CPV and mixing in charm decays: experimental status at LHCb

Giulia Tuci¹, on behalf of the LHCb collaboration

¹Università di Pisa and INFN-Pisa

10th LHCb Implications Workshop 28/10/2020

Introduction

- \diamond Charm transitions are a unique portal for obtaining a novel access to flavor dynamics
 - there might exist some New Physics coupling only to up-type quarks
 - expected CPV in charm ≤10⁻³ → difficult to observe it experimentally

- Finally CPV in charm has been observed! PRL122. 211803
- Now it's the moment to start a systematic exploration of all the charm hadrons decay channels to do a quantitative study of CPV
- Large samples of charm hadrons decays needed → LHCb

CPV in charm

CPV in decay

$$|A_f| \neq |\overline{A}_f|$$

$$\arg\left(\frac{q\bar{A}_f}{pA_f}\right) \neq 0$$

CPV in mixing and interference expected to be very small: O(10⁻⁵)

→ still room for New-Physics

CPV

Time-integrated CPV (≈CPV in the decay)

Methodology

We want to measure

$$\mathcal{A}_{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

Quantity measured in LHCb

$${\cal A}_{raw} \equiv rac{N_D - N_{ar D}}{N_D + N_{ar D}}$$

Production asymmetry: initial state pp is not CP symmetric

Asymmetric detector acceptance + material interaction different for particles/antiparticles

A_{prod} and A_{det} are O(1%)

Ingredients

⋄ D⁰ flavour tagging:

$$ightharpoonup$$
 D*+ $ightharpoonup$ D0 π + (largest yield)

$$ightharpoonup B^- o D^0 \mu^- X$$

Taking into account for production and detection asymmetries

- Use of Cabibbo-Favoured calibration channels
- \rightarrow A_{prod} and A_{det} cancel out in the difference between raw asymmetries if the kinematic distributions are equal in the different decay channels

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

Analysed data collected in 2015-2018 and combined with Run1 measurement (total of 9fb⁻¹)

$$A_{raw}(KK) - A_{raw}(\pi\pi) = (A_{CP}(KK) + A_D(tag) + A_P) - (A_{CP}(\pi\pi) + A_D(tag) + A_P)$$

$$\Rightarrow = A_{CP}(KK) - A_{CP}(\pi\pi)$$

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- First observation of charm CPV at 5.3 σ!
- Still statistically limited (syst. < 0.3 x stat. in D*-tagged sample)

How to interpret this result? SM or BSM? JHEP 1907 (2019) 161, JHEP 07 (2019) 020, JHEP 1907 (2019) 020, PRD 99 (2019) 113001, 1903.10638, 1905.00907, PRD100(2019)093002

From ΔA_{CP} to $A_{CP}(K^+K^-)$

- Separate measurement of $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$ is needed to understand the nature of CPV
- ♦ Assuming SU(3)_F → A_{CP}(K⁺K⁻)= -A_{CP}(π⁺π⁻) → naively expected $|A_{CP}(K^+K^-)| \approx 8 \times 10^{-4}$
- Measurement performed with 3fb⁻¹ of data collected in Run1, using D⁰ \rightarrow K⁻π⁺, D⁺ \rightarrow K⁻π⁺π⁺ and D⁺ \rightarrow K_s⁰π⁺ decays

$$A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+})$$
$$+A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - \left[A(D^{+} \to K_{S}^{0}\pi^{+}) - A(\overline{K^{0}})\right]$$

detection asymmetry of neutral kaons, which includes mixing and CPV effects

Particles with same colour must have same kinematic distributions: loss of statistical power after the weighting

$$A_{CP}(D^0 \to K^-K^+) = [14 \pm 15 \text{ (stat)} \pm 10 \text{ (syst)}] \cdot 10^{-4}$$

Run1 result JHEP 07 (2014) 041

Prospects on A_{CP}(K⁺K⁻) with Run 2 data

- Extrapolating from Run1, expected uncertainty on Run2: $\sigma_{\text{stat}} = 8.5 \times 10^{-4}$ CERN-PUB-LHCC-2018-027
- Improvements in offline analysis: using also D_s⁺ decays as control channel

$$A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+})$$
$$+A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - \left[A(D^{+} \to K_{S}^{0}\pi^{+}) - A_{D}(\overline{K}^{0})\right]$$

$$A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+})$$
$$+A(D_{s}^{+} \to \phi\pi^{+}) - \left[A(D_{s}^{+} \to K_{S}^{0} K^{+}) - A_{D}(\overline{K}^{0})\right]$$

- ❖ Combining the two methods → expected $\sigma_{\rm stat}$ ~ 5 x 10⁻⁴
 - Ongoing work to reduce systematic uncertainty at the level of statistic one
- ♦ \rightarrow We may be able to get an evidence for the single CP asymmetries D⁰ \rightarrow K⁻K⁺ or D⁰ \rightarrow π⁻π⁺ in Run 3 or sooner

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$

- ❖ In $D^0 \rightarrow K_S^0 K_S^0$ decay channel amplitudes are suppressed →A_{CP} could be enhanced at a level of ~1% PRD 92 (2015) 054036
- Provides independent information on CPV: sensitive to a different mix of CP-violating amplitudes w.r.t. $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ PRD 85 (2012) 034036

Current experimental status

${\cal A}^{CP}(K^0_{ m s}K^0_{ m s}) \; (\%)$	Yield	Collaboration
$-23. \pm 19.$	65 ± 14	CLEO
$-2.9 \pm 5.2 \pm 2.2$	635 ± 74	LHCb Run 1
$-0.02 \pm 1.53 \pm 0.17$	5399 ± 87	Belle
$4.3 \pm 3.4 \pm 1.0$	1067 ± 41	LHCb 2015+2016

CLEO PRD 63 (2001) 071101

LHCb (Run1) JHEP 10 (2015) 055

Belle PRL 119 (2017) 171801

LHCb (2015+2016) JHEP 11 (2018) 048

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ with Run2 data

- Challenges at LHCb:
 - $\tau(K_S^0) = 0.9 \times 10^{-10} \text{ s}, <\beta\gamma>\sim 80 \rightarrow \beta\gamma c\tau \sim 216 \text{ cm}$
 - ➤ K_S⁰ decays often outside vertex detector acceptance → difficult to select at trigger level

Full Run 2
measurement will
be ready soon!

- Improvements in both trigger and offline selections
- \rightarrow expected $\sigma_{\text{stat+syst}} \sim 1.3 \times 10^{-2}$ (while extrapolating from published 2015+2016 measurement: $\sigma_{\text{stat+syst}} \sim 2.1 \times 10^{-2}$)
- Ongoing effort to introduce a specialised K_S⁰ Hlt1-trigger in Run 3
 - Large room for improvement!

Mixing and time-dependent CPV

Status

Mass eigenstates linear combination of flavor eigenstates

$$|D_{1,2}\rangle=p|D^0\rangle\pm q|\overline{D}{}^0\rangle$$
 \longrightarrow Mixing $x\equiv \Delta m/\Gamma$ $y\equiv \Delta\Gamma/2\Gamma$

Experimental status

Mixing well established

No evidence for CP violation in mixing or interference

Mixing parameters using $D^0 \rightarrow K_S^{0} \pi^+ \pi^-$ decays

Most recent measurement uses Run1 data

PRL122.231802

30x more data in 2015-2018! Analysis ongoing

- ❖ Bin-flip method → model-independent and data-driven approach PRD99.012007
- Combining with the world average value

$$x = 3.9^{+1.1}_{-1.2} \times 10^{-3}$$

Evidence of a positive mass difference between the neutral charm meson eigenstates

Time-dependent CPV: measure of A_r

Measured asymmetries in bins of decay-time

$$A_{CP}(f,t) \approx A_{CP}^{dec}(f) - A_{\Gamma}(f) \frac{t}{\tau_{D^0}}$$
 CPV in interference
$$A_{\Gamma}(f) \approx y(|\frac{q}{p}|-1) - x\Phi_f - yA_{CP}^{dec}(f) \text{ O(10-5)}$$
 CPV in mixing

- Ongoing analysis of full Run2 D*-tagged dataset
 - Expected to halve statistical uncertainty w.r.t Run1
 - \rightarrow reach $\sigma_{\text{stat}} \sim 1 \times 10^{-4}$ on world average
 - \rightarrow $\sigma_{\text{stat}} \gtrsim 4 \times \sigma_{\text{syst}}$

Full Run 2 measurement will be ready soon!

Much more analysis not covered today (some examples)

- Time-integrated CPV
 - ightharpoonup Two-body decays: $D_{(s)}^{\ \ +}
 ightharpoonup K_S^{\ 0} h^+$ PRL122(2019)191803 , $D_{(s)}^{\ \ +}
 ightharpoonup η'π^+$ PLB771(2017)21
 - Multibody decays: D⁰→ K_S⁰K[±]π[∓] PRD 93 (2016) 052018, D⁰→ K⁺K⁻π⁺π⁻, D⁰→ π⁺π⁻π⁺π⁻ JHEP02(2019)126, D⁰→ π⁺π⁻π⁰ PLB 740 (2015) 158, D⁺→ K⁺K⁻π⁺ JHEP 06 (2013) 112, D⁺→ π⁺π⁻π⁺ PLB 728 (2014) 585, Ξ_c⁺→ pK⁻π⁺ arXiv:2006.03145 (2020), Λ_c⁺ → ph⁺h⁻ JHEP 03 (2018) 182
- Time-dependent CPV
 - Two-body decays: $y_{CP}(h^+h^-)$ PRL 122 (2019) 01180 , WS D⁰ → K⁺π⁻ PRD 97 (2018) 031101
 - ➤ Multibody decays: D^0 → $K^-\pi^+\pi^-\pi^+$ PRL 116 (2016) 241801

What else can we study?

Conclusion

- CPV observed for the first time by LHCb
 - Now exploring different decay channels to better clarify the physics picture
- New results on Run2 data are coming!
 - careful study and tuning of analysis strategies to take full advantage of the available statistics
 - ➤ Statistical uncertainty on full Run2 measurements could be better than √L improvement!
- New data will arrive in 2021/2022 with an almost completely new detector and trigger system
 - \rightarrow Instantaneous luminosity will increase by a factor of 5 (2 x 10³³ cm⁻²s⁻¹)
- Current results limited by statistics
 - We expect significant gains in precision, and sensitivity to CPV effects, in LHCb Run 3
 - Stay tuned!

Backup slides

The main actors

- High production rate
 - > ~ 1 billion D⁰ decays to be analysed (now) at LHCb
 - σ (pp \to cc̄X)= (2940 ± 3 ± 180 ± 160)µb @ 13TeV for p_T < 8 GeV/c and 2 < η < 4.5 JHEP03(2016)159
- Busy environment
 - ➤ Tight selections needed → non-trivial efficiency effects

- Clean environment:
 - Easier control of systematic uncertainties
 - Access to absolute asymmetries
- * Better efficiency in reconstructions of neutral particles $(K_S^0, \eta, \eta', \pi^0, \gamma)$
- Access to decays with neutrinos in the final state

LHCb

Belle II

Prospects for the future runs

CERN-PUB-LHCC-2018-027 BELLE2-PUB-PH-2018-001

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_\Gamma)$	Yield $\pi^+\pi^-$	$\sigma(A_\Gamma)$
Run $1-3 (23 \text{ fb}^{-1})$	D*	310M	0.0056%	92M	0.0104~%
Run $1-4 (50 \text{ fb}^{-1})$	D*	793M	0.0035%	236M	0.0065~%
Run $1-5 (300 \text{ fb}^{-1})$	D*	5.3G	0.0014%	1.6G	0.0025~%

- A_r expected to be $O(10^{-5})$ in SM
- Kagan & Silvestrini 2020 Li, Umeeda, Xu, Yu 2020
- → with 300fb⁻¹ we will reach sensitivity to SM expectations
- With 50 ab⁻¹ Belle II will collect about 60M of D⁰→ K⁺K⁻ decays

Unit of 10⁻³ (in blue unofficial extrapolations)

	Current best	LHCb 2011-2018	LHCb U1	LHCb U2	Belle II
	measurement	9 fb^{-1}	$50 \; {\rm fb^{-1}}$	$300 \; {\rm fb^{-1}}$	50 ab^{-1}
	(stat.+ syst.)		(stat.)	(stat.)	(stat.+ syst.)
ΔA_{CP}	LHCb $(9fb^{-1})$ 0.29	0.29 (stat.+ syst.)	0.07	0.03	0.6
$A_{CP}(D^0 \to K^+K^-)$	LHCb $(3fb^{-1})$ 1.8	0.5 (stat. only)	0.17	0.07	0.3
$A_{CP}(D^0 \to \pi^+\pi^-)$	LHCb $(3 \text{fb}^{-1}) 1.8$	0.5 (stat. only)	0.17	0.07	0.5
$A_{CP}(D^0\to K^0_SK^0_S)$	Belle $(1 \text{ ab}^{-1}) 15$	13 (stat. + syst.)	7	2.8	2.3

$CPV \ in \ \Xi_c^{\ t} \longrightarrow pK^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +}$

- Actively working also on search of CPV in multibody channels
- Example: perform searches for CPV in $\Xi_c^+ \to p K^- \pi^+$ single-Cabibbo suppressed charm baryon decays using Run 1 data (~3fb⁻¹)
- 3-body hadronic decays: make use of the Dalitz plot to look for localized asymmetries
- Search based on two techniques independent from the amplitude modeling

in the Dalitz plot

No evidence of CPV found

