

Measurement of direct CP violation in the decay $B^+ \rightarrow K^+ \pi^0$

Will Parker

University of Maryland on behalf of the LHCb collaboration Implications Workshop October 28th, 2020

- Family of B → Kπ decays dominated by hadronic loop amplitudes, but diagrams contribute differently to decays
- Amplitudes expected to obey isospin relations, but measurements of CP asymmetries find $A_{CP}(B^+ \rightarrow K^+\pi^0) - A_{CP}(B^0 \rightarrow K^+\pi^-) =$ 0.122 ± 0.022 (<u>HFLAV 2018</u>)
- More precise to incorporate all four CP asymmetries and branching fractions (<u>Phys.Lett.B 627 (2005) 82</u>)
- Tension in fit to Kπ measurements can be resolved by enhancement of color-suppressed trees or NP in penguins (JHEP 01 (2018) 074, Phys.Lett.B 785 (2018) 525)

(c) $B \to K \pi^0$ color-suppressed tree diagrams

(d) $B \to K \pi^0$ electroweak penguin diagrams

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\pi_{0}}{\tau_{+}}$$

Experimental Status

 \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \rightarrow K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$+0.14 \pm 0.13 \pm 0.06 \ [2]$	
	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0 \rightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.084 \pm 0.004 \pm 0.003$ [7]
$B^+\!\to K^+\pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	

Sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.150 +/- 0.032

- All four $B \rightarrow K\pi$ modes measured at B factories
- Charged pion modes measured by LHCb
- $B^+
 ightarrow K^+ \pi^0$ is first analysis of a one-track B decay at a hadron collider
 - Experimentally challenging no secondary vertex
 - Secondary vertex a requirement for all Run I software triggers, dedicated trigger line developed for Run II
- Proof of concept for other modes of similar topology such as $B^0 \rightarrow K^0 \pi^0$

	[1]: <u>Phys.Rev.D 79, 052003</u>	[2]: <u>Phys.Rev.D 81, 011101(R)</u>	[3]: <u>Phys.Rev.Lett. 97, 171805</u>	[4]: <u>Phys.Rev.D 87, 031103(R)</u>	
10/28/2020	[5]: <u>Phys.Lett.B 726 (2013) 6</u> 4	6 [6]: <u>Phys.Rev.D 87, 052009</u>	[7]: <u>Phys.Rev.D 98, 032004</u>	[8]: <u>Phys.Rev.D 76, 091102(R)</u>	3

The LHCb Detector

- Forward spectrometer covering $10 < \theta < 300$ mrad
- *bb* production peaked forward/backward
 - 25% in ~4% solid angle

JINST 3 (2008) S08005, Int.J.Mod.Phys. A30 (2015) 1530022

- Major challenge to suppress background in absence of displaced secondary vertex
- Dedicated trigger

trajectory

- Tight kinematic cuts
- π^0 from photons merged into single calorimeter cluster
 - Higher energy, lower combinatorial background
- K^+ impact parameter inconsistent with PV
- K^+ distance of closest approach consistent with B^+

VERSI

- Use boosted decision trees to overcome S/B of $\sim 3.3 \times 10^{-4}$
- Trained on high-mass and low-mass sidebands and simulated signal events
- Split and cross-validated to take advantage of full dataset and avoid overtraining
- Rely on kinematics, $IP\chi^2(PV)$ and DOCA- χ^2 , and isolation (next slide)

Isolation Variables

- Events with other tracks pointing back to B candidate are unlikely to be $B^+ \rightarrow K^+ \pi^0$ decays
- Combine each track individually with K^+ : multiplicity of good vertices, χ^2 of vertices formed
- Consider tracks in ΔR cone around B^+ : $A_{p_T} \equiv \frac{p_T(B) - p_T(\text{cone})}{p_T(B) + p_T(\text{cone})}$
- Isolation depends on track multiplicity
 - Corrected by comparing $B^0 \rightarrow K^+\pi^-$ data and simulation

- Split data by *B* charge and magnet polarity
- Signal tails, some shape parameters of peaking and $B^+ \rightarrow \pi^+ \pi^0$ from simulation
- Yields and asymmetries vary freely for all fit components (except $B^+ \rightarrow \pi^+ \pi^0$)
- 8310 ± 255 (MU), 8373 ± 253 (MD) signal events
- $A_{\text{raw}} = 0.005 \pm 0.022 \text{ (MU)},$ 0.019 ± 0.021 (MD)

$$A_{CP}(B^+ \to K^+\pi^0) = A_{raw}(B^+ \to K^+\pi^0) - A^B_{prod.} - A^K_{det.} - A^K_{trig.} - A^K_{reco.}$$

- Raw asymmetry is a combination of physical CP asymmetry, B^{\pm} production asymmetry and K^{\pm} detection, reconstruction, and triggering
- Can measure the same combination of effects in $B^+ \to (J/\psi \to \mu^+\mu^-)K^+$ decays
 - π^0 neutral, μ^{\pm} symmetric
 - K^+ trigger, selection, reco. matches signal
 - Weight $p/p_T(B^+/K^+)$ distributions of $B^+ \to (J/\psi \to \mu^+\mu^-)K^+$ to match signal
- $A_{CP}(B^+ \rightarrow J/\psi K^+) = 0.002 \pm 0.003$ (PDG), introduces small external uncertainty to $A_{CP}(B^+ \rightarrow K^+\pi^0)$ measurement

•

Prod./Det. Asymmetry Correction

•
$$A_{CP}(B^+ \to K^+\pi^0) = A_{raw}(B^+ \to K^+\pi^0) - (A_{raw}(B \to J/\psi K^+) - A_{CP}(B \to J/\psi K^+))$$

= 0.016 ± 0.022 (MU), 0.033 ± 0.021 (MD)

Systematic Uncertainties

Table 1: Systematic uncertainties on $A_{CP}(B^+ \to K^+ \pi^0)$.

- Fit variation systematics determined from pseudoexperiments
- Dominant source of uncertainty modeling of signal tails
- Common value of 0.0013 from pseudoexperiment statistics
- Effect of $B^+ \rightarrow J/\psi K^+$ weighting used to estimate residual differences in asymmetries
- Averaging Magnet Up and Magnet Down results and adding systematic uncertainties in quadrature:

 $A_{CP}(B^+ \to K^+ \pi^0)$ = 0.025 ± 0.015(stat.) ±0.006(syst.) ± 0.003(ext.)

Fit Component	Systematic	Value
Combinatorial bkg.	Shape	0.0013
Low-mass bkg.	Shape	0.0013
Peaking bkg.	Shape Offset Resolution	0.0012 0.0013 0.0014
$B^+ \to \pi^+ \pi^0$	Yield CP Asymmetry	$0.0013 \\ 0.0015$
Signal modeling	Shape	0.0043
Production/detection asymmetry	stat. weights	$0.0021 \\ 0.0005$
	Multiple candidates	0.0013
Sum in qu	0.0061	

Conclusion

 \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \rightarrow K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$+0.14 \pm 0.13 \pm 0.06 \ [2]$	
	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0\!\to K^+\pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.084 \pm 0.004 \pm 0.003$ [7]
$B^+ \rightarrow K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	$+0.024 \pm 0.015 \pm 0.006 \pm 0.003$

Previous sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.150 +/- 0.032

- Most precise measurement of direct CP violation in $B^+ \rightarrow K^+ \pi^0$ decays
- Consistent with world average, consistent with 0 at 1.5σ
- Combining with world average $A_{CP}(B^+ \rightarrow K^+\pi^0) = 0.031 \pm 0.013$ and $A_{CP}(B^+ \rightarrow K^+\pi^0) A_{CP}(B^0 \rightarrow K^+\pi^-) = 0.115 \pm 0.014$, non-zero at 8σ
- New sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.138 +/- 0.025, non-zero at 5.5 σ
- Similar trigger in place for $B^0 \to K^0 \pi^0$
- Much more data coming with upgrade
 - Plan to migrate triggers to Run III Real Time Analysis

Backup

- Consistent between years and magnet polarities
- Additional checks: Binning by kaon p_T and magnet polarity, allowing shape parameters to vary between charges and magnet polarities
- Raw asymmetry consistent in all cases