Parametrization of light baryons

Yannick Wunderlich

HISKP, University of Bonn

October 29, 2020

Introduction & Motivation

*) Consider isobar-decomposition for the decay $\Lambda_b^0 \rightarrow J/\psi K^- p$: [LHCb arXiv:1507.03414]

Introduction & Motivation

) Consider isobar-decomposition for the decay $\Lambda_b^0 \rightarrow J/\psi K^- p$: [LHCb arXiv:1507.03414] $\int_{A_b^0} \int_{P_{c,j}^+} \int_{A_b^0} \int_{P_{c,j}^+} \int_{A_b^0} \int_{P_{c,j}^+} \int_{A^} \int_{A_b^0} \int_{A^*} \int_{A^$

*) Isobar-lineshapes: Breit-Wigner amplitudes

$$\mathcal{R}_{\Lambda_{n}^{*}}(m_{Kp}) = \left[\frac{p}{M_{\Lambda_{b}^{0}}}\right]^{L_{1}} \frac{B_{L_{1}}^{'}(p, p_{0}, d) B_{L_{2}}^{'}(q, q_{0}, d)}{M_{0,\Lambda_{n}^{*}}^{2} - m_{Kp}^{2} - iM_{0,\Lambda_{n}^{*}}\Gamma(m_{Kp})} \left[\frac{q}{M_{0,\Lambda_{n}^{*}}}\right]^{L_{2}}$$

Blatt-Weisskopf factors: $B'_{L}(p, p_{0}, d)$, Mass-dependent width: $\Gamma(m)$.

Introduction & Motivation

) Consider isobar-decomposition for the decay $\Lambda_b^0 \rightarrow J/\psi K^- p$: [LHCb arXiv:1507.03414] $\kappa^{-} = \sum_{P_c^+} \frac{\Lambda_h^0}{\Lambda_h^0}$ $J/\psi + \sum_{\Lambda^} \prod_{\Lambda^0}$ $= \sum_{\substack{\rho_{c,j}^+ [\mathcal{P}_{c,j}^+ \text{-chain}]}} + \sum_{\lambda_{\psi}} \sum_{\Lambda_n^*} \mathcal{H}_{\lambda_{\Lambda^*},\lambda_{\psi}}^{\Lambda_0^0 \to \Lambda_n^*} \mathcal{D}_{\lambda_{\Lambda_0^0},\lambda_{\Lambda^*} - \lambda_{\psi}}^{\frac{1}{2}} \left(0, \theta_{\Lambda_0^0}, 0\right)^* \mathcal{H}_{\lambda_{\rho},0}^{\Lambda_n^* \to K\rho}$ $\times D^{J_{\Lambda_{n}^{*}}}_{\lambda_{\Lambda^{*}},\lambda_{2^{l_{1}}}}(\phi_{K},\theta_{\Lambda^{*}},0)^{*} \mathcal{R}_{\Lambda_{n}^{*}}(m_{Kp}) D^{1}_{\lambda_{2^{l_{1}}},\Delta\lambda_{l_{1}}}\left(0,\theta_{\Lambda_{p}^{0}},0\right)^{*}$ Events/(15 MeV) 00 00 000 00 000 Isobar-lineshapes: Breit-Wigner amplitudes *) LHCb (b) $\mathcal{R}_{\Lambda_{n}^{*}}(m_{K_{p}}) = \left| \frac{P}{M_{0}0} \right|^{L_{1}} \frac{B'_{L_{1}}(p, p_{0}, d) B'_{L_{2}}(q, q_{0}, d)}{M_{0}^{2} A^{*} - m_{K_{p}}^{2} - iM_{0} A^{*} \Gamma(m_{K_{p}})} \left[\frac{q}{M_{0} A^{*}} \right]^{L_{2}}.$

Blatt-Weisskopf factors: $B'_L(p, p_0, d)$, Mass-dependent width: $\Gamma(m)$.

 $m_{J/\psi p}$ [GeV]

arXiv:1507.03414]

BnGa-approach for analysis of hyperon resonances

 \ast) Example: Bonn-Gatchina approach for analysis of hyperons

[Matveev et al., arXiv:1907.03645]

BnGa-approach for analysis of hyperon resonances

*) Example: Bonn-Gatchina approach for analysis of hyperons

[Matveev et al., arXiv:1907.03645]

*) Coupled-channels approach using K-matrix (actually: D-matrix):

$$K_{ij} = \sum_{\alpha} \frac{g_i^{\alpha} g_j^{\alpha}}{m_{\alpha}^2 - m^2} + c_{ij}.$$

- *) Many (i.e. 15) channels: $i, j = K^- p, \pi^0 \Lambda, \pi^0 \Sigma^0, ..., \pi^0 \pi^0 \Lambda, ...$
- *) Database (23000 points): σ_0 for 7 reactions; asymmetry P for 5 reactions; data-'points' for 6 three-body final states (event-sets for 2 final states)

BnGa-approach for analysis of hyperon resonances

*) Example: Bonn-Gatchina approach for analysis of hyperons

[Matveev et al., arXiv:1907.03645]

*) Coupled-channels approach using K-matrix (actually: D-matrix):

$$K_{ij} = \sum_{\alpha} \frac{g_i^{lpha} g_j^{lpha}}{m_{lpha}^2 - m^2} + c_{ij}.$$

- *) Many (i.e. 15) channels: $i, j = K^- p, \pi^0 \Lambda, \pi^0 \Sigma^0, \dots, \pi^0 \pi^0 \Lambda, \dots$
- *) Database (23000 points): σ_0 for 7 reactions; asymmetry P for 5 reactions; data-'points' for 6 three-body final states (event-sets for 2 final states)
- *) Fit-strategy:
 - (i) Primary fit: fit only hyperons listed with * ** and ** ** by the PDG, using BW's
 - (ii) Many exploratory fits: include candidate-resonance with fixed mass (and J^{P}) \rightarrow fit remaining parameters \rightarrow vary mass \rightarrow re-fit ...

⇒ 'mass-scans'

 \hookrightarrow Final fit: use resonance-configuration with best $\Delta \chi^2$ as initial condition for the final big *K*- (or *D*-) matrix fit

Description of data in the BnGa-approach

*) Cross sections (mostly) very well-described for all energies:

Description of data in the BnGa-approach

*) P-asymmetry data sometimes scarce, leave room for improvement: $\Pr{(K^- p \to \pi^0 \Lambda)}$

Y. Wunderlich

Parametrization of light baryons

arXiv:1907.03645]

al.,

Matveev et

Comparing BnGa partial-waves to Breit-Wigner amplitudes

*) Consider BnGa $\bar{K}N \rightarrow \bar{K}N$ partial waves for isospin I = 0: [pwa.hiskp.uni-bonn.de]

Comparing BnGa partial-waves to Breit-Wigner amplitudes

Idea: Try to reproduce BnGa partial-waves using:

 $\mathcal{M}(W) = c_1 * \mathsf{BW}_1(M_0^1, \Gamma_0^1; W) + c_2 * \mathsf{BW}_2(M_0^2, \Gamma_0^2; W) + \dots,$ with $c_i \in \mathbb{C}$ ('helicity-couplings') and $\{M_0^i, \Gamma_0^i\}$ fixed to LHCb-values.

Comparing BnGa partial-waves to Breit-Wigner amplitudes

Idea: Try to reproduce BnGa partial-waves using:

$$\mathcal{M}(W) = c_1 * \mathsf{BW}_1(M_0^1, \Gamma_0^1; W) + c_2 * \mathsf{BW}_2(M_0^2, \Gamma_0^2; W) + \ldots,$$

with $c_i \in \mathbb{C}$ ('helicity-couplings') and $\{M_0^i, \Gamma_0^i\}$ fixed to LHCb-values.

*) Is there a simple parametrization to extract pole- instead of BW-parameters?

- *) Is there a simple parametrization to extract pole- instead of BW-parameters?
 - *) Illustration of (complicated) analytic structure of the P₁₁ partial wave from the Jülich-Bonn model:

[Švarc et al. PRC 88, 035206 (2013)]

- *) Is there a simple parametrization to extract pole- instead of BW-parameters?
- *) Illustration of (complicated) analytic structure of the P₁₁ partial wave from the Jülich-Bonn model:
 [Švarc et al. PRC 88, 035206 (2013)]

 \hookrightarrow Try to model analytic structure using L+P- ('Laurent+Pietarinen'-) Ansatz:

$$\mathcal{M}(W) = \underbrace{\sum_{j}^{N_{\text{pole}}} \frac{x_j + iy_j}{W_j - W}}_{\text{'Laurent'}} + \underbrace{\sum_{k=0}^{N_1} \boldsymbol{c}_k X(\alpha, x_P; W)^k + \sum_{l=0}^{N_2} \boldsymbol{d}_l Y(\beta, x_Q; W)^l + \dots}_{\text{'Pietarinen'}}$$

- Pole-position: $W_j \in \mathbb{C}$; Residue: $a_{-1}^{(j)} = x_j + iy_j$
- Pietarinen-functions: $X(\alpha, x_P; W) := \frac{\alpha \sqrt{x_P W}}{\alpha + \sqrt{x_P W}}$, with:

*) 'shape-parameter': $\alpha \in \mathbb{R}$; branch-point coordinate: $x_P \in \mathbb{C}$.

- *) Is there a simple parametrization to extract pole- instead of BW-parameters?
- *) Illustration of (complicated) analytic structure of the P₁₁ partial wave from the Jülich-Bonn model:
 [Švarc et al. PRC 88, 035206 (2013)]

 \hookrightarrow Try to model analytic structure using L+P- ('Laurent+Pietarinen'-) Ansatz:

$$\mathcal{M}(W) = \underbrace{\sum_{j}^{N_{\text{pole}}} \frac{x_{j} + iy_{j}}{W_{j} - W}}_{\text{'Laurent'}} + \underbrace{\sum_{k=0}^{N_{1}} \boldsymbol{c}_{k} X(\alpha, x_{P}; W)^{k} + \sum_{l=0}^{N_{2}} \boldsymbol{d}_{l} Y(\beta, x_{Q}; W)^{l} + \dots}_{\text{'Pietarinen'}}$$
Pole position: $W \in \mathbb{C}$: Posidue: $c^{(j)} = x_{1} + ix_{2}$

- Pole-position: $W_j \in \mathbb{C}$; Residue: $a_{-1}^{O_j} = x_j + iy_j$ - Pietarinen-functions: $X(\alpha, x_P; W) := \frac{\alpha - \sqrt{x_P - W}}{\alpha + \sqrt{x_P - W}}$, with:
 - *) 'shape-parameter': $\alpha \in \mathbb{R}$; branch-point coordinate: $x_P \in \mathbb{C}$.

 $\,\hookrightarrow\,$ Could something like this work for the LHCb lineshape-functions?

*) Try 1 Pole + 1 Pietarinen-function:

$$\mathcal{R}(m_{K\rho}) = \frac{a_{-1}}{\left(\operatorname{Rem}_{K\rho}^{\operatorname{pole}} - i\operatorname{Im}_{K\rho}^{\operatorname{pole}}\right) - m_{K\rho}} + \sum_{k=0}^{4} \boldsymbol{c}_{k} X\left(\alpha, \nu; m_{K\rho}\right)^{k}.$$

*) Consider lineshape-function for $\Lambda(1520)\frac{3}{2}^{-}$ in LHCb-fit [LHCb arXiv:1507.03414]:

*) Try 1 Pole + 1 Pietarinen-function:

$$\mathcal{R}(m_{\mathcal{K}p}) = \frac{a_{-1}}{\left(\operatorname{Rem}_{\mathcal{K}p}^{\operatorname{pole}} - i\operatorname{Im}_{\mathcal{K}p}^{\operatorname{pole}}\right) - m_{\mathcal{K}p}} + \sum_{k=0}^{4} \boldsymbol{c}_{k} X\left(\alpha, \nu; m_{\mathcal{K}p}\right)^{k}.$$

*) Consider lineshape-function for $\Lambda(1520)\frac{3}{2}^{-1}$ in LHCb-fit [LHCb arXiv:1507.03414] :

Fit I: fix $\text{Re}m_{Kp}^{\text{pole}} = M_0 = 1.5195$ GeV, $\text{Im}m_{Kp}^{\text{pole}} = \Gamma_0/2 = 0.0078$ GeV, $\nu = 1.44$ GeV.

*) Try 1 Pole + 1 Pietarinen-function:

*) Try 1 Pole + 1 Pietarinen-function:

$$\mathcal{R}(m_{K\rho}) = \frac{a_{-1}}{\left(\operatorname{Rem}_{K\rho}^{\operatorname{pole}} - i\operatorname{Im}_{K\rho}^{\operatorname{pole}}\right) - m_{K\rho}} + \sum_{k=0}^{4} \boldsymbol{c}_{k} X\left(\alpha, \nu; m_{K\rho}\right)^{k}.$$

*) Consider lineshape-function for $\Lambda(1600)\frac{1}{2}^+$ in LHCb-fit [LHCb arXiv:1507.03414] :

*) Try 1 Pole + 1 Pietarinen-function:

$$\mathcal{R}(m_{K\rho}) = \frac{a_{-1}}{\left(\operatorname{Re} m_{K\rho}^{\operatorname{pole}} - i\operatorname{Im} m_{K\rho}^{\operatorname{pole}}\right) - m_{K\rho}} + \sum_{k=0}^{4} \boldsymbol{c}_{k} X\left(\alpha, \nu; m_{K\rho}\right)^{k}.$$

*) Consider lineshape-function for $\Lambda(1600)\frac{1}{2}^+$ in LHCb-fit [LHCb arXiv:1507.03414]:

Fit I: fix $\text{Re}m_{Kp}^{\text{pole}} = M_0 = 1.6$ GeV, $\text{Im}m_{Kp}^{\text{pole}} = \Gamma_0/2 = 0.075$ GeV, $\nu = 1.44$ GeV.

*) Try 1 Pole + 1 Pietarinen-function:

) Consider replacement of the sum over Breit-Wigner's for the Λ^ 's:

) Consider replacement of the sum over Breit-Wigner's for the Λ^ 's:

*) Which Ansatz to choose for A?

Possible applications of the *P*-vector approach

*) Use K-matrix as 'background' for fits of P_c^+ -states:

$$\mathbf{A}_{k} = \mathbf{P}_{j} \left(\mathbb{1} - i\rho\hat{\mathbf{K}} \right)_{jk}^{-1} = \mathbf{P}_{k} + i\mathbf{P}_{j}\rho_{j}\mathbf{K}_{jk} + \dots$$

- K_{ij} : p.w. matrix-elements of 'frozen' *K*-matrix imported from the PWA-model

-
$$P_j = \sum_{\alpha} \frac{G_{\alpha}g_j^{\alpha}}{m_{\alpha}^2 - m^2} + \underbrace{f_j}_{=?}$$

 \hookrightarrow Unknowns $\{G_{\alpha}\}$ (and possibly f_j) need to be fitted, together with parameters for P_c^+ -states

Possible applications of the *P*-vector approach

*) Use K-matrix as 'background' for fits of P_c^+ -states:

$$\boldsymbol{A}_{\boldsymbol{k}} = \boldsymbol{P}_{j} \left(\mathbb{1} - i\rho\hat{\boldsymbol{K}} \right)_{j\boldsymbol{k}}^{-1} = \boldsymbol{P}_{\boldsymbol{k}} + i\boldsymbol{P}_{j}\rho_{j}\boldsymbol{K}_{j\boldsymbol{k}} + \dots$$

- K_{ij} : p.w. matrix-elements of 'frozen' *K*-matrix imported from the PWA-model

-
$$P_j = \sum_{\alpha} \frac{G_{\alpha}g_j^{\alpha}}{m_{\alpha}^2 - m^2} + \underbrace{f_j}_{\alpha}$$

 \hookrightarrow Unknowns $\{G_{\alpha}\}$ (and possibly f_j) need to be fitted, together with parameters for P_c^+ -states

) Use LHCb-data in order to fit Λ^ -resonances: minimize (simplification!)

$$-2\ln\left[\mathcal{L}_{\mathsf{LHCb}}\left(\vec{\omega}_{P_{c}^{+}},\vec{\omega}_{\Lambda^{*}}\right)\right]+\chi^{2}_{\mathsf{BnGa}}\left(\vec{\omega}_{\Lambda^{*}}\right)$$

- $\vec{\omega}_{P_c^+}$: masses, widths, hel.-couplings of P_c^+ 's
- $\vec{\omega}_{\Lambda^*}$: parameter-vector from (BnGa) light-baryon analysis
- \hookrightarrow Quite difficult, but more promising than using just LHCb-events for light-baryon spectroscopy \ldots

Conclusion and Outlook

For the example-reaction $\Lambda^0_b \to J/\psi K^- p$, we discussed:

- *) Introducing the L+P-parametrization for the lineshape-fcts $\mathcal{R}(m_{Kp})$:
 - \checkmark Introduce (or extract) pole- instead of Breit-Wigner Parameters \rightarrow in principle less model-dependent
 - ✓ In principle possible to model complicated analytic structures using multiple Pietarinen-functions, ...
 - *X* ... however: this would introduce too many new parameters. Instead: try at most 1 Pietarinen per lineshape-function
 - X Issue: do helicity-couplings factorize around L+P-parametrization, or not?

Conclusion and Outlook

For the example-reaction $\Lambda^0_b \to J/\psi K^- p$, we discussed:

- *) Introducing the L+P-parametrization for the lineshape-fcts $\mathcal{R}(m_{\kappa p})$:
 - $\checkmark\,$ Introduce (or extract) pole- instead of Breit-Wigner Parameters $\rightarrow\,$ in principle less model-dependent
 - ✓ In principle possible to model complicated analytic structures using multiple Pietarinen-functions, ...
 - X ... however: this would introduce too many new parameters. Instead: try at most 1 Pietarinen per lineshape-function
 - X Issue: do helicity-couplings factorize around L+P-parametrization, or not?
- *) Import the K-matrix of a reaction-model (e.g. BnGa) using the *P*-vector approach (or variants thereof):
 - $\checkmark\,$ Can improve the description of $\Lambda^*\mbox{-}contributions$ ('background')
 - $\checkmark\,$ K-matrix related ideas can open window towards usage of LHCb-data for light-brayon spectroscopy
 - X Implementation is probably time-consuming (i.e. not easy)

 \hookrightarrow Final suggestion: maybe use *K*-matrix for Λ^* 's and L+P for P_c^+ 's?

Thank You!

Additional Slides

	Mass	Width	$\Delta\chi^2$	Status
$\Lambda(1405)1/2^{-1}$	1420±3	46±4	4070	****
	$1405.1^{+1.3}_{-1.0}$	50.5±2.0		****
$\Lambda(1670)1/2^{-1}$	1677±2	33±4	3610	****
	1660 to 1680	25 to 50		****
$\Lambda(1800)1/2^{-1}$	1811 ± 10	209±18	1896	***
	1720 to 1850	200 to 400		***
$\Lambda(2000)1/2^{-}$	2085±14	428±16	845	*
	≈2060	100 to 300		*
$\Lambda(1520)3/2^{-}$	1518.5 ± 0.5	15.7 ± 1.0	>10 000	****
	1519.5±1.0	$15.6 {\pm} 1.0$		****
$\Lambda(1690)3/2^{-}$	1689±3	75±5	> 10000	****
	1685 to 1695	50 to 70		****
$\Lambda(1830)5/2^{-}$	1821±3	64±7	1790	***
× , , ,	1810 to 1830	60 to 110		****
$\Lambda(2080)5/2^{-1}$	2082±13	181±29	770	**
x 7-1	-	-		new
$\Lambda(2100)7/2^{-}$	2090±15	290±30	5412	****
(2090 to 2110	100 to 250		****

Negative-parity Λ -hyperons:

[M. Matveev, NSTAR2019]

Positive-parity A-hyperons:

	Mass	Width	$\Delta \chi^2$	Status
$\Lambda(1600)1/2^+$	1605±8	245±15	>10 000	****
	1560 to 1700	50 to 250		***
$\Lambda(1810)1/2^+$	1773±5	36±6	46	*
	1750 to 1850	50 to 250		***
$\Lambda(1890)3/2^+$	1873±5	103±10	4480	****
	1850 to 1910	60 to 200		****
$\Lambda(2070)3/2^+$	2070±24	370±50	1144	**
	-	-		new
$\Lambda(1820)5/2^+$	1822±4	80±8	>10 000	****
	1815 to 1825	70 to 90		****
$\Lambda(2110)5/2^+$	2086±12	274±25	1418	**
. , , ,	2090 to 2140	150 to 250		***

[M. Matveev, NSTAR2019]