LHCb Overview

Carla Marin
on behalf of the LHCb collaboration

LHCb Implications Workshop
28/10/2020
Outline

● The LHCb experiment
● Overview of new LHCb results in 2020
 ○ Spectroscopy
 ○ Rare decays
 ○ CPV
 ○ Exotica
● Future of LHCb
 ○ the renewed LHCb detector
 ○ physics prospects

Disclaimer: no time to cover everything, please check experimental talks in various streams for details
LHCb: Large Hadron Collider Beauty experiment

- Precision measurements heavy flavor physics
- Core physics: CPV and rare decays
- Much more: spectroscopy, QCD, heavy ions...

- > 900 authors and > 40 nationalities
- 87 institutes from 18 countries
LHCb detector at LHC

$\Delta p / p = 0.5 - 1.0\%$

$\Delta IP = (15 + 29/p_T[GeV]) \text{ } \mu m$

$\Delta E/E_{\text{ECAL}} = 1\% + 10\% / \sqrt{E[GeV]}$

Electron ID $\sim 90\%$ for $\sim 5\%$ $e \rightarrow h$ mis-id probability

Kaon ID $\sim 95\%$ for $\sim 5\%$ $\pi \rightarrow K$ mis-id probability

Muon ID $\sim 97\%$ for $1-3\%$ $\pi \rightarrow \mu$ mis-id probability
LHCb dataset

Total recorded luminosity \sim9 fb$^{-1}$:

- Run 1 (2010-2012) \sim 3 fb$^{-1}$
- Run 2 (2015-2018) \sim 6 fb$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Integrated Recorded Luminosity (1/fb)</td>
</tr>
<tr>
<td>2010</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2011</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2012</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2013</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2014</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2015</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2016</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2017</td>
<td>0.04 fb</td>
</tr>
<tr>
<td>2018</td>
<td>0.04 fb</td>
</tr>
</tbody>
</table>

All b-hadron species!

- B_s: $\frac{f_d}{f_d + f_u} = 0.122 \pm 0.006$
- Λ_b: $\frac{f_{\Lambda_b}}{f_d + f_u} = 0.259 \pm 0.018$

average over $p_T \in [4, 25]$ GeV and $\eta \in [2, 5]$ in pp collisions at 13 TeV [PRD100(2019)031102] and more: Ξ_b, Ω_b, B_c, B^* ...

*combination of LHCb results ongoing

$\sigma^{13\text{TeV}}(pp\rightarrow B^\pm X)/\sigma^{7\text{TeV}}(pp\rightarrow B^\pm X) = 2.02 \pm 0.02 \pm 0.12$

[JHEP 1712 (2017) 026] → almost x4 b-hadrons in Run 2
LHCb results

- CPV
- RD
- SL
- Charm
- Spectroscopy
- QCD, EW & exotica
- Heavy ions
A b-hadron factory

NEW 2020

Excited Ω⁻ᵇ states

New excited Λ^₀ᵇ state

See talk by D. Craik for details and further studies
An exotic hadron factory!

Four-charm states in di-J/ψ spectrum?

Observation of $\Lambda_b \rightarrow \eta_c p K^-$ and search for $P_{c^+} \rightarrow \eta_c p$

See talk by M. Wang for details and further searches: X(2900), X(4740), P_{cs}
Multiplicity-dependent $\psi(2S)$ & χ_{c1} production

Production of $\psi(2S)$ and $\chi_{c1}(3872)$ studied in 8 TeV pp collisions, exploiting techniques from Heavy Ion physics

- decrease of prompt fraction and ratio $\chi_{c1}(3872)/\psi(2S)$ with multiplicity

See talk by J. Crkovska for details
Intriguing deviations in rare B decays

Differential BR and angular distributions

Lepton Universality tests
Angular analyses of $B \rightarrow K^*\ell\ell$

New $B^0 \rightarrow K^*\mu^+\mu^-$ results: tension with SM 3.3σ

$B^0 \rightarrow K^*e^+e^-$ low q^2: strong constraints on C'_7

See talk by D. Gerich for new results in B^+!
1st observation of TD-CPV in B_s decays

New Run 2 analysis using 2.1 fb$^{-1}$ and combination with Run 1 results

$$A_{CP}(t) = \frac{\Gamma_{B^0(s)\rightarrow f(t)} - \Gamma_{B^0(s)\rightarrow f(t)}}{\Gamma_{B^0(s)\rightarrow f(t)} + \Gamma_{B^0(s)\rightarrow f(t)}} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f \sin(\Delta m_{d,s} t)}{\cosh \left(\frac{\Delta \Gamma_{d,s}}{2} t \right) + A_f \sinh \left(\frac{\Delta \Gamma_{d,s}}{2} t \right)}$$

See talk by M. Torres for details and more results
Direct CPV in $B_{(s)} \rightarrow K^+\pi^-$

Measurement of A_{CP} in $B_{(s)} \rightarrow K\pi$ and relation as test of the SM

Most precise measurement from single experiment

$$A_{CP}^{B_0^0} = -0.0831 \pm 0.0034$$

$$A_{CP}^{B_0^0} = 0.225 \pm 0.012$$

$$\Delta = \frac{A_{CP}^{B_0^0}}{A_{CP}^{B_0^0}} + \frac{B(B_0^0 \rightarrow \pi^+K^-)}{B(B_0 \rightarrow K^+\pi^-)} \Gamma_s = 0$$

$$\Delta = -0.085 \pm 0.025 \pm 0.035$$

Comparable with 0 at 2σ

What about B^+ mode? See talk by W. Parker with new results!
New constraints on γ

Less well-known angle Unitarity Triangle ($\delta \gamma \sim 5^\circ$)

$$\gamma = (68.7^{+5.2}_{-5.1})^\circ$$

$B^\pm \rightarrow D h^\pm$, $D \rightarrow K_s h^+ h^-$

See talk by P. d’Argent for details, more results and new LHCb combination
Suppressed decays

 Searches for suppressed counterparts of well known decays

 BR($B^0 \rightarrow J/\psi \phi$) < 1.1×10^{-7} @90% CL

 $B(B^0_s \rightarrow D_s^{\mp} D^\mp) / B(B^0 \rightarrow D^{\mp} D^\mp) = 0.137 \pm 0.017$ (stat.) ± 0.002 (syst.) $\pm 0.006 (f_s/f_d)$

 NEW 2020
Search for New Exotic states

Long-lived particles $X \rightarrow e\mu\nu$
- Run 2 data (5.1 fb$^{-1}$)
- $m \in [7, 50]$ GeV/c2, $\tau \in [2, 50]$ ps

Heavy Neutral Leptons in $W \rightarrow \mu^+N(\mu^\pm\text{jet})$
- Run 1 LHCb data (3 fb$^{-1}$)
- Pompt LN and LNV cases considered
- $\mu\mu\text{jet}$ probed at $M_N < 20$ GeV/c2 for 1st
LHCb prospects
LHCb Upgrade: a quasi-new detector
LHCb Upgrade

New VeloPix detector

New tracker detectors

New RICH detectors

Removal of SPD/PS, new electronics

Removal of M1, new electronics
LHCb Upgrade

New VeloPix detector

- 3.5mm to beam (5mm Run1/2)
- 52 modules with 41M pixels
- improved PV and IP resolutions
LHCb Upgrade

- Scintillating fibers 2.4m x 250μm
- higher granularity for higher occupancy

New tracker detectors
LHCb Upgrade

- Optimised optical system
- Higher photon yield and improved resolution

New RICH detectors
LHCb Upgrade II

To be installed in LS3+4: new sub-detectors and technology updates (timing)

Timing:
~50 collisions/bc

New detectors
Trigger in Run 3 and beyond

Remove limitations of hardware trigger:

- remove tight p_T and E_T requirements
- $x2$ yields for fully hadronic decays

First level software trigger in GPUs:

- increase complexity of tracking algorithms
- better performance at higher throughput
Prospects for LU tests in $b \rightarrow c \nu$ decays

$R(D) - R(D^*)$ ongoing with current dataset

Also measurements with other b hadrons:

- $\sigma_{R(Ds)} < 6\%$ (2.5\%) and $R(D^{(*)*})$
- $\sigma_{R(\Lambda_c)} < 4\%$ (2.5\%) and $R(pp)$ ($b \rightarrow u\nu\nu$)
Prospects for CKM measurements

<table>
<thead>
<tr>
<th>Observable</th>
<th>Current LHCb</th>
<th>LHCb 2025</th>
<th>Belle II</th>
<th>Upgrade II</th>
<th>ATLAS & CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_s, with $B_s^0 \to D_s^+ K^-$</td>
<td>$^{+17}_{-22}%$</td>
<td>136</td>
<td>4$%$</td>
<td>–</td>
<td>1$%$</td>
</tr>
<tr>
<td>γ, all modes</td>
<td>$^{+5.0}_{-5.8}%$</td>
<td>167</td>
<td>1.5$%$</td>
<td>1.5$%$</td>
<td>0.35$%$</td>
</tr>
<tr>
<td>$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$</td>
<td>0.04</td>
<td>609</td>
<td>0.011</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>ϕ_s^0, with $B_s^0 \to J/\psi \phi$</td>
<td>49 mrad</td>
<td>44</td>
<td>14 mrad</td>
<td>–</td>
<td>4 mrad</td>
</tr>
<tr>
<td>ϕ_s, with $B_s^0 \to D_s^+ D_s^-$</td>
<td>170 mrad</td>
<td>49</td>
<td>35 mrad</td>
<td>–</td>
<td>9 mrad</td>
</tr>
<tr>
<td>$\phi_s^{S\bar{S}s}$, with $B_s^0 \to \phi \phi$</td>
<td>154 mrad</td>
<td>94</td>
<td>39 mrad</td>
<td>–</td>
<td>11 mrad</td>
</tr>
<tr>
<td>q_s^{ϕ}</td>
<td>33×10^{-4}</td>
<td>211</td>
<td>10×10^{-4}</td>
<td>–</td>
<td>3×10^{-4}</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>/</td>
<td>V_{cb}</td>
<td>$</td>
<td>6$%$</td>
</tr>
</tbody>
</table>
Further measurement of $|v_{ub}|/|v_{cb}|$ from $B_s \rightarrow K^-\mu^+\nu$? See talk by B. Khanji!
Prospects for Charm physics

Large benefit from fully software trigger
Prospects for Rare Decays

See talk by M. Santimaria on Friday

<table>
<thead>
<tr>
<th></th>
<th>Run 3</th>
<th>Run 4</th>
<th>Upgrade II</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_X precision</td>
<td>9 fb$^{-1}$</td>
<td>23 fb$^{-1}$</td>
<td>50 fb$^{-1}$</td>
</tr>
<tr>
<td>R_K</td>
<td>0.043</td>
<td>0.025</td>
<td>0.017</td>
</tr>
<tr>
<td>R_{K^*0}</td>
<td>0.052</td>
<td>0.031</td>
<td>0.020</td>
</tr>
<tr>
<td>R_ϕ</td>
<td>0.130</td>
<td>0.076</td>
<td>0.050</td>
</tr>
<tr>
<td>R_{pK}</td>
<td>0.105</td>
<td>0.061</td>
<td>0.041</td>
</tr>
<tr>
<td>R_π</td>
<td>0.302</td>
<td>0.176</td>
<td>0.117</td>
</tr>
</tbody>
</table>

arXiv:1808.08865
Conclusions

LHCb is not only a **b-factory** (huge production of $B^{0/+}$, B_s, Λ_b...) but also a **general purpose detector** in the forward region.

Wealth of **new results this year** and fresh ones for this workshop → details and more exciting results in dedicated talks.

LHCb is being (will be) upgraded to **collect x30 larger dataset** in Run 3-5.

Theory input is critical for **interpretation** of our results and development of **new measurements** to fully exploit potential of our data.
Conclusions

LHCb is not only a b-factory (huge production of $B^{0/+}$, B_s, Λ_b...) but also a general purpose detector in the forward region.

Wealth of new results this year and fresh ones for this workshop → details and more exciting results in dedicated talks.

LHCb is being (will be) upgraded to collect x30 larger dataset in Run 3-5.

Theory input is critical for interpretation of our results and development of new measurements to fully exploit potential of our data.

Looking forward to having lots of discussions in this workshop!
BACK-UP
Observation of excited Ω^{-}_b states

$\Omega^{-}_b \rightarrow \Xi^0_b K^-$ with $\Xi^0_b \rightarrow \Xi_c^+ \pi^-, \Xi_c \rightarrow pK\pi$

<table>
<thead>
<tr>
<th>Peak of δM [MeV]</th>
<th>Width [MeV]</th>
<th>Signal yield</th>
<th>Significances [σ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>523.74 ± 0.31</td>
<td>0.00$^{+0.7}_{-0.0}$</td>
<td>15$^{+6}_{-5}$</td>
<td>3.6</td>
</tr>
<tr>
<td>538.40 ± 0.28</td>
<td>0.00$^{+0.4}_{-0.0}$</td>
<td>18$^{+6}_{-5}$</td>
<td>3.7</td>
</tr>
<tr>
<td>547.81 ± 0.26</td>
<td>0.47$^{+0.6}_{-0.5}$</td>
<td>47$^{+11}_{-10}$</td>
<td>7.2</td>
</tr>
<tr>
<td>557.98 ± 0.35</td>
<td>1.4$^{+1.0}_{-0.8}$</td>
<td>57$^{+14}_{-13}$</td>
<td>7.0</td>
</tr>
</tbody>
</table>
di-J/ψ candidates
Potential T_{cccc} candidates
Angular analysis of $B \rightarrow K^{*} \ell \ell$

\[
\frac{1}{d\Gamma/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\Omega} \bigg|_p = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \right.
\]
\[
+ \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_l
\]
\[
- F_L \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi
\]
\[
+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi
\]
\[
+ \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi
\]
\[
+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg] ,
\]
Exploiting $b \rightarrow se^+e^-$ at very low q^2

Angular coefficients $A_T^{(2)}$ and A_T^{Im} give access to C'_7:

$$\frac{1}{d(\Gamma + \Gamma)/dq^2} \frac{d^4(\Gamma + \Gamma)}{dq^2 d\cos \theta_\ell d\cos \theta_K d\phi} =$$

$$= \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \left(\frac{1}{4} (1 - F_L) \sin^2 \theta_K - F_L \cos^2 \theta_K \right) \cos 2\theta_\ell + \right.$$

$$\left. \frac{1}{2} (1 - F_L) A^{(2)}_T \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + (1 - F_L) A^\text{Re}_T \sin^2 \theta_K \cos \theta_\ell + \right.$$

$$\left. \frac{1}{2} (1 - F_L) A^{\text{Im}}_T \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \right].$$

Pollution from $C_{9,10}$ when q^2 far from zero \rightarrow analysis at very low q^2

- Run 1 analysis: $q^2 \in [0.002, 1.120]$ GeV2/c4
- Run 1+2: $q^2 \in [0.0008, 0.257]$ GeV2/c4

after folding Φ to reduce number of parameters
Exploiting $b \rightarrow s e^+ e^-$ at very low q^2

Much cleaner selection achieved in new analysis

Mass shape, angular acceptance and model validated with $B \rightarrow K^* \gamma (\rightarrow e^+ e^-)$

arXiv:2010.06011
Photon polarisation from $b \rightarrow s e^+ e^-$ low q^2

Angular analysis of $B \rightarrow K^* e^+ e^-$ at very low q^2 with full LHCb dataset

\begin{align*}
A_T^{(2)}(q^2 \rightarrow 0) &= \frac{2 \text{Re}(C_7 C_7^*)}{|C_7|^2 + |C_7'|^2}, \\
A_T^{\text{Im}}(q^2 \rightarrow 0) &= \frac{2 \text{Im}(C_7 C_7^*)}{|C_7|^2 + |C_7'|^2},
\end{align*}

\begin{align*}
F_L &= 0.044 \pm 0.026 \pm 0.014, \\
A_T^{\text{Re}} &= -0.06 \pm 0.08 \pm 0.02, \\
A_T^{(2)} &= +0.11 \pm 0.10 \pm 0.02, \\
A_T^{\text{Im}} &= +0.02 \pm 0.10 \pm 0.01,
\end{align*}

Word-best constraints on C'_7

Very good agreement with SM
Flavour tagging at LHCb
Search for $\text{B} \rightarrow \text{J}/\psi \phi$

significance of 2.3σ, world-best limit

$\text{BR} (\text{B} \rightarrow \text{J}/\psi \phi) < 1.1 \times 10^{-7} \text{ @90\% CL}$
LHCb schedule overview

- LHC:
 - 2021: Run 3
 - 2023: LS3

- HL-LHC:
 - 2024: LS3
 - 2026: Run 4
 - 2029: LS4
 - 2030: Run 5

- Belle II:
 - Upgrade I
 - Upgrade II
 - Upgrade Belle II?
Velopix performance

IP resolution

Average hit efficiency per track

Evaluated at $v = 7.6$, $\sqrt{s} = 14$ TeV
Sifi performance

LHCb simulation

- Non e⁻
- e⁻
Upgrade 2 new detectors

Magnet stations

Measurement of low momentum particles:

- strange and charm physics, $\gamma \rightarrow e^+e^-$
- multi-body b decays, near-threshold

Scintillating fibers + SiPMs technology developed for Upgrade I

TORCH

Time-of-flight system in downstream region:

- reduce ghost rate, improve Λ^0 efficiency
- provide PID below 10 GeV (RICH1 limit)

1 cm quartz radiator + Micro-Channel Plate PMTs \rightarrow ~15 ps/track