Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \mbox{Correlating } W_R \mbox{ and } \nu \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Loopholes in W' searches at the LHC based on Phys. Rev. D 99, 035001

Özer Özdal,^{1,2} Mariana Frank,¹ Benjamin Fuks,³ Poulose Poulose⁴

Concordia University¹, University of Southampton², Laboratoire de Physique Theorique et Hautes Energies (LPTHE), Sorbonne Universite et CNRS³, Institut Universitaire de France³, Indian Institute of Technology Guwahati⁴

> NExT Meeting: Gateways to New Physics University of Sussex November 20, 2019

ntroduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limits at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Outline

1 Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

2 W_R Mass Limits at the LHC

3 Motivation

4 Results

Scenario I: $M_{\nu_R} > M_{W_R}$ Scenario II: $M_{\nu_R} < M_{W_R}$ Correlating W_R and ν_R mass bounds

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Results

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \mbox{Correlating } \mathcal{W}_R \mbox{ and } \mathcal{V} \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Outline

1 Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

2 W_R Mass Limits at the LHC

3 Motivation

Results

 $Scenario I: M_{\nu_R} > M_{W_R} \\ Scenario II: M_{\nu_R} < M_{W_R} \\ Correlating W_R and \nu_R mass bounds$

Review of GUTs

Southampton

Introduction

Review of GUTs

The Left-Right Symmetric Model Charged Sector

W_R Mass Limits at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \mathcal{V} \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

• All SM matter plus some Higgs multiplets and a singlet can be embedded into a **27**-plet of E_6 .

• E_6 has the maximal subgroup, under which the **27** representation decomposes as

$$\mathbf{27}
ightarrow \mathbf{16}_1 + \mathbf{10}_{-2} + \mathbf{1}_4$$

• There is an alternative, and also quite interesting, embedding of the SM into E_6 , which is through the subgroup $SU(3)_C \otimes SU(3)_L \otimes SU(3)_H$. **27** decomposes as

$$\mathbf{27} = ig(\mathbf{3},\mathbf{3},1ig) \oplus ig(\mathbf{ar{3}},1,\mathbf{ar{3}}ig) \oplus ig(1,\mathbf{ar{3}},\mathbf{3}ig) \qquad \equiv \quad q \quad + \quad ar{q} \quad + \quad I$$

$$q = \begin{pmatrix} u_L \\ d_L \\ d'_L \end{pmatrix} , \qquad \bar{q} = \begin{pmatrix} u_R^c & d_R^c & d'_R^c \end{pmatrix} , \qquad I = \begin{pmatrix} E_R^c & N_L & \nu_L \\ N_R^c & E_L & e_L \\ e_R^c & \nu_R^c & n_R^c \end{pmatrix}$$

Review of GUTs

Introduction

Southampton

Review of GUTs

The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \text{Correlating } \mathcal{W}_R \text{ and } \mathcal{U} \\ \text{mass bounds} \end{array}$

$$E_{6} \longrightarrow SU(3)_{C} \otimes SU(3)_{L} \otimes SU(3)_{H}$$

$$\longrightarrow SU(3)_{C} \otimes SU(2)_{L} \otimes SU(2)_{H} \otimes U(1)_{X}$$

$$\mathbf{27} = (\mathbf{3}, \mathbf{3}, 1) \oplus (\mathbf{\overline{3}}, 1, \mathbf{\overline{3}}) \oplus (1, \mathbf{\overline{3}}, \mathbf{3}) \equiv q + \mathbf{\overline{q}} + \mathbf{7}$$

$$q = \begin{pmatrix} u_{L} \\ d_{L} \\ d'_{L} \end{pmatrix}, \quad \mathbf{\overline{q}} = \begin{pmatrix} u_{R}^{c} & d_{R}^{c} & d_{R}^{\prime c} \end{pmatrix}, \quad \mathbf{7} = \begin{pmatrix} E_{R}^{c} & N_{L} & \nu_{L} \\ N_{R}^{c} & E_{L} & e_{L} \\ e_{R}^{c} & \nu_{R}^{c} & n_{R}^{c} \end{pmatrix}$$

- There are three different ways to embed $SU(2)_H$ into $SU(3)_H$:
 - 1) Generic Left Right SM (LRSM) $\longrightarrow SU(2)_H = SU(2)_R$ 2) Alternative Left Right SM (ALRSM) $\longrightarrow SU(2)_H = SU(2)_{R'}$ 3) Inert Doublet Model $\longrightarrow SU(2)_H = SU(2)_I$

Introduction

Review of GUTs

The Left-Right Symmetric Model Charged Sector

 W_R Mass Lim at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \text{Correlating } \mathcal{W}_R \text{ and } \mathcal{V} \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

The Left-Right Symmetric Model (LRSM)

 $SU(3)_C \times SU(2)_L \times \frac{SU(2)_R \times U(1)_{B-L}}{SU(2)_R \times U(1)_{B-L}}$

$$SU(3)_C \times \qquad SU(2)_L \times U(1)_Y \\ \downarrow \phi \\ SU(3)_C \times \qquad U(1)_{EM}$$

$$\mathbf{\Phi}\equiv egin{pmatrix} \phi_1^0&\phi_2^+\ \phi_1^-&\phi_2^0 \end{pmatrix}\sim (\mathbf{2},\mathbf{2},\mathbf{0})$$

$$Q_{Li} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}_i \sim (\mathbf{2}, \mathbf{1}, \mathbf{1/3}), \quad Q_{Ri} = \begin{pmatrix} u_R \\ d_R \end{pmatrix}_i \sim (\mathbf{1}, \mathbf{2}, \mathbf{1/3}),$$

$$L_{Li} = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix}_i \sim (\mathbf{2}, \mathbf{1}, -\mathbf{1}), \quad L_{Ri} = \begin{pmatrix} \nu_R \\ \ell_R \end{pmatrix}_i \sim (\mathbf{1}, \mathbf{2}, -\mathbf{1}),$$

$$\begin{split} \boldsymbol{\Delta}_{L} &\equiv \begin{pmatrix} \delta_{L}^{+}/\sqrt{2} & \delta_{L}^{++} \\ \delta_{L}^{0} & -\delta_{L}^{+}/\sqrt{2} \end{pmatrix} \sim (\mathbf{3},\mathbf{1},\mathbf{2}) \\ \boldsymbol{\Delta}_{R} &\equiv \begin{pmatrix} \delta_{R}^{+}/\sqrt{2} & \delta_{R}^{++} \\ \delta_{R}^{0} & -\delta_{R}^{+}/\sqrt{2} \end{pmatrix} \sim (\mathbf{1},\mathbf{3},\mathbf{2}) \end{split}$$

Introduction

Review of GUTs

The Left-Right Symmetric Model Charged Sector

W_R Mass Limi at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } u \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

LRSM Lagrangian & Symmetry Breaking

$$egin{aligned} &+ar{\mathcal{Q}}_L\gamma^\mu\left(i\partial_\mu+g_Lrac{ec{ au}}{2}\cdotec{W}_{L\mu}+rac{g_{B-L}}{6}B_\mu
ight)\mathcal{Q}_L\ &+ar{\mathcal{Q}}_R\gamma^\mu\left(i\partial_\mu+g_Rrac{ec{ au}}{2}\cdotec{W}_{R\mu}+rac{g_{B-L}}{6}B_\mu
ight)\mathcal{Q}_R \end{aligned}$$

$$\begin{split} \mathcal{L}_{Y} &= - \left[Y_{L_{L}} \bar{L}_{L} \Phi L_{R} + \tilde{Y}_{L_{R}} \bar{L}_{R} \Phi L_{L} \right. \\ &+ Y_{Q_{L}} \bar{Q}_{L} \tilde{\Phi} Q_{R} + \tilde{Y}_{Q_{R}} \bar{Q}_{R} \tilde{\Phi} Q_{L} \\ &+ \frac{h_{L}^{ij}}{L} \bar{L}_{L_{j}}^{c} i \tau_{2} \Delta_{L} L_{L_{j}} + \frac{h_{R}^{ij}}{L} \bar{L}_{R_{j}}^{c} i \tau_{2} \Delta_{R} L_{R_{j}} + \text{h.c.} \right] \end{split}$$

$$\mathcal{L}_{\mathrm{LRSM}} = \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{Y} - V(\Phi, \Delta_{L}, \Delta_{R})$$

 $\mathsf{v}_R \gg (\kappa_1, \; \kappa_2) \gg \mathsf{v}_L, \quad \sqrt{\kappa_1^2 + \kappa_2^2} = \mathsf{v} = 246 \; \mathsf{GeV}$

 $\langle \Phi
angle = egin{pmatrix} \kappa_1/\sqrt{2} & 0 \ 0 & \kappa_2 e^{ilpha}/\sqrt{2} \end{pmatrix}$

Gauge Sector

Introductior

Review of GUTs

The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu_R \\ \text{mass bounds} \end{array}$

$$\begin{pmatrix} Z_L^{\mu} \\ B^{\mu} \\ Z_R^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W \sin\phi & -\sin\theta_W \cos\phi \\ \sin\theta_W & \cos\theta_W \sin\phi & \cos\theta_W \cos\phi \\ 0 & \cos\phi & -\sin\phi \end{pmatrix} \begin{pmatrix} W_L^{3\mu} \\ W_R^{3\mu} \\ V^{\mu} \end{pmatrix}$$

Introductior

Review of GUTs

The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu_R \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

$$\begin{pmatrix} Z_{L}^{\mu} \\ B^{\mu} \\ Z_{R}^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & -\sin\theta_{W}\sin\phi & -\sin\theta_{W}\cos\phi \\ \sin\theta_{W} & \cos\theta_{W}\sin\phi & \cos\theta_{W}\cos\phi \\ 0 & \cos\phi & -\sin\phi \end{pmatrix} \begin{pmatrix} W_{L}^{3\mu} \\ W_{R}^{3\mu} \\ V^{\mu} \end{pmatrix}$$

$$\left(\begin{array}{c} Z_R^{\mu} \\ B^{\mu} \end{array}\right) = \left(\begin{array}{c} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{array}\right) \left(\begin{array}{c} W_R^{3\mu} \\ V^{\mu} \end{array}\right)$$

Gauge Sector

Gauge Sector

Review of GUTs

The Left-Right Symmetric Model Charged Sector

Scenario I: $M_{\mathcal{U}_R} > M_{W_R}$ $M_{\nu_{-}} < M_{W_{-}}$ mass bounds

$$\begin{pmatrix} Z_{L}^{\mu} \\ B^{\mu} \\ Z_{R}^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & -\sin\theta_{W}\sin\phi & -\sin\theta_{W}\cos\phi \\ \sin\theta_{W} & \cos\theta_{W}\sin\phi & \cos\theta_{W}\cos\phi \\ 0 & \cos\phi & -\sin\phi \end{pmatrix} \begin{pmatrix} W_{L}^{3\mu} \\ W_{R}^{3\mu} \\ V^{\mu} \end{pmatrix}$$

4.0

3.5

 $a_1 = a_2 = 0.66 a_2 = 0.42$

$$\begin{pmatrix} Z_{R}^{\mu} \\ B^{\mu} \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} W_{R}^{3\mu} \\ V^{\mu} \end{pmatrix}$$

$$M_{A} = 0$$

$$M_{Z_{1,2}}^{2} = \frac{1}{4} \Big[[g_{L}^{2}v^{2} + 2v_{R}^{2}(g_{R}^{2} + g_{B-L}^{2})] \\ \mp \sqrt{[g_{L}^{2}v^{2} + 2v_{R}^{2}(g_{R}^{2} + g_{B-L}^{2})]^{2} - 4g_{L}^{2}(g_{R}^{2} + 2g_{B-L}^{2})}$$

$$M_{M_{W_{R}}}^{3} = 1.67$$

Introductio

Review of GUTs The Left-Right Symmetric Mode Charged Sector

$$\left(\begin{array}{c}W_1\\W_2\end{array}\right) = \left(\begin{array}{c}\cos\xi & -\sin\xi\\\sin\xi & \cos\xi\end{array}\right) \left(\begin{array}{c}W_L\\W_R\end{array}\right)$$

Charged Sector

at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu_R \\ \text{mass bounds} \end{array}$

Introductior

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Charged Sector

$$\left(\begin{array}{c} W_1\\ W_2\end{array}\right) = \left(\begin{array}{c} \cos\xi & -\sin\xi\\ \sin\xi & \cos\xi\end{array}\right) \left(\begin{array}{c} W_L\\ W_R\end{array}\right)$$

In the limit of
$$(\kappa_1,\kappa_2)\ll v_R$$
 and $g_R\sim g_L$ we have

 $\sin\xi\approx\frac{\kappa_1\kappa_2}{v_R^2},\ \ \sin^2\xi\approx0,\quad \cos\xi\approx1,\ \ \text{leading to}$

 $M_{W_1}^2 = rac{1}{4}g_L^2 v^2\,,$

$$M_{W_2}^2 = \frac{1}{4} \left[2g_R^2 v_R^2 + g_R^2 v^2 + 2g_R g_L \frac{\kappa_1^2 \kappa_2^2}{v_R^2} \right]$$

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limits at the LHC

Motivation

Result

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \mbox{Correlating } \mathcal{W}_R \mbox{ and } \mathcal{V} \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Outline

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

2 W_R Mass Limits at the LHC

3 Motivation

Results

 $\begin{array}{ll} \mbox{Scenario I: } M_{\nu_R} > M_{W_R} \\ \mbox{Scenario II: } M_{\nu_R} < M_{W_R} \\ \mbox{Correlating } W_R \mbox{ and } \nu_R \mbox{ mass bounds} \end{array}$

Introduction

Review of GUTs The Left-Right Symmetric Model

W_R Mass Limits at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } mass \text{ bounds} \end{array}$

Alternative Left-Right Symmetric Model

Searches for W' bosons at the LHC

 $W_R
ightarrow t ar b$ channel

 $W_R \rightarrow jj$ channel

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limits at the LHC

Motivation

Results

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \mbox{Correlating } W_R \mbox{ and } \mathcal{V} \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

$W_R \to \ell \nu_R \to \ell \ell W_R^{\star} \to \ell \ell q q', \quad \ell = e \text{ or } \mu.$

Searches for W' bosons at the LHC

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{\mathcal{W}_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{\mathcal{W}_R} \\ \text{Correlating } \mathcal{W}_R \text{ and } \mathcal{V} \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Outline

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

2 W_R Mass Limits at the LHC

3 Motivation

Results

Scenario I: $M_{\nu_R} > M_{W_R}$ Scenario II: $M_{\nu_R} < M_{W_R}$ Correlating W_R and ν_R mass bounds

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Motivation for $\mathbf{g}_L \neq \mathbf{g}_R$

Breaking the symmetry to $U(1)_{EM}$ impose,

 $rac{1}{e^2} = rac{1}{g_L^2} + rac{1}{g_R^2} + rac{1}{g_{B-L}^2}$

 $SU(2)_R \otimes U(1)_{B-L} \longrightarrow U(1)_Y$ requires,

 $rac{1}{g_Y^2} = rac{1}{g_R^2} + rac{1}{g_{B-L}^2}$

$$an heta_W = rac{g_R \sin \phi}{g_L} \leq rac{g_R}{g_L} \,,$$

Theoretical constraint on g_R gauge coupling

 $g_L an heta_W \leq g_R$

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Results

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \mbox{Correlating } W_R \mbox{ and } \nu \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Outline

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

2 W_R Mass Limits at the LHC

3 Motivation

4 Results

 $Scenario I: M_{\nu_R} > M_{W_R} \\ Scenario II: M_{\nu_R} < M_{W_R} \\ Correlating W_R and \nu_R mass bounds$

Analysis

Southampton

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Results

 $\begin{array}{l} \mbox{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \mbox{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \mbox{Correlating } W_R \mbox{ and } \nu \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Observable	Constraints	Observable	Constraints
ΔB_s	[10.2-26.4]	ΔB_d	[0.294-0.762]
ΔM_K	$< 5.00 \times 10^{-15}$	$\frac{\Delta M_K}{\Delta M_K^{SM}}$	[0.7-1.3]
ϵ_K	$< 3.00 \times 10^{-3}$	$\frac{\epsilon_{K}}{\epsilon_{K}^{SM}}$	[0.7-1.3]
${\sf BR}(B^0 o X_s \gamma)$	$[2.99, 3.87] imes 10^{-4}$	$\frac{BR(B^0 \to X_s \gamma)}{BR(B^0 \to X_s \gamma)_{SM}}$	[0.7-1.3]
M _h	[124, 126] GeV	$M_{H_{1,2}^{\pm\pm}}$	$> 535~{ m GeV}$
$M_{H_4,A_2,H_2^{\pm}}$	$>$ 4.75 $ imes$ M $_{W_R}$,	

Table: Current experimental bounds imposed for consistent solutions.

Parameter	Scanned range
v _R	[2.2, 20] TeV
$V^R_{ m CKM}$: c^R_{12} , c^R_{13} , c^R_{23}	$[-1, \ 1]$
$diag(h_R^{ij})$	[0.001, 1]

$$\begin{split} M^{ij}_{\nu_R} &= h^{ij}_R \nu_R \\ V^R_{\rm CKM} &= \begin{bmatrix} c^R_{12}c^R_{13} & s^R_{12}c^R_{13} & s^R_{13}e^{i\delta_R} \\ -s^R_{12}c^R_{23} - c^R_{12}s^R_{23}s_{13}e^{i\delta_R} & c^R_{12}c^R_{23} - s^R_{12}s^R_{23}s^R_{13}e^{i\delta_R} & s^R_{23}c^R_{13} \\ s^R_{12}s^R_{23} - c^R_{12}c^R_{23}s^R_{13}e^{i\delta_R} & -c^R_{12}c^R_{23} - s^R_{12}c^R_{23}s^R_{13}e^{i\delta_R} & c^R_{23}c^R_{13} \end{bmatrix} \end{split}$$

Table: Scanned parameter space.

 $g_L \neq$

Introduction

Review of GUTs The Left-Right Symmetric Mode Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \label{eq:scenario} & {\rm Scenario I:} \\ & {\cal M}_{{\cal V}_R} > {\cal M}_{{\cal W}_R} \\ {\rm Scenario II:} \\ & {\cal M}_{{\cal V}_R} < {\cal M}_{{\cal W}_R} \\ {\rm Correlating } {\cal W}_R \mbox{ and } {\cal V} \\ {\rm mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Scenario I: $M_{\nu_R} > M_{W_R}$

$$egin{aligned} g_R &= 0.37, ext{ tan } eta &= 0.01, \ V_{ ext{CKM}}^L &= V_{ ext{CKM}}^n \ BR(W_R &
ightarrow W_L h) \ BR(W_R &
ightarrow W_L Z_L) \ BR(W_R &
ightarrow tar{b}) &\sim 32\% \ - \ 33\% \end{aligned}$$

.

$$g_L
eq g_R = 0.37$$
, tan $eta = 0.5$, $V_{
m CKM}^L = V_{
m CKM}^R$

 $\begin{array}{l} \mathsf{BR}(W_R \rightarrow W_L h) \sim 1.95\% \\ \mathsf{BR}(W_R \rightarrow W_L Z_L) \sim 2.0\% \\ \mathsf{BR}(W_R \rightarrow t \bar{b}) \sim 31.0\% - 31.8\% \end{array}$

$$g_L
eq g_R = 0.37$$
, tan $\beta = 0.5$, $V_{\text{CKM}}^L
eq V_{\text{CKM}}^R$
BR $(W_R \rightarrow t\bar{b}) \sim 20\%$ for high M_{W_R} (4 TeV
 $\sim 29\%$ for low M_{W_R} (1.5 TeV

Scenario I: $M_{\nu_R} > M_{W_R}$

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \mbox{Scenario I:} \\ \mbox{$M_{\mathcal{V}_R} > M_{W_R}$} \\ \mbox{Scenario II:} \\ \mbox{$M_{\mathcal{V}_R} < M_{W_R}$} \\ \mbox{Correlating W_R and ν_h} \\ \mbox{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

Scenario I: $M_{\nu_R} > M_{W_R}$	Lower limit	Exclusion	
	Expected	Observed	channel
	Lypected	Observed	
$g_L = g_R$, tan $eta = 0.01$, $V_{ m CKM}^L = V_{ m CKM}^R$	3450	3600	$W_R ightarrow tb$
$g_L eq g_R$, tan $eta = 0.01, \; V_{ m CKM}^L = V_{ m CKM}^R$	2700	2700	$W_R ightarrow tb$
$g_L eq g_R$, tan $eta = 0.5, \; V_{ m CKM}^L = V_{ m CKM}^R$	2675	2675	$W_R ightarrow tb$
$g_L eq g_R$, tan $eta = 0.5, \; V^L_{ m CKM} eq V^R_{ m CKM}$	1940	2360	$W_R ightarrow tb$
$g_L=g_R$, tan $eta=0.01,\;V_{ m CKM}^L=V_{ m CKM}^R$	3625	3620	$W_R ightarrow jj$
$g_L eq g_R$, tan $eta = 0.01, \; V_{ m CKM}^L = V_{ m CKM}^R$	2700	2555	$W_R ightarrow jj$
$g_L eq g_R$, tan $eta = 0.5, \; V_{ m CKM}^L = V_{ m CKM}^R$	2650	2500	$W_R \rightarrow jj$
$g_L eq g_R$, tan $eta = 0.5, \; V^L_{ m CKM} eq V^R_{ m CKM}$	2010	2000	$W_R \rightarrow jj$

Table: Lower limits for M_{W_R} in GeV, when $M_{\nu_R} > M_{W_R}$.

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

Scenario I: $M_{\nu_R} > M_{W_R}$ Scenario II: $M_{\nu_R} < M_{W_R}$ Correlating W_R and mass bounds

Alternative Left-Right Symmetric Model

Scenario II: $M_{\nu_R} < M_{W_R}$

$$g_L = g_R$$
 ,tan $eta = 0.01, \; V_{
m CKM}^L = V_{
m CKM}^R$

 $\frac{\mathsf{BR}(W_R \to \nu_R \ell)}{\mathsf{BR}(W_R \to t\bar{b})} \sim 5.8\% \text{ (each family)} \\ \mathbb{BR}(W_R \to t\bar{b}) \sim 26.5\% \text{ - } 27.3\%$

$$g_L \neq g_R = 0.37$$
, tan $\beta = 0.01$, $V_{\rm CKM}^L = V_{\rm CKM}^R$

 ${f BR}(W_R o
u_R \ell) \sim 6.7\%$ (each family) ${f BR}(W_R o tar b) \sim 25.7\%$ - 26.5%

$$g_L
eq g_R = 0.37$$
, tan $eta = 0.5, \; V_{
m CKM}^L = V_{
m CKM}^R$

$$\begin{array}{l} \mathrm{BR}(W_R \to \nu_R \ell) \sim 6.7\% \text{ (each family)} \\ \mathrm{BR}(W_R \to W_L h) \sim 1.95\% \\ \mathrm{BR}(W_R \to W_L Z_L) \sim 2.0\% \\ \mathrm{BR}(W_R \to t\bar{b}) \sim 24.8\% - 25.6\% \end{array}$$

$$g_L
eq g_R = 0.37$$
, tan $eta = 0.5$, $V^L_{
m CKM}
eq V^R_{
m CKM}$

$${
m BR}(W_R o tar{b}) \sim 15.7\%$$
 for high M_{W_R} (4 TeV) $\sim 24.7\%$ for low M_{W_R} (1.5 TeV

Review of GUTs The Left-Right Charged Sector

 $M_{\nu_{-}} > M_{W_{-}}$ Scenario II: $M_{\nu_{\alpha}} < M_{W_{\alpha}}$

Scenario	II:	M_{ν_R}	<	M_{W_R}	
----------	------------	-------------	---	-----------	--

Scenario II: $M_{ u_R} < M_{W_R}$	Lower limi [.]	ts for M_{W_R} (GeV)	Exclusion
	Expected	Observed	channel
$g_L = g_R$, tan $\beta = 0.01$, $V_{CKM}^L = V_{CKM}^R$	3320	3450	$W_R \rightarrow tb$
$g_L \neq g_R$, tan $\beta = 0.01$, $V_{\rm CKM}^L = V_{\rm CKM}^R$	2375	2575	$W_R \rightarrow tb$
$g_L \neq g_R$, tan $\beta = 0.5$, $V_{\rm CKM}^L = V_{\rm CKM}^R$	2350	2565	$W_R \rightarrow tb$
$g_L eq g_R$, tan $eta = 0.5, \; V^L_{ m CKM} eq V^R_{ m CKM}$	1850	2320	$W_R \rightarrow tb$
$g_L = g_R$, tan $eta = 0.01$, $V_{ m CKM}^L = V_{ m CKM}^R$	3500	3500	$W_R \rightarrow jj$
$g_L \neq g_R$, tan $\beta = 0.01$, $V_{\rm CKM}^L = V_{\rm CKM}^R$	2500	2430	$W_R \rightarrow jj$
$g_L eq g_R$, tan $eta = 0.5, \; V_{ m CKM}^L = V_{ m CKM}^R$	2460	2400	$W_R ightarrow jj$
$g_L eq g_R$, tan $eta = 0.5, \; V_{ m CKM}^L eq V_{ m CKM}^R$	2000	2000	$W_R \rightarrow jj$

Table: Lower limits for M_{W_R} in GeV when $M_{\nu_R} < M_{W_R}$.

Scenario II: $M_{\nu_R} < M_{W_R}$

Southampton

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Results

Scenario I: $M_{\nu_R} > M_{W_R}$ Scenario II:

 $M_{\nu_R} < M_{W_R}$ Correlating W_R and it mass bounds

Alternative Left-Right Symmetric Model

 $W_P \to \ell \nu_P \to \ell \ell W_P^* \to \ell \ell a a', \ \ell = e \text{ or } \mu$

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \end{array}$

Correlating W_R and ν_R mass bounds

Alternative Left-Right Symmetric Model

Correlating W_R and ν_R mass bounds

Correlating W_R and ν_R mass bounds

Southampton

Review of GUTs The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Result

Scenario I: $M_{\nu_{R}} > M_{W_{R}}$ Scenario II: $M_{\nu_{R}} < M_{W_{R}}$ Correlating W_{P} and ν_{P}

Correlating W_R and U_1 mass bounds

Correlating W_R and ν_R mass bounds

Southampton

Review of GUTs The Left-Right Symmetric Model Charged Sector

 W_R Mass Limit at the LHC

Motivation

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_{R}} > M_{W_{R}} \\ \text{Scenario II:} \\ M_{\mathcal{V}_{R}} < M_{W_{R}} \end{array}$

Correlating W_R and ν_R mass bounds

Benchmarks (LRSM)

Southampton

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Results

Scenario I: $M_{\nu_{R}} > M_{W_{R}}$ Scenario II: $M_{\nu_{R}} < M_{W_{R}}$ Correlating W_{P} and ν_{P}

Correlating VV_R and mass bounds

Alternative Left-Right Symmetric Model

	BM I : $M_{\nu_R} > M_{W_R}$	BM II : $M_{\nu_R} < M_{W_R}$
m_{W_R} [GeV]	2557	3689
$m_{ u_R}$ [GeV]	16797	1838
$\sigma(pp o W_{R})$ [fb] @13 TeV	48.7	3.98
$\sigma(pp o W_R)$ [fb] @27 TeV	478.0	77.3
$BR(W_R o t\overline{b})$ [%]	26.3	19.9
$BR(W_R \to jj) \ [\%]$	58.6	45.8
$BR(W_R \to \nu_R \ell) \ [\%]$	-	6.5 (each family)
$BR(W_R o h_1 W_L) \ [\%]$	1.8	1.5
$BR(W_R o W_L Z)$ [%]	2.0	1.6
$BR(\nu_R \to \ell q q') \ [\%]$	-	65.3
$BR(\nu_R \to W_L \ell) \ [\%]$	1.1×10^{-4}	33.1
$BR(\nu_R \to W_R \ell) \ [\%]$	99.9	-

Table: Related Branching Ratios and Cross Sections for BM I and BM II.

 $M_{\nu_o} > M_{W_o}$ $M_{\nu_{e}} < M_{W_{e}}$

Alternative Left-Right Symmetric Model

Outline

The Left-Right Symmetric Model

2 W_R Mass Limits at the LHC

Scenario I: $M_{\nu_P} > M_{W_P}$ Scenario II: $M_{\nu_{P}} < M_{W_{P}}$

Alternative Left-Right Symmetric Model (ALRSM)

Southampton

The Left-Right

 $M_{\nu_{-}} > M_{W_{-}}$

 $M_{\nu_{-}} < M_{W_{-}}$

Fields	Repr.	$U(1)_S$
$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\left(3,2,1,\tfrac{1}{6}\right)$	0
$Q_R = egin{pmatrix} u_R \ d'_R \end{pmatrix}$	$\left(\boldsymbol{3},\boldsymbol{1},\boldsymbol{2},\frac{1}{6}\right)$	$-\frac{1}{2}$
d'_L	$\bigl({\bf 3},{\bf 1},{\bf 1},-\tfrac13\bigr)$	$^{-1}$
d_R	$\bigl({\bf 3},{\bf 1},{\bf 1},-\tfrac13\bigr)$	0
$L_L = \begin{pmatrix} u_L \\ e_L \end{pmatrix}$	$\left(1,2,1,-\tfrac{1}{2}\right)$	1
$L_R = \begin{pmatrix} n_R \\ e_R \end{pmatrix}$	$\left(1,1,2,-\tfrac{1}{2}\right)$	<u>3</u> 2
nL	$\left(\boldsymbol{1},\boldsymbol{1},\boldsymbol{1},\boldsymbol{0}\right)$	2
ν_R	$\left(\boldsymbol{1},\boldsymbol{1},\boldsymbol{1},\boldsymbol{0}\right)$	1
$\phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}$	$\left(\boldsymbol{1},\boldsymbol{2},\boldsymbol{2}^{*},\boldsymbol{0}\right)$	$-\frac{1}{2}$
$\chi_L = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \\ \chi_L^0 \end{pmatrix}$	$\left(1,2,1,\frac{1}{2}\right)$	0
$\chi_R = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \\ \chi_R^0 \end{pmatrix}$	$\left(1,1,2,\frac{1}{2}\right)$	$\frac{1}{2}$

$$\begin{aligned} \mathcal{L}_{\mathrm{Y}} &= \bar{Q}_{L} \mathbf{\hat{Y}}^{u} \hat{\phi}^{\dagger} Q_{R} - \bar{Q}_{L} \mathbf{\hat{Y}}^{d} \chi_{L} d_{R} - \bar{Q}_{R} \mathbf{\hat{Y}}^{d'} \chi_{R} d_{L}^{\prime} \\ &- \bar{L}_{L} \mathbf{\hat{Y}}^{e} \phi L_{R} + \bar{L}_{L} \mathbf{\hat{Y}}^{\nu} \hat{\chi}_{L}^{\dagger} \nu_{R} + \bar{L}_{R} \mathbf{\hat{Y}}^{n} \hat{\chi}_{R}^{\dagger} n_{L} + \mathrm{h.c.} \end{aligned}$$

$$\langle \phi
angle = rac{1}{\sqrt{2}} egin{pmatrix} 0 & 0 \ 0 & k \end{pmatrix} \ , \qquad \langle \chi_L
angle = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ v_L \end{pmatrix} \ , \qquad \langle \chi_R
angle = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ v_R \end{pmatrix}$$

$$\mathcal{L}_{\rm H} = D_{\mu}\phi^{\dagger}D^{\mu}\phi + D_{\mu}\chi_{L}^{\dagger}D^{\mu}\chi_{L} + D_{\mu}\chi_{R}^{\dagger}D^{\mu}\chi_{R} - V_{\rm H}(\phi,\chi_{L},\chi_{R})$$

$$M_{W} = \frac{1}{2}g_{L}\sqrt{k^{2} + v_{L}^{2}} \equiv \frac{1}{2}g_{L}v \quad \text{and} \quad M_{W'} = \frac{1}{2}g_{R}\sqrt{k^{2} + v_{R}^{2}} \equiv \frac{1}{2}g_{R}v'$$
$$M_{Z} = \frac{g_{L}}{2}v \quad \text{and} \quad M_{Z'} = \frac{1}{2}\left[g_{R}^{2} + g_{R}^{2}(c_{\varphi W}^{4} + v_{R}^{2}) + g_{R}^{2}(c_{\varphi W}^{4} + v_{R}^{2})\right]$$

$$2c_{\theta_W} = 2c_{\theta_W} + 2c_{\theta_W} + 2c_{\phi_W} + 2c_{\phi_W}$$

$$s_{\varphi_W} = \frac{g_{B-L}}{\sqrt{g_{B-L}^2 + g_R^2}} = \frac{g_Y}{g_R}$$
 and $s_{\theta_W} = \frac{g_Y}{\sqrt{g_L^2 + g_Y^2}} = \frac{e}{g_L}$,

W' & Z' mass limits in ALRSM and Scotino Dark Matter

Southampton

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu \\ \text{mass bounds} \end{array}$

Benchmarks (ALRSM)

Southampton

Review of GUTs The Left-Right Symmetric Mode Charged Sector

			$M_{H_1^0}$ [GeV	$M_{H_2^0}$ [GeV	/] M _{H30} [Ge	V] $M_{A_1^0}$ [Ge	$M_{A_2^0}$ [G	$eV] M_{H_1^{\pm}} [O]$	$eV] M_{H_2^2}$	± [GeV]
	BN	11	193	907	1546	193	907	907		194
	BM	ш	82	213	1578	82	167	167		82
	BM	ш	192	894	1546	192	894	894		192
_		M _Z	/ [GeV]	$M_{W'}$ [GeV]	<i>M</i> _{n1} [GeV]	<i>M</i> _{n2} [GeV]	<i>M</i> _{n3} [GeV]	<i>M_{d'}</i> [GeV]	<i>M_{s'}</i> [GeV]	<i>M_{b'}</i> [GeV]
	вм і		4992	1460	756	971	1202	1500	1800	2000
E	вмп		5113	1288	909	1134	1223	1400	1822	2200
E	мш	.	4992	1460	902	1023	1312	1500	1936	2821

Results

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu \\ \text{mass bounds} \end{array}$

10 2	(Asyst 20%)				
*	Δsyst 20%)				_
"] — z	$(\Delta syst 10\%)$	-			
8	Δ syst 10%)				
	(Δayat 5%)	1000			
7	Lasyst 076)				
	and the second se				
6	and the states	_			
	14				
° [11/				
	1/				
	1				
3					
2	201	$\rightarrow d'd' (d' -$	$W' \in W' \rightarrow$	land	
	PI	, , a a , (a	, ,,, ,	endsi)	
11					
0	1000	2000	3000	4000	500

	$\Omega_{ m DM} h^2$	$\sigma_{ m SI}^{ m proton}$ [pb]	$\sigma_{ m SI}^{ m neutron}$ [pb]	$\langle \sigma v angle ~ [{ m cm}^3 { m s}^{-1}]$
BM I	0.118	$8.08 imes10^{-10}$	2.88×10^{-11}	$7.81 imes 10^{-28}$
BM II	0.120	$8.09 imes10^{-10}$	$8.37 imes10^{-10}$	$3.29 imes10^{-27}$
BM III	0.119	$7.72 imes10^{-10}$	$3.67 imes 10^{-11}$	$1.17 imes10^{-27}$

	BM II
$\sigma({ m pp} ightarrow d_1'd_1')~[{ m pb}]$ @13 TeV	2.72×10^{-3}
$BR(d'_1 \to W'j) [\%]$	96.8
$BR(W' \to \ell n_{\mathrm{DM}})$ [%]	21.4
s @ \mathscr{L} =3 ab ⁻¹	4.7
$Z_A \ \mathbb{Q} \mathscr{L} = 3 \ \mathrm{ab}^{-1}$	3.72

Thank you!

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \mbox{Scenario I:} & & \\ M_{\mathcal{V}_R} > M_{W_R} \\ \mbox{Scenario II:} & & \\ M_{\mathcal{V}_R} < M_{W_R} \\ \mbox{Correlating } W_R \mbox{ and } \nu_R \\ \mbox{mass bounds} \end{array}$

Introduction

Review of GUTs The Left-Right Symmetric Model Charged Sector

W_R Mass Limit at the LHC

Motivation

Result

 $\begin{array}{l} \text{Scenario I:} \\ M_{\mathcal{V}_R} > M_{W_R} \\ \text{Scenario II:} \\ M_{\mathcal{V}_R} < M_{W_R} \\ \text{Correlating } W_R \text{ and } \nu_I \\ \text{mass bounds} \end{array}$

Alternative Left-Right Symmetric Model

LRSM Higgs Potential

$$\begin{split} V(\phi, \Delta_L, \Delta_R) &= -\mu_1^2 \left(\mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] \right) - \mu_2^2 \left(\mathrm{Tr} \left[\bar{\Phi} \Phi^{\dagger} \right] + \left(\mathrm{Tr} \left[\bar{\Phi}^{\dagger} \Phi \right] \right) \right) - \mu_3^2 \left(\mathrm{Tr} \left[\Delta_L \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\Delta_R \Delta_R^{\dagger} \right] \right) \\ &+ \lambda_1 \left(\left(\mathrm{Tr} \left[\Phi \Phi^{\dagger} \right] \right)^2 \right) + \lambda_2 \left(\left(\mathrm{Tr} \left[\bar{\Phi} \Phi^{\dagger} \right] \right)^2 + \left(\mathrm{Tr} \left[\bar{\Phi}^{\dagger} \Phi \right] \right)^2 \right) + \lambda_3 \left(\mathrm{Tr} \left[\bar{\Phi} \Phi^{\dagger} \right] \mathrm{Tr} \left[\bar{\Phi}^{\dagger} \Phi \right] \right) \\ &+ \lambda_4 \left(\mathrm{Tr} \left[\Phi \Phi^{\dagger} \right] \left(\mathrm{Tr} \left[\bar{\Phi} \Phi^{\dagger} \right] + \mathrm{Tr} \left[\bar{\Phi}^{\dagger} \Phi \right] \right) \right) + \rho_1 \left(\left(\mathrm{Tr} \left[\Delta_L \Delta_L^{\dagger} \right] \right)^2 + \left(\mathrm{Tr} \left[\Delta_R \Delta_R^{\dagger} \right] \right)^2 \right) \\ &+ \rho_2 \left(\mathrm{Tr} \left[\Delta_L \Delta_L \right] \mathrm{Tr} \left[\Delta_L^{\dagger} \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\Delta_R \Delta_R \right] \mathrm{Tr} \left[\Delta_R^{\dagger} \Delta_R^{\dagger} \right] \right) + \rho_3 \left(\mathrm{Tr} \left[\Delta_L \Delta_L^{\dagger} \right] \mathrm{Tr} \left[\Delta_R \Delta_R^{\dagger} \right] \right) \\ &+ \rho_4 \left(\mathrm{Tr} \left[\Delta_L \Delta_L \right] \mathrm{Tr} \left[\Delta_R^{\dagger} \Delta_R^{\dagger} \right] + \mathrm{Tr} \left[\Delta_L^{\dagger} \Delta_L^{\dagger} \right] \mathrm{Tr} \left[\Delta_R \Delta_R \right] \right) + \alpha_1 \mathrm{Tr} \left[\Phi \Phi^{\dagger} \right] \left(\mathrm{Tr} \left[\Delta_L \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\Delta_R \Delta_R^{\dagger} \right] \right) \\ &+ \alpha_2 \left(\mathrm{Tr} \left[\Phi \Phi^{\dagger} \Delta_L \Delta_R^{\dagger} \right] + \mathrm{Tr} \left[\Phi^{\dagger} \Phi \Delta_R \Delta_R^{\dagger} \right] \right) + \beta_1 \left(\mathrm{Tr} \left[\Phi \Delta_R \Phi^{\dagger} \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\Phi^{\dagger} \Delta_L \Phi_R^{\dagger} \right] \right) \\ &+ \beta_2 \left(\mathrm{Tr} \left[\bar{\Phi} \Delta_R \Phi^{\dagger} \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\bar{\Phi}^{\dagger} \Delta_L \Phi_R \right] \right) + \beta_3 \left(\mathrm{Tr} \left[\Phi \Delta_R \Phi^{\dagger} \Delta_L^{\dagger} \right] + \mathrm{Tr} \left[\Phi^{\dagger} \Delta_L \Phi_R^{\dagger} \right] \right) \end{split}$$