WIMPs or else? Using Machine Learning for Dark Matter Detection

Charanjit Khosa University of Sussex

NExT Meeting, University of Sussex, 20th November 2019

Based on: 1. CKK, Veronica Sanz, Michael Soughton, arXiv: 1910.06058 [hep-ph] 2. CKK, Lucy Mars, Joel Richards, Veronica Sanz [in prep.]

Beyond the Standard Model

Dark Matter Detection: Current Constraints

MET+X (jet, photon, W/Z (jets/ll),H(b/tau)+HF (b/t) pair+single top)

CMS Collaboration, Phys. Rev. D 97 (2018), 092005 M.Schumann, J. Phys. G 46 (2019), 103003

Machine learning at the energy and intensity frontiers of particle physics

Alexander Radovic¹*, Mike Williams²*, David Rousseau³, Michael Kagan⁴, Daniele Bonacorsi^{5,6}, Alexander Himmel⁷, Adam Aurisano⁸, Kazuhiro Terao⁴ & Taritree Wongjirad⁹

Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.

Table 1 Effect of machine learning on the discovery and study of the Higgs boson							
Analysis	Years of data collection	Sensitivity without machine learning	Sensitivity with machine learning	Ratio of <i>P</i> values	Additional data required		
$\overline{CMS^{24}} \\ H \to \gamma \gamma$	2011–2012	2.2 σ , $P = 0.014$	2.7 <i>σ</i> , <i>P</i> = 0.0035	4.0	51%		
$\begin{array}{l} ATLAS^{43} \\ H \rightarrow \tau^+ \tau^- \end{array}$	2011–2012	2.5 <i>σ</i> , <i>P</i> = 0.0062	3.4 <i>σ</i> , <i>P</i> = 0.00034	18	85%		
ATLAS ⁹⁹ VH → bb	2011–2012	1.9 <i>σ</i> , <i>P</i> = 0.029	2.5 <i>σ</i> , <i>P</i> = 0.0062	4.7	73%		
$ATLAS^{41}$ $VH \rightarrow bb$	2015–2016	2.8 <i>σ</i> , <i>P</i> = 0.0026	3.0 <i>о</i> , <i>P</i> = 0.00135	1.9	15%		
CMS^{100} $VH \rightarrow bb$	2011–2012	1.4 <i>σ</i> , <i>P</i> = 0.081	2.1 <i>σ</i> , <i>P</i> = 0.018	4.5	125%		

A. Radovic et al., Nature 560(2018) no. 7716,41

Machine learning at the energy and intensity frontiers of particle physics

Alexander Radovic¹*, Mike Williams²*, David Rousseau³, Michael Kagan⁴, Daniele Bonacorsi^{5,6}, Alexander Himmel⁷, Adam Aurisano⁸, Kazuhiro Terao⁴ & Taritree Wongjirad⁹

Machine Learning techniques increase the discovery potential of the

experiments

Table 1 Effect of machine learning on the discovery and study of the Higgs boson								
				1.9				

A. Radovic et al., Nature 560(2018) no. 7716,41

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014

DOI: 10.1038/ncomms5308

Searching for exotic particles in high-energy physics with deep learning

P. Baldi¹, P. Sadowski¹ & D. Whiteson²

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on 'shallow' machine-learning models that have a limited capacity to learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

Low-level features: $p_T^{l_1}, p_T^{l_2}, \sum p_T^j, MET, N_j$

High-level features: Axial MET, M_{T_2} , razor quantities

SUSY benchmark: chargino production (lepton+MET final state)

Technique	Low-level	High-level	Complete
AUC			
BDT	0.850 (0.003)	0.835 (0.003)	0.863 (0.003)
NN	0.867 (0.002)	0.863 (0.001)	0.875 (<0.001)
NNdropout	0.856 (<0.001)	0.859 (<0.001)	0.873 (<0.001)
DN	0.872 (0.001)	0.865 (0.001)	0.876 (<0.001)
DN _{dropout}	0.876 (<0.001)	0.869 (<0.001)	0.879 (<0.001)
Discovery sign	ificance		
NN	6.5σ	6.2σ	6.9σ
DN	7.5σ	7.3σ	7.6σ
BDT, boosted dec	ision tree; DN, deep neura	l network; NN, shallow neu	ural network; SUSY,

supersymmetry particle.

r

ARTICLE Deep Learning methods improve the Received 19 Feb 2014 | Accepted reache of the collider searches for new of the collider searches for new of the physics searches of the physics searches of the collider searches

B SMEFT (new physics deformations)

J. Brehmer, K. Cranmer, G. Louppe and J Pavez, Phys. Rev. Lett. 121 (2018) 111801, Phys. Rev. D 98 (2018) 052004 Felipe F. Freitas, CKK, Veronica Sanz, arXiv: 1902.05803 [hep-ph]

Signal

Collision of the company of the collision of the first of	1 - I -	4		- l ⁻
• Top tagging	ieczka. T.Plehr	n. M.Russell and T	Schell, JHEP 170	05 (2017)
discoveries. Finding these have particles requires solving dimetic signal versus of 2006				0(===/)
classification problems, hence machine-learning approaches are often use	ard SU	sy benchma	ark:	
approaches have relied on 'shallow' machine-learning models that have a limited capacity	^{y to}	roino product	ion (lenton +	VFT final
learn complex nonlinear functions of the inputs, and rely on a painstaking search thro	ugh			
manually constructed nonlinear features. Progress on this problem has slowed, as Ha	er. Y.Y. Li. T. L	iu and H. Wang, a	arXiv: 1807.10261	[hep-ph]
techniques have shown equivalent performance. Recent advances in the field of deep learn	ning			rh h1
make it possible to learn more complex functions and better discriminate between signal	and Table 2 P	erformance comp	arison for the SU	SV benchmark
background classes. Here using benchmark data sets, we show that deen-learning meth	ods	cironnance comp		JI Demennia K.
• Anomaly detection M Fa	rina V Nakaia	and D Shih arXiv	v: 1808 08002[he	n-nhl
need no manually constructed inputs and yet improve the classification metric by as much	Technique	Low-level	·· 1000:00992[nc	Complete
8% over the best current approaches. This demonstrates that deep-learning approaches	can			
improve the power of collider searches for exotic particles.	AUC			
	BDT	0.850 (0.003)	0.835 (0.003)	0.863 (0.003)
• Cosmological phase transitions M.L.P	iscopo, M.Spaı	nowsky and P.Wa	aite, arXiv:1902.0	05563 [hep-ph]
Low lovel features $h = h \sum_{i=1}^{i} MET N$	NN.	0.856 (~0.001)	0.859 (~0.001)	0.873 (~0.001
LOW-IEVEL TEALUTES: $p_T^{-1}, p_T^{-2}, \sum p_T^{-j}, MET, N_j$	DN	0.000 (< 0.001)	0.037 (< 0.001)	0.075 (<0.001
	DN	0.872 (0.001)	0.865 (0.001)	0.876 (<0.001
• DijetGAN P Di G	Sinio M Faucei	Ciannalli at al an	\mathbf{V}	$hop_{ov}^{0.001}$
High-level features: Avial MET M razor quantities	npio, minaucci	Utalificili et al, al	AIV.1903.02433 [nep-ex]
The first for the first for 	Discovery sig	nificance		
	NN	6 E m	6.20	6.0 m
	ININ	0.50	0.20	0.90
• many more	DN	7.5σ	7.3σ	7.6σ

DM at LHC: Monojet Channel

Model	Mass	Type of coupling
SUSY1	$m_{\tilde{\chi}^0} = 100 \text{ GeV}$	Bino-like
SUSY2	$m_{\tilde{\chi}^0} = 200 \text{ GeV}$	Bino-like
SUSY3	$m_{\tilde{\chi}^0}^2 = 300 \text{ GeV}$	Bino-like
ALP	negligible	gluon-ALP
EFT	negligible	4-fermion

Axion-Like particles (ALPs) could decay after being produced but not inside the detector

$$\mathscr{L}_a \supset -\frac{g_{agg}}{2} a \operatorname{\mathbf{Tr}}\left[G_{\mu\nu}\tilde{G}^{\mu\nu}\right]$$

(a) Monojet process in linear ALPs

(b) Monojet process in case of spin 1 mediator

Simplified models: spin-1 mediator

$$\mathscr{L}_Y = \bar{\chi} \gamma_\mu g_\chi^V \chi Y^\mu$$

(c) Monojet process in MSSM

CKK, Veronica Sanz, Michael Soughton, arXiv: 1910.06058 [hep-ph]

Analysis set-up

LO, parton level anal	ysis	
$p_T^j(MET), \eta^j, \phi^j$	$p_T^j > 130 \text{GeV}$	$\sqrt{s} = 14$ TeV 400K events
SUSY-WIMP	$pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 j$	using MC@NLO Madgraph
ALPs	$pp \rightarrow aj$	Feynrules Model :
EFT, spin-1 mediator	$pp \rightarrow \chi \bar{\chi} j$	MSSM-SLHA2,ALPsEFT, DMSimp

NLO, detector level analysis

200K events DELPHES (ATLAS default run card)

 $p_T^{j_1}, p_T^{j_2}, \eta^{j_1}, \eta^{j_2}, MET, \Delta \phi_{j_1 j_2}, \Delta \phi_{MFT}^{j_1}, \Delta \phi_{MFT}^{j_2}$ $p_T^{j_1} > 130 \text{GeV}, p_T^{j_2} > 25 \text{GeV}$

CKK, Veronica Sanz, Michael Soughton, arXiv: 1910.06058 [hep-ph]

(Deep) Neural Network

- Training set: Test set = 70 %: 30%
 (data scaling)
- Hidden layers: 5 (optimised)
- Activation function: ReLu
- Dropouts: 0.2
- Loss function: Binary Crossentropy
- ϵ_S : Signal Selection ϵ_B : 1–Background Rejection AUC: Area under the ROC curve

DM Characterization

2D Distributions (LO Parton Level)

DNN for 2D Histograms

Dijet Case

Same NN Architecture

Eur. Phys. J. C (2017) 77:881

Delayed signal, S2

TPC output as images

Simulation Tools for XENON

Name	Expected number of events
Electronic recoils (ER)	61.879487
CNNS (ν)	0.000901
Radiogenic neutrons	0.058570
Accidental coincidences (acc)	0.220000
Wall leakage (wall)	0.520000
Anomalous (anom)	0.090004
$500 \text{ GeV}/c^2$, $10^{-45} \text{ cm}^2 \text{ WIMP}$	35.029005

TABLE I. Expected number of events for each type of background within the fiducial mass and a 500 GeV/c^2 , 10^{-45} cm² WIMP (Generated using Laidbax).

University of Amsterdam)

Convolutional Neural Network

- Convolutional layer: detect edges
- Pooling: compress the information
- Classification: (fully) connected hidden layers

WIMP versus ER background

• CNN:

- 2 Convolution layers + ReLU activation function
- 20 Neurons per layer
- Pooling layer:
 - Max Pooling
 - Flatten
 - ReLU activation function
- Output layer:
 - Sigmoid activation function

Conclusions and Outlook

- We demonstrate the possibility of using ML for the Dark Matter Searches
- It shows the promising reach for disentangling among collider Dark Matter searches as well as for the direct detection experiments
- These works set the benchmark for the unsupervised anomaly detection methods

Detector output can be viewed as images

F 0.4

ranslated Pseudorapidity

0.2

-0.

-0

F

Translated Pseudorapidity

-0.4

-0.4

-0.2

The ATLAS Collaboration. Quark versus Gluon Jet Tagging using Jet Images with the ATLAS Detector. Report No. ATL-PHYS-PUB-2017-017, https:// cds.cern.ch/record/2275641 (CERN, 2017)

CMS Collaboration. New Developments for Jet Substructure Reconstruction in CMS. Report No. CMS-DP-2017-027, https://cds.cern.ch/record/ 2275226(CERN, 2017)

ATLAS Simulation Preliminary

anti-k , R = 0.4, 150 < p _/GeV < 200

Vipides

5

ą

8

02

-0.2

-0.4

-0.4

-0.2

0

0.2

Translated Azimuthal Angle è

dorapidity

0.1

0.4

ĥ

8

Gluo

8

¢0⁻²

0

-0.20.05 -0.4 -0.4 -0.2 0 0.2 0.4

ATLAS Simulation Preliminary Gluon Jets, Tower Constituents anti-k,, R = 0.4, 150 < p_/GeV < 200 Intensity **Wildin** 0 Т eu do 0.05 đ þ 0-2 3 -0.05 8 -0.2 o, -0.4 -0.2 0.2 0.4 -0.4 0 Translated Azimuthal Angle §

ATLAS Simulation Preliminary Gluan Jets, Tapocluster Constituents ant-k , R = 0.4, 150 < p _/GeV < 200 Intern Pixel 0.2 10-2 -0.2 10-3

0

0.2

0.4

Neutrino Physics:

See e.g. Adamson, P. et al. in NOvA. Phys. Rev. D 96,

PAX (Processor for Analysing Xenon)

Background PCA correlations								
	$p_{T}^{j_{1}}$	$p_T^{j_2}$	η_{j_1}	η_{j_2}	$\Delta \phi_{j_1 j_2}$	MET	$\Delta \phi_{\text{MET}}^{j_1}$	$\Delta \phi_{\rm MET}^{j_2}$
PC-1	0.67	0.41	-0.01	-0.01	-0.01	0.62	0.00	-0.00
PC-2	0.00	0.00	0.01	0.00	0.45	-0.00	-0.77	-0.45
PC-3	-0.00	-0.00	0.09	0.10	-0.70	-0.00	0.00	-0.70
PC-4	-0.01	0.00	-0.70	-0.70	-0.09	-0.01	-0.01	-0.10
PC-5	-0.12	0.89	-0.01	0.02	-0.00	-0.45	0.00	0.00
PC-6	-0.01	0.01	0.71	-0.71	-0.01	-0.01	0.01	-0.00
PC-7	0.73	-0.23	0.00	0.00	0.00	-0.65	0.00	0.00
PC-8	0.00	0.00	-0.00	-0.00	0.54	-0.00	0.64	-0.54
	SU	ISY3,	$M_{\tilde{\chi}_{1}^{0}} =$	= 300 (GeV PC	A cori	elations	
	$p_{T}^{j_{1}}$	$p_T^{j_2}$	η_{j_1}	η_{j_2}	$\Delta \phi_{j_1 j_2}$	MET	$\Delta \phi_{\text{MET}}^{j_1}$	$\Delta \phi_{\text{MET}}^{j_2}$
PC-1	0.67	0.32	0.00	0.01	0.00	0.01		
DO O		0.01	0.00	0.01	0.00	0.67	-0.00	-0.00
PC-2	-0.00	-0.01	0.00	-0.01	0.00	-0.00	-0.00 -0.76	-0.00 -0.57
PC-2 PC-3	-0.00 0.00	-0.01	0.00	-0.01 -0.06	0.00 0.32 -0.80	0.67 -0.00 0.00	-0.00 -0.76 0.11	-0.00 -0.57 -0.58
PC-2 PC-3 PC-4	-0.00 0.00 -0.01	-0.01 -0.00 0.02	0.00 0.01 -0.07 0.70	-0.01 -0.06 0.70	0.00 0.32 -0.80 -0.07	0.67 -0.00 0.00 -0.01	-0.00 -0.76 0.11 0.01	-0.00 -0.57 -0.58 -0.05
PC-2 PC-3 PC-4 PC-5	-0.00 0.00 -0.01 -0.22	-0.01 -0.00 0.02 0.95	0.00 0.01 -0.07 0.70 -0.00	0.01 -0.01 -0.06 0.70 -0.02	0.00 0.32 -0.80 -0.07 0.00	0.67 -0.00 0.00 -0.01 -0.23	-0.00 -0.76 0.11 0.01 -0.01	-0.00 -0.57 -0.58 -0.05 -0.00
PC-2 PC-3 PC-4 PC-5 PC-6	-0.00 0.00 -0.01 -0.22 -0.00	-0.01 -0.00 0.02 0.95 0.01	0.00 0.01 -0.07 0.70 -0.00 -0.71	0.01 -0.01 -0.06 0.70 -0.02 0.71	0.00 0.32 -0.80 -0.07 0.00 0.01	0.67 -0.00 0.00 -0.01 -0.23 -0.00	-0.00 -0.76 0.11 0.01 -0.01 -0.01	-0.00 -0.57 -0.58 -0.05 -0.00 -0.00
PC-2 PC-3 PC-4 PC-5 PC-6 PC-7	-0.00 0.00 -0.01 -0.22 -0.00 0.71	-0.01 -0.00 0.02 0.95 0.01 -0.01	0.00 0.01 -0.07 0.70 -0.00 -0.71 -0.00	0.01 -0.01 -0.06 0.70 -0.02 0.71 0.00	0.00 0.32 -0.80 -0.07 0.00 0.01 -0.00	0.67 -0.00 -0.01 -0.23 -0.00 -0.71	-0.00 -0.76 0.11 0.01 -0.01 -0.01 0.00	-0.00 -0.57 -0.58 -0.05 -0.00 -0.00 0.00

Neural Network (NN): Basic Structure

Training sample, validation sample, test sample

- Input layer nodes: set of observables(kinematical features)/images
- Number of hidden layers (shallow or deep NN)
- Output layer: predictions

Train the network using training sample and make predictions for the test set