deforming operator performed above holds for
infinitesimal λ. Remarkably, the results of this analysis can be meaningfully extended to finite λ. On
the worldsheet side, the reason for this is that the J−J̄− deformation is exactly marginal and thus
can be turned on a finite amount. On the dual CFT side, the deformation at finite λ can be defined
as the sum of T T̄ deformations, one in each copy of M6N5

, by the same amount λ. This leads to the
conjecture (supported a posteriori by checks) that the holographic dual to the background (5.5) is the
symmetric product orbifold of T T̄ - deformed CFTs

Zstring[F1-NS5] = Z
[
(T T̄ -def.M6N5)N1/SN1

]
(5.13)

The regime of validity of this correspondence is meant to be the same as that of the original AdS3/CFT2

duality describing the IR region. The free orbifold structure is quite important, both for being able
to define the deformation, and for performing calculations in the boundary QFT.

5.3 Checks and predictions

Black hole entropy

An important check of the proposed duality was to show that the symmetric product orbifold of T T̄
- deformed CFTs correctly reproduces the entropy of a black hole in the bulk.

On the gravity side, we consider the non-extremal NS5-F1 solution . The string frame metric reads

ds2 = −fE
f1
dt2 +

dx2
1

f1
+
N5α

′

fE

dr2

r2
, e2Φ = g2

s

N5α
′

r2f1
(5.14)

where f1, fE are defined in (5.4) and (5.5) and r2
0 is proportional to the mass of the black hole. The

Bekenstein-Hawking entropy of the black hole is

SBH =
AH
4G3

=
R
√
f1

4G3f5
=
R
√
r2
0r

2
1 + r4

0

4G3N5α′
(5.15)
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In the dual theory, the maximal entropy is obtained for equal repartition of the energy between the
N1 copies of the T T̄ - deformedM6N5

CFT, each of which carries energy E/N1. Using (2.31) for each
copy, we find

S = N1S0 = 2πN1

√
N5

π

(
ER

N1
+ λ

E2

N2
1

)
= 2π

√
N5

π
(ERN1 + λE2) (5.16)

Exercise: Express r2
0 in terms of the mass of the black hole and use it to show that the boundary

entropy (5.16) agrees with the bulk Bekenstein-Hawing entropy (5.15) for the appropriate
value of λ. Check that this value agrees with that used to match the Hagedorn temperature,
computed in a previous exercise.

Energy spectrum

As a cross-check of the proposed duality, one can show that the string theory spectrum, as computed
using worldsheet techniques, agrees with that of the boundary symmetric product orbifold QFT. This
was verified in [30] using a null coset construction of the worldsheet CFT that corresponds to the
background (5.5), and in [31] by using the link to the TsT transformation, which is known to only
change the boundary conditions on the worldsheet fields.

Correlation functions

One can use the holographic map between boundary and worldsheet operators to study correlation
functions in the deformed boundary CFT using the well-controlled worldsheet techniques. For a large
class of boundary operators, this map takes the form

O(x) =

∫
d2zΦh(x, z)V(z) (5.17)

where V is a vertex operator associated with the part of the worldsheet CFT that describes the internal
space. The above operator satisfies the mass-shell condition

− h(h− 1)

N5
+ ∆V = 1/2 (5.18)

This method was used in [32, 33] to study the two-point function of operators in the deformed the-
ory. Since the deformation is irrelevant, the correlator becomes non-local. It is thus best described
in momentum space, using the Fourier-transformed version of the map (5.17). From a worldsheet
perspective, the deformation only modifies the mass shell condition (5.18), and amounts to replacing

h(h− 1)→ h(h− 1) +
λN5

2
p2 (5.19)

where p is the momentum of the Fourier-transformed boundary operator, O(p). The answer for the
two-point function is then given by the same formula as the Fourier transform of the CFT two-point
function (∝ (p2)2h−1 times an h-dependent prefactor), but now with h → h(p) as read off from
above. This two-point function is well-defined and smooth for real Euclidean momenta; however, in
Lorentzian signature it has a branch cut for timelike momenta, whose interpretation remains to be
understood.
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Entanglement entropy

The entanglement entropy between an interval of length L in the boundary QFT and its complement
was computed holographically in [34], using the Ryu-Takayanagi formula. Their results nicely show
non-local features, as expected of the non-local boundary theory.

Just like in AdS, the area of the extremal surface is divergent, and needs to be regulated by a
short-distance cutoff ε. The non-locality manifests itself in that the RT surface stops existing when
the length of the boundary interval is smaller than a minimum length Lmin, with

Lmin =
π

2

√
N5α′ (5.20)

The expression for the vacuum entanglement entropy when the length of the boundary interval, L, is
large is given by

SEE =
c β2

H

24π2ε2
+
c

3
ln
L

ε
+O(β2

H/L
2) (5.21)

where βH is the Hagedorn inverse temperature 2π
√
N5α′. For L ≈ Lmin, [34] find

SEE =
c β2

H

24π2ε2
+
c

6
ln
βH(L− Lmin)

ε2
+O(L− Lmin) (5.22)

The second term in the large L expansion is similar to the vacuum entanglement entropy in a CFT2.
The first term - which does not depend on the length of the interval, and would thus drop out from
the renormalized entanglement entropy - could be due to contact terms.

6. Conclusions

In this lecture notes, I have reviewed several basic properties of the T T̄ deformation: its universal
effect on the energy spectrum and on the S-matrix, the holographic dictionary. I have also included a
brief sketch of the single-trace analogue of the T T̄ deformation proposed by [6], which is interesting
from the point of view of developing holography for non-AdS spacetimes, as well as understanding
less universal generalizations of the T T̄ deformation. Many interesting results and research directions
were left out, both for T T̄ and other similar irrelevant current-current deformations.

Of the many possible future directions in this field, one that is particularly interesting is to under-
stand whether T T̄ - deformed QFTs should be thought of as theories of quantum gravity or, rather,
as non-local UV-complete QFTs. The universal time delay proportional to the energy that appears in
scattering processes suggests the former interpretation, whereas the Virasoro symmetry found in the
classical ASG analysis, if it survives at non-perturbative level, suggests the latter. Related questions
are whether a stress tensor can be defined at length scales comparable to

√
µ, as well as understand-

ing the precise connection to LST. One way to distinguish between the two options above would be
to determine whether off-shell observables, such as correlation functions, can be non-perturbatively
defined in this theory. The first perturbative steps in this interesting direction were taken in [35].
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