# Implications of LHCb measurements and future prospects

# Charm-Hadron Production in pp & AA Collisions

Min He

Nanjing University of Sci. & Tech., Nanjing, China

Based on recent work done in collaboration with Ralf Rapp of Texas A&M University

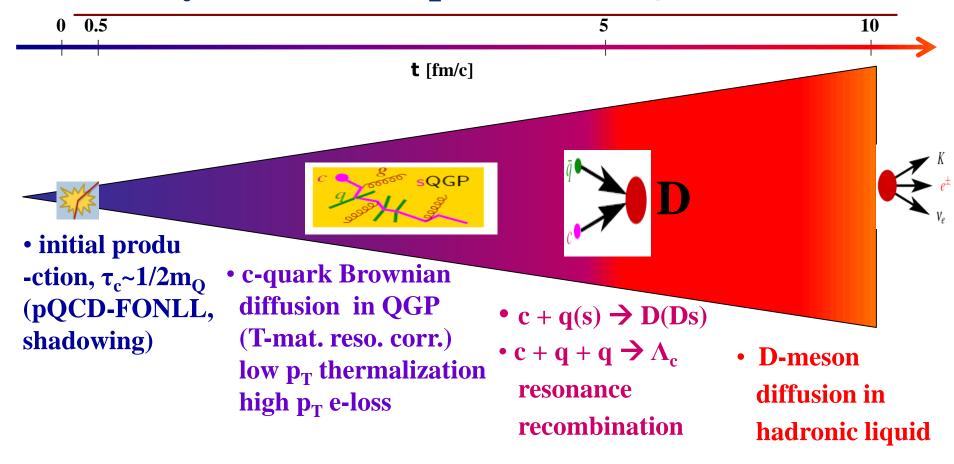
#### **Contents**

#### 1. Introduction

☐ Heavy quark probes & charm hadronization

# 2. Charm-hadron production in pp

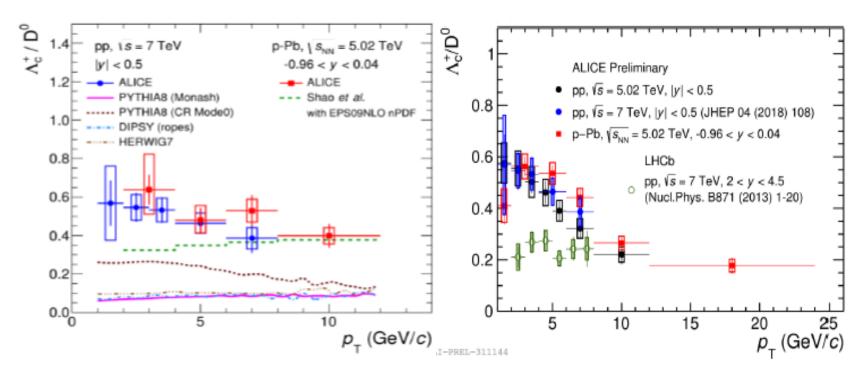
- ☐ SHM augmented with RQM, vs PDG
- ☐ Charm-baryon enhancement


# 3. Charm-hadron production in AA

- □ 2- & 3-body RRM, equilibrium mapping
- **□** Space-momentum correlations
- **□** Event-by-event implementations of hydro-Langevin-RRM
- **□** RQM augmented baryons

#### 4. Results

- $\square$  Collectivity pattern:  $R_{AA}$ ,  $v_2$
- $\square$  p<sub>T</sub>-dependent charm hadro-chemistry: $D_s^+/D^0$ ,  $\Lambda_c^+/D^0$


#### Heavy flavor transport in hot QCD matter



- > Calibrated & tagged probes preserving memory of interaction history
- $\rightarrow$  Trans. coeffi.  $\mathcal{D}_{s}(2\pi T)$ : coupling strength  $\rightarrow$  probe in-medium QCD force

#### Charm-hadron production in pp collisions

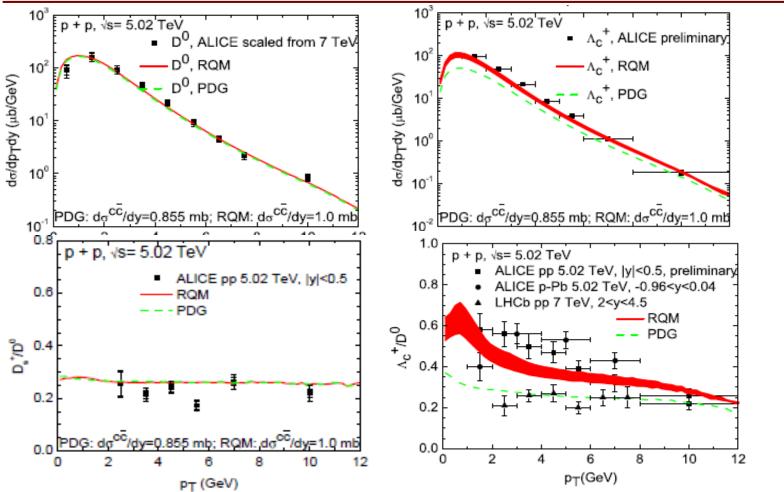
- $\square$  Enhanced  $\Lambda_c^+/D^0$  w.r.t. pQCD based MC event generators
- □ Already a puzzle in pp? → statistical coalescence (SHM) in a quark-rich environment?!



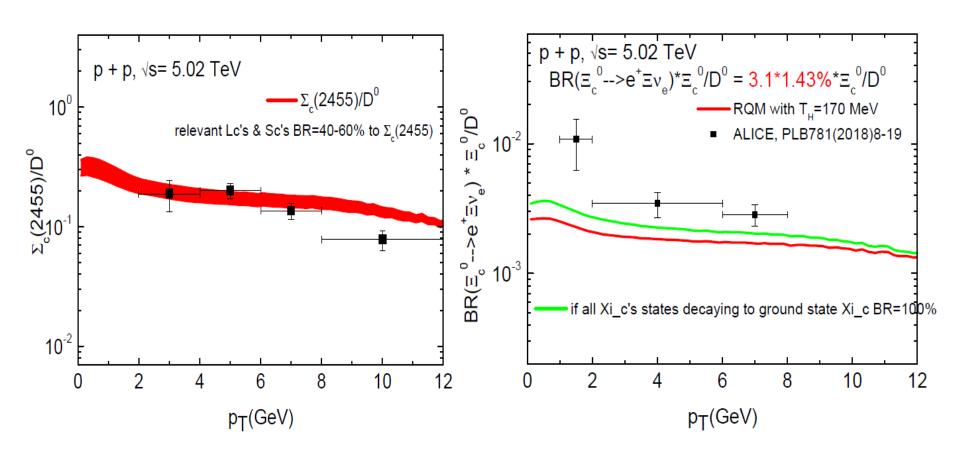
- □ Standard SHM (with PDG only spectra) $\Lambda_c^+/D^0 \sim 0.22$  too small P.B.-M.
- ☐ Tension between ALICE (mid-rapidity) vs LHCb (forward-rapidity)?

#### **Charm-hadron production: pp SHM**

- □ PDG: 5  $\Lambda_C$  (I=0), 3  $\Sigma_C$  (I=1), 8  $\Xi_C$  (I=1/2), 2  $\Omega_C$  (I=0) → missing baryons?! RQM: 18 extra  $\Lambda_C$ , 42 extra  $\Sigma_C$ , 62 extra  $\Xi_C$ , 34 extra  $\Omega_C$  up to 3.5 GeV
  - → supported by lattice PRD 84 (2011) 014025; PoS LAT. 2014 (2015) 084; PLB 737 (2014) 210
- □ Statistical Hadronization Model (SHM):  $T_H=170 \text{ MeV } n_i = \frac{d_i}{2\pi^2} m_i^2 T_H K_2(\frac{m_i}{T_H})$


| $n_i \ (\cdot 10^{-4} \ {\rm fm}^{-3})$ | $D^0$ | $D^+$  | D*+    | $D_s^+$ | $\Lambda_c^+$ | Ξ <sup>+,0</sup> | $\Omega_c^0$ |
|-----------------------------------------|-------|--------|--------|---------|---------------|------------------|--------------|
| PDG(170)                                | 1.161 | 0.5098 | 0.5010 | 0.3165  | 0.3310        | 0.0874           | 0.0064       |
| RQM(170)                                | 1.161 | 0.5098 | 0.5010 | 0.3165  | 0.6613        | 0.1173           | 0.0144       |

□ Strong feeddowns of excited states all included: BR=100% to  $\Lambda_{\rm C}^+$  for all  $\Lambda_{\rm C}$  &  $\Sigma_{\rm C}$  even above DN (2805 MeV) threshold


| ri       | $D^+/D^0$ | $D^{*+}/D^{0}$ | $D_s^+/D^0$ | $\Lambda_c^+/D^0$ |
|----------|-----------|----------------|-------------|-------------------|
| PDG(170) | 0.4391    | 0.4315         | 0.2736      | 0.2851            |
| RQM(170) | 0.4391    | 0.4315         | 0.2726      | 0.5696            |

- -- Strangeness supp.  $\gamma_s$ =0.6
- → FONLL fragmentation of charm quarks into all kinds of charm-hadrons relative weight: according to the SHM thermal densities
- & Decay simulations of all excited states to ground state  $D^0$ ,  $D^+$ ,  $D_s^+$ ,  $\Lambda_C^+$ ,  $\Xi_C$  &  $\Omega_C$

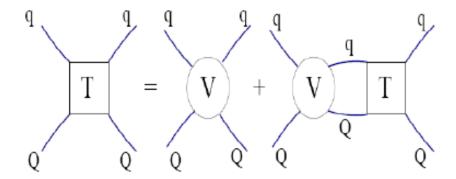
#### Results: pp 5.02 TeV collisions



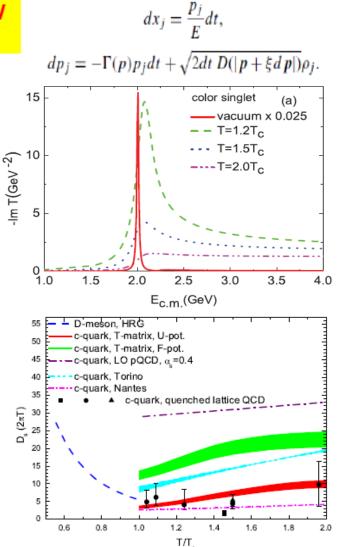
#### **Results: more B/M ratios**



- $\square$   $\Sigma_{\rm c}(2455)/{\rm D}^0$  can also be accounted for within uncertainties
- **□** But  $\Xi_c^0/D^0$  is much underestimated, although twice PYTHIA8(CR ~ 0.001)


#### Charm-hadron production in AA collisions

- ☐ Charm quark diffusion in QGP: T-matrix & Langevin
- ☐ Hadronization: 2- & 3-body RRM
- **□** Space-momentum correlations (SMCs)
- ☐ Analysis: role of SMCs & RQM augmented baryons
- ☐ Results & observables


#### Charm in QGP: transport coeffi. & diffusion

Langevin + hydro simulation down to Tc=170 MeV fluid rest frame updates → boost to lab frame

**□** Lattice-contrained Q-q/g T-matrix



- ☐ mesonic resonant correlations & resonant scattering beyond pQCD
- □ p- and T-dependent transport with  $\mathcal{D}_{s}(2\pi T) \sim 2\text{-4}$  near  $T_{pc}$ 
  - **→** strong coupling



#### Charm-hadron production in AA collisions

- ☐ Charm quark diffusion in QGP: T-matrix & Langevin
- ☐ Hadronization: 2- & 3-body RRM
- **□** Space-momentum correlations (SMCs)
- ☐ Analysis: role of SMCs & RQM augmented baryons
- ☐ Results & observables

#### **Resonance Recombination Model (RRM)**

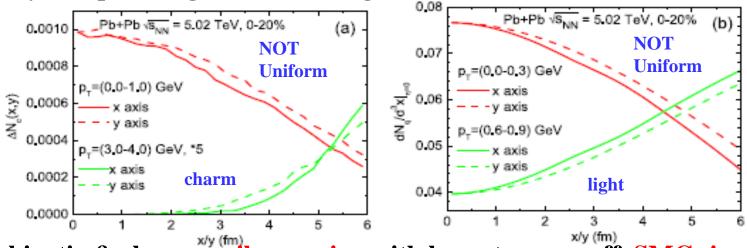
- □ Hadronization = Resonance formation  $c\overline{q} \rightarrow D$  as the T-matrix resonant interaction between c-qbar strengthens towards  $T_c$
- ☐ Derived from Boltzmann eq. Ravagli & Rapp 2007

$$f_{M}(\vec{x}, \vec{p}) = \frac{\gamma_{M}(p)}{\Gamma_{M}} \int \frac{d^{3}\vec{p_{1}}d^{3}\vec{p_{2}}}{(2\pi)^{3}} f_{q}(\vec{x}, \vec{p_{1}}) f_{\bar{q}}(\vec{x}, \vec{p_{2}}) \sigma_{M}(s) v_{\text{rel}}(\vec{p_{1}}, \vec{p_{2}}) \delta^{3}(\vec{p} - \vec{p_{1}} - \vec{p_{2}})$$

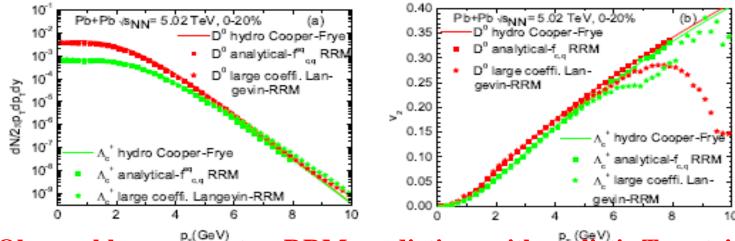
- → conserving 4-mom. + recovering both kinetic & chemical equil. limit
- $\square$  Generalized to 3-body  $\Lambda_c$  taking advantage of light diquark correlations

$$f_B(\vec{x}, \vec{p}) = \frac{E_B(\vec{p})}{\Gamma_B m_B} \int \frac{d^3 p_1 d^3 p_2 d^3 p_3}{(2\pi)^6} \frac{E_d(\vec{p}_{12})}{\Gamma_d m_d} f_1(\vec{x}, \vec{p}_1) f_2(\vec{x}, \vec{p}_2) f_3(\vec{x}, \vec{p}_3)$$

$$\times \sigma_{12}(s_{12}) v_{\rm rel}^{12}(\vec{p}_1, \vec{p}_2) \sigma_B(s_{d3}) v_{\rm rel}^{d3}(\vec{p}_{12}, \vec{p}_3) |_{\vec{p}_{12} = \vec{p}_1 + \vec{p}_2} \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3)$$


- → 3 quark distributions: 2 light thermal + Langevin c-quark
- $\Box$  Charm-meson/baryon RRM implemented on hydro Cooper-Frye hadronization hypersuface at  $T_H$ =170 MeV

#### Charm-hadron production in AA collisions


- ☐ Charm quark diffusion in QGP: T-matrix & Langevin
- ☐ Hadronization: 2- & 3-body RRM
- **□** Space-momentum correlations (SMCs)
- ☐ Analysis: role of SMCs & RQM augmented baryons
- ☐ Results & observables

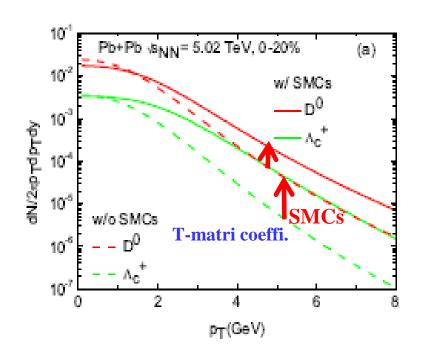
#### **Space-momentum correlations (SMCs)**

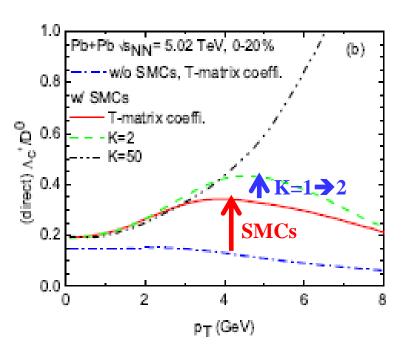
□ hydro-q & Langevin-c: low (high) p<sub>T</sub> more populated in center (outer)



☐ kinetic & chem. equil. mapping with large trans. coeff. SMCs incorporated



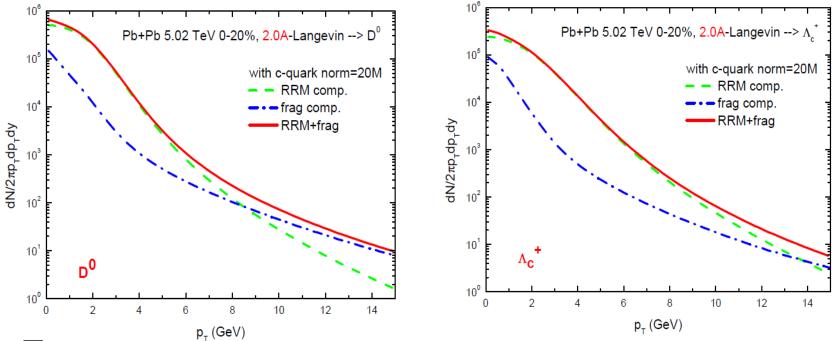

→ Observables come out as RRM predictions with realistic T-matrix coeffi.


#### Charm-hadron production in AA collisions

- ☐ Charm quark diffusion in QGP: T-matrix & Langevin
- ☐ Hadronization: 2- & 3-body RRM
- **□** Space-momentum correlations (SMCs)
- ☐ Analysis: role of SMCs & RQM augmented baryons
- ☐ Results & observables

## Direct $D^0$ & $\Lambda_c^+$ production via RRM

 $\square$  Including SMCs makes the spectra harder & enhances the ratio  $\Lambda_c^+/D_0^-$ 



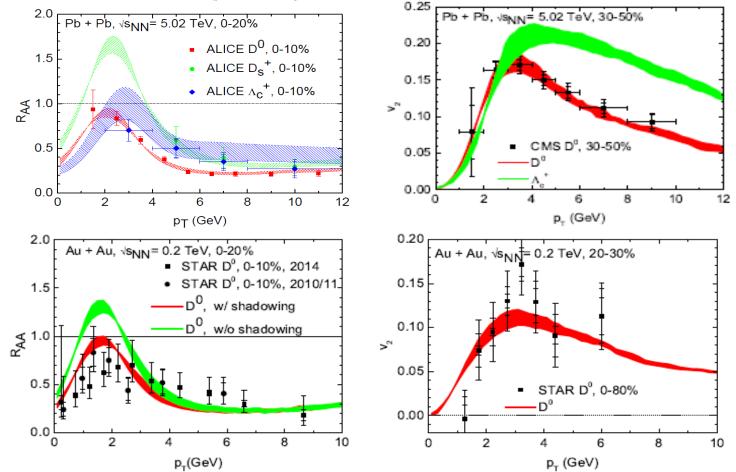



- □ Fast-moving c-quarks  $[p_T \sim 3-4 \text{ GeV}]$  moving to outer part of fireball find higher-density of harder  $[p_T \sim 0.6-0.9 \text{ GeV}]$  light quarks for recombination
- □ An effect entering squared for the recombination production of  $\Lambda_c^+$  → larger enhancement for  $\Lambda_c^+$  →  $\Lambda_c^+/D^0$  ratio enhanced!

#### Recombinant vs fragmenting spectra

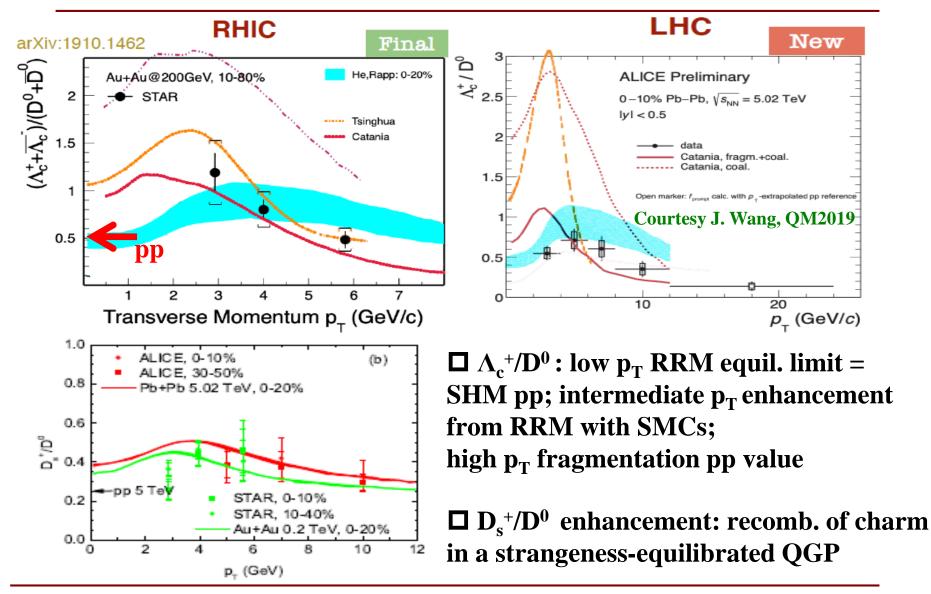
- ☐ Hydro-Langevin-RRM(+fragmentation): for all charm-mesons/baryons
  - $\rightarrow$  higher states decay into ground state  $D^0$ ,  $D^+$ ,  $D_s^+$ ,  $\Lambda_C^+$




- □ SMCs extend the recombination reach toward (much) higher  $p_T$ ; RQM augmented higher baryon states' RRM spectra even harder (also thanks to SMCs) → RRM & frag. cross at  $p_T \sim 8.5$  (13) GeV for  $D^0$  ( $\Lambda_C^+$ )
- $\square$  Helpful for large total  $v_2$  (weighted between RRM vs frag. components)

#### Charm-hadron production in AA collisions

- ☐ Charm quark diffusion in QGP: T-matrix & Langevin
- ☐ Hadronization: 2- & 3-body RRM
- **□** Space-momentum correlations (SMCs)
- ☐ Analysis: role of SMCs & RQM augmented baryons
- ☐ Results & observables


# $D^0$ , $D_s^+$ & $\Lambda_c^+$ suppression & elliptic flow

 $\square$  Final total  $D^0$ ,  $D_s^+$  &  $\Lambda_c^+$ , including feeddowns from all RQM baryons

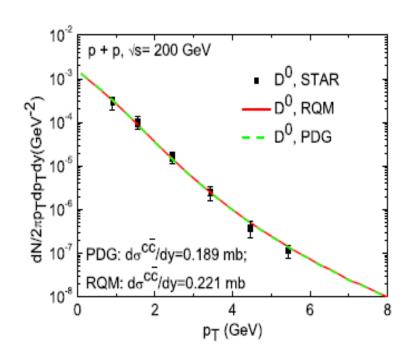


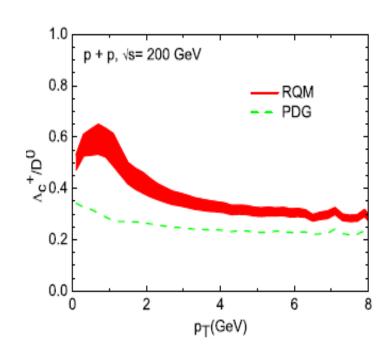
□ T-matrix coefficient\*K-factor(=1.6), to compensate for radiative e-loss; uncertainty: BR=50-100% to  $\Lambda_{\rm C}^+$  for  $\Lambda_{\rm C}$ 's &  $\Sigma_{\rm C}$ 's above DN (2805 MeV)

### Charm-hadron ratios: $\Lambda_c^+/D_0$ & $D_s^+/D^0$



#### **Summary & outlook**


#### >> Charm-hadron production in pp collisions

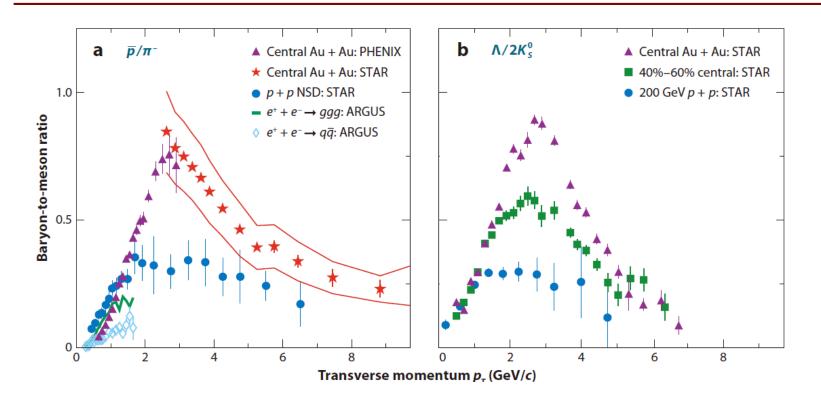

- □ RQM augmented SHM
- $\square$  Low  $p_T$  enhancement of  $\Lambda_c^+$  from "missing" charm-baryons feeddowns

#### >> Charm-hadron production in AA collisions

- □ 3-body RRM developed, equilibrium mapping (both kinetic & chemical) ensured by 4-momentum conservation
- ☐ Genuine space-momentum correlations (SMCs) enhancing  $\Lambda_c^+/D^0$ ; exact charm conservation implemented on an e-by-e basis
  - **→**Both have been challenging within conventional instantaneous coalescence models
- $\square$  p<sub>T</sub>-dependent  $\Lambda_c^+/D^0$  & D<sub>s</sub><sup>+</sup>/D<sup>0</sup> enhancement emerge from hydro-Langevin-RRM(+fragmentation) simulations; data trend largely reproduced within BR's uncertainties


#### Back-up: pp 200 GeV collisions

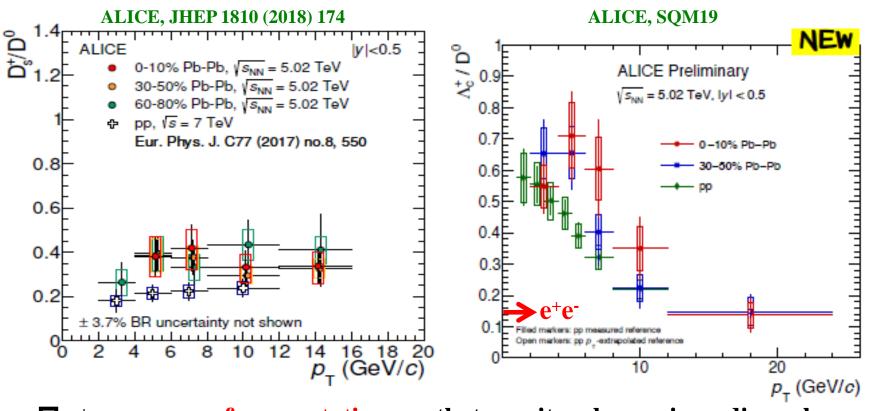





- □ Low pT enhancement from feeddowns of RQM augmented baryons
- $\Box$  Uncertainty band: BR=50-100% to  $\Lambda_C^+$  for  $\Lambda_C$  &  $\Sigma_C$  above DN (2805 MeV) threshold

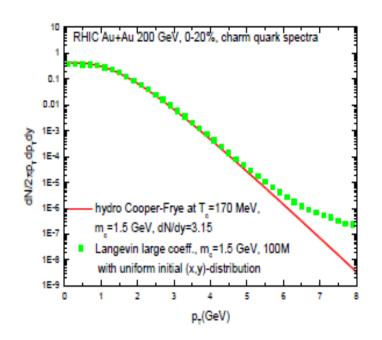
#### **Ds(2piT): K=1.6 vs updated SCS T-matrix**

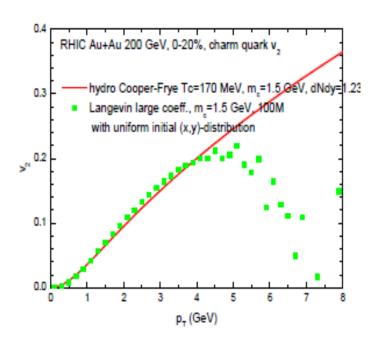



#### Baryon to meson ratio enhancement



- $\square$  B/M enhanced at intermediate  $p_T$  in central AA collisions
- ☐ Nicely (straightforwardly) explained by coalescence models Ko, Fries, Hwa
- **□** A direct indication of the working of coalescence hadronization

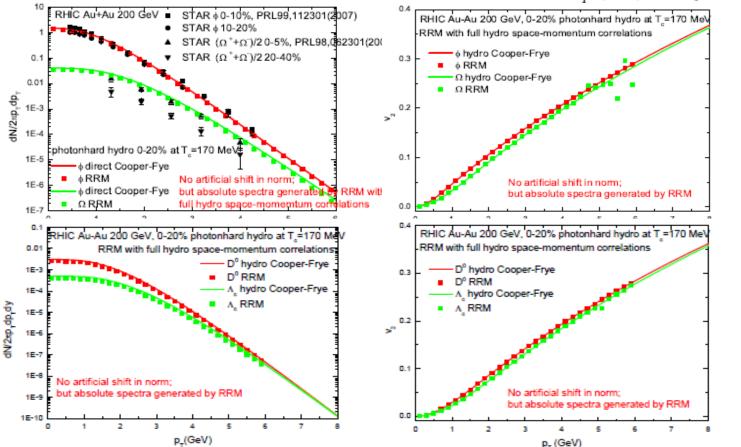

$$f_{M}(p_{T}) \sim f_{q}(p_{T}/2)^{*}f_{qbar}(p_{T}/2) \quad VS \quad f_{B}(p_{T}) \sim f_{q} \; (p_{T}/3)^{*}f_{q}(p_{T}/3)^{*}f_{q}(p_{T}/3)$$


#### Does it carry over to the HF sector?



- $\square$  e<sup>+</sup>e<sup>-</sup>: vacuum fragmentation, costly to excite ssbar-pair or diquarkantidiquark pair from vacuum  $\Rightarrow$  Ds and  $\Lambda_c$  much suppressed
- $\square$  high-energy pp: likely coalescence for  $\Lambda_c$  in a quark-rich environment!
- □ AA: recombination hadronization in QGP → modifying charm hadro-chemistry

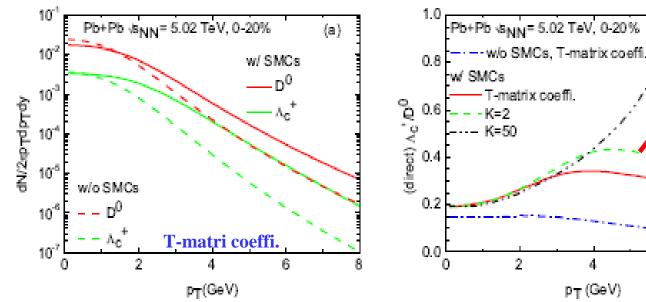
#### Langevin equil. Limit with large coeffi.






ire 9. Langevin charm quark  $p_T$  spectra and  $v_2$  with large coefficient.

#### RRM: equilibrium mapping


 $\square$  RRM on hydrofreezeout hypersurface at  $T_c$  with  $f_q^{eq}(\vec{x}, \vec{p}) = g_q e^{-p \cdot u(x)/T(x)}$ 



 $\Box$  Equilibrium mapping: ensured by 4-momentum conservation in RRM m<sub>q</sub>=0.3, m<sub>s</sub>=0.4, m<sub>c</sub>=1.5,  $\Gamma$  <sub>M</sub>~0.1 GeV,  $\Gamma$  <sub>d</sub>~0.2 GeV,  $\Gamma$  <sub>B</sub>~0.3 GeV

## Direct $D^0$ & $\Lambda_c^+$ production via RRM

 $\square$  Including SMCs makes the spectra harder & enhances the ratio  $\Lambda_c^+/D_0^-$ 



□ Consider RRM formation of D<sup>0</sup> (3.5+0.7) &  $\Lambda_c^+$  (3.0+0.6+0.6) of p<sub>T</sub>~4.2 GeV: enhancement of density of light-q of  $p_T \sim 0.6$ -0.7 GeV & c of  $p_T \sim 3.0$ -3.5 GeV

$$\Delta N_{D^0}(4.2) \sim \frac{\Delta N_c(3.0-3.5)}{V_{\rm c,eff}} \cdot \frac{\Delta N_q(0.6-0.7)}{V_{\rm q,eff}} \qquad (15) \qquad \begin{array}{c} \textbf{--- Rencombinant quark density enhanced vs w/o SMCs: $V_{\rm eff}$< $V_{\rm fb}$} \end{array}$$

$$\Delta N_{\Lambda_c^+}(4.2) \sim \frac{\Delta N_c(3.0-3.5)}{V_{\rm c,eff}} \cdot \frac{\Delta N_q(0.6-0.7)}{V_{\rm q,eff}} \cdot \frac{\Delta N_q(0.6-0.7)}{V_{\rm q,eff}} \cdot \frac{\Delta N_q(0.6-0.7)}{V_{\rm q,eff}} - \frac{Enhanced light-q density entering D^0 RRM only once vs twice (squared) for  $\Lambda_c^+ RRM \rightarrow 0$$$

Enhanced light-q density entering 
$$D^0$$
 RRM only once vs twice (squared) for  $\Lambda_c^+$  RRM  $\Longrightarrow$  the ratio  $\Lambda_c^+/D^0$  enhanced!

Stronger

thermalization