

ProtoDUNE SP - Status, Analysis and Operations parameters

LBNC Meeting December 5-7, 2019 - CERN

Outline

From the Charge of the LBNC Mtg (Dec 5-7, 2019 - CERN):

The LBNC would like to hear about the **progress with ProtoDUNE SP**, addressing both the analyses, including **results from the photodetection and progress towards defining the operating parameters**, which was seen as a primary goal for 2019.

From last LBNC meeting Report [July 31-Aug 2, 2019]

Comments

•At the next meeting the LBNC would like to hear an update on <u>what has been learned from the ProtoDUNE-SP running thus far in</u> 2019, with emphasis on studies to establish the operational safety margin and <u>long-term stability of the system</u>.

• It is important that lessons learned from the pump seal failure inform monitoring, instrumentation and inhibit systems for DUNE-SP. The LBNC encourages the collaboration to continue developing a full fault analysis to estimate situations such as the pump membrane failure rate in the FD-SP system based on the observations in ProtoDUNE-SP.

• The LBNC would like to see the <u>comparison in the measured number of photons/MeV from the ARAPUCA photo-sensor system vs.</u> <u>the other two Photon Detector designs</u> in the array of deployed PDS units in ProtoDUNE-SP.

• At the April 2019 meeting, the LBNC encouraged the collaboration to pursue the following studies. The LBNC reiterates the value of these studies for establishing the technical baseline for the FD-SP TDR, and would like to see these presented in future meetings.

- Noise mitigation, S/N, ADC calibration, etc.
- Suggest to study resolution impact by masking of few ADC bits.
- <u>dE/dx of beam protons and electrons data vs. MC (after all corrections).</u>
- Would be more useful to see <u>lower level data/MC comparison before the corrections.</u>
- Fine tune and explore current technological limits, with three main objectives:
 - Investigate limiting factors toward higher LAr purity level
 - <u>Collect data to study fluid and space charge dynamics</u>
 - LAr Purity + Cryogenics (Fluid Dynamics)
- Investigate how different cryogenic conditions affects the electron lifetime.

Recommendations

• While recovering from contamination, take cosmic ray data with 3ms electron lifetime to validate existing DUNE specification, explore operational parameter space.

1) lessons learned - <u>HV System / E-field</u>

- [after PS and dry HV-filters replacement] All the HVS components are operating reliably and stably at the TPC nominal Electric field (500 V/cm)
- (Residual) Current draws/HV instabilities observed whose origin is not identified
- However, after one year of HVS operation, **no degradations** of the HVS performance due to instabilities have been observed:
 - On the contrary Current streamer rate has decreased from 3 to 4 per day during beam exposure to < 1 per day in the last month(s) (during current Cosmic Run)
- Behavior of current streamers indicates that they follow **charge-up of insulators in high field regions,** localized in a specific region inside the cryostat [Upstream, Top, Center/BeamLeft] - recently spotted also by light signals
- In the last few months, HV uptime (with auto-recovery ON) has reached a value of more than 99.5%

 Test at higher HV/EF (max 300 kV - PS limit/800 V/cm) to be performed at the end of Run (last topic in agenda for protoDUNE-SP Phase-1)

Long Term Stability - HV System / E-field

‡ Fermilab

2) lessons learned - e-Lifetime and LAr Purity

- e-Lifetime dependance on El.Field (Measurement in TPC necessary for Charge correction).
- Developed method (CRT track selection) for lifetime measurement in TPC volume in presence of Sp.Charge distortion Ultra-high e-lifetime observed in TPC volume ($\tau_e \simeq 40 \text{ ms}$)
- LAr Purity stable with a slight increase (PurMon e-lifetime vs time) from minor air leakage fixes.
- LAr (and GAr) recirculation system very effective Filter regeneration in situ very efficient
- Apparent Stratification in height seen by PurMon: to be confirmed [systematic or real] small effect for high e-lifetime in TPC volume
- Accidental major drop due to a hw failure in the GAr recirculation system: Purity fully recovered after the accident [next slides]

e-Lifetime vs Purity

- Purity of LAr depends on [X] (ppt) concentration of el.neg. impurity X - with $X = H_2O, O_2$
- $k_A = k_A(EF)$ *Attachment Rate constant* (for *X*) depends on EF in the drift volume
- τ_e measures the LAr Purity, but its value depends on the EF where is measured

•**TPC vs PurMon:** $\tau_e(500 \ V/cm) > \tau_e(20 \ V/cm)$

• Lifetime measurement in TPC with tracks (*dQ/ds* vs *t_d*) difficult on surface due to SpCh track distortion

Long Term Stability - LAr e-Lifetime (vs Purity)

Fermilab

3) lessons learned - <u>Detector(s) Operation</u>

- CE calibration stable (gain)

- TPC response stable (*charge signal strength vs time*) for stable LAr purity condition

- PhotoSensors calibration stable (gain)
 - PhotoDetector response stable (*single photon rate vs time*) for stable LAr purity condition

Long Term Stability - Detector(s) Operation

- PDS - PhotoSensors gain:

- TPC - Cold Electronics gain:

Dec.19 Dec.18

Ratio (new gain)/(old gain) - for all 15,209 CE r/o channels

Jan, Feb data confirm the December calibration

Calibration scale scale stable within < 1% [over 1 yr period]

The RMS of the ratio distribution is less than 1%

Fermilab

Long Term Stability

- PhotoDetector Response:

Single Photon Rate

Charge [ke/channel/ms]

-TPC Response:

Signal Strength [Average Charge per Channel per Event]

‡ Fermilab

DUNE

11 Dec. 5, 2019 Flavio Cavanna

long term operational stability of the detector - 1yr long (2019) Run

lessons learned - SUMMARY

- Cryogenics parameters stable (P, T, heat load/LN2 consumption)
- HV stable at nominal setting (EF 500 V/cm vs time). Minimal current instabilities detected and attributed to charge up of some insulating material in a high field region. *In protoDUNE-SP Phase2 design changed, removing insulating materials from high EF regions*
- LAr Purity stable with a slight increase (e-lifetime vs time), except for occasional minor drops (cryo/recirculation tests) and an accidental major drop due to a hw failure in the GAr recirculation system. *Purity fully recovered after the accident*.
- CE response stable
- PhotoSensors response stable
- TPC response stable (for stable LAr purity)
- PhotoDetector response stable (for stable LAr purity)

Large Air-Contamination accident [July 21-26, 2019]

- Alarm: Major loss of LAr purity
- Analysis of the effects on Charge Signal (TPC and Purity Monitors)
- Analysis of the effects on Light Signal (PhDetector System PDS)
- Analysis of Data log from Cryogenic/Purification Plant

①①①①

- Hardware failure identified
- Actions taken (Recirculation stopped, Filter regeneration, alarm/interlock implemented, recirculation restarted)
- Full recovery of Charge Signal (by O2 contamination removal 0.2 ppm)
- Some degradation of Light Signal (O₂ removed but 5.7 ppm N₂ non-removable by filtration)
- Method for Light Recovery identified (by Xe doping) and tested:
 - first small scale demonstration test successful
 - second small scale assessment test in progress NOW (w/ X-ARAPUCA)
 - > Xe doping in protoDUNE-SP considered for Jan.2020 before end of Run

History of the event fully analyzed and understood

FALL AND RESURRECTION

Origin of the issue FOUND: GAr warm pump failure (membrane crack) GAr + Air

Time to react (12 hrs) - filter sustains air(O₂) leakage good alarm (for the next time) already implemented

GAr + N₂

15 Dec. 5, 2019 Flavio Cavanna | LBNC Meeting December 5-7, 2019 - CERN ProtoDUNE-SP Status, Analysis and Ops Parameters

FALL AND RESURRECTION

History of the event fully analyzed:

- TPC Charge Response (Signal Strength)
- PDS Light Response (Time constant Slow Component)

Fermilab

When Xe doping is at concentrations higher than the N_2 contamination, the En Transfer of Ar2* to Xe will largely win over N_2 quenching, recovering light (from Xe₂*) otherwise lost by N_2 quenching.

All PMTs see an increase

in the level of light when

Fermilab

NType of Sensor	N. of	N.Channels	N.Dip Coated	N.DoubleShift	N.ARAPUCA
per Channel	Channels	per Module	Modules	Modules	Modules
3 SensL SiPM (parallel passive ganging)	172	4	21	22	-
3 Hamamatsu MPPC (parallel passive ganging	60	4	8	7	-
12 Hamamatsu MPPC (parallel passive ganging)	24	12	-	-	2

Single photon Sensitivity

ARAPUCA photoSensors response

12 Hamamatsu MPPC (parallel passive ganging)

LightGuide photoSensors response

Demonstration of operability of large array of Si photo-sensors into one channel (passive parallel ganging)

PD Calibration

21 Dec. 5, 2019 Flavio Cavanna

LightGuide Bar photoSensors

LBNC Meeting December 5-7, 2019 - CERN ProtoDUNE-SP Status, Analysis and Ops Parameters ARAPUCA Cell photoSensors

DUNE

‡ Fermilab

DOUBLE-SHIFT LIGHT GUIDE

DIP-COATED LIGHT GUIDE

$$\tilde{\epsilon}_{DS} = (0.10 \pm 0.02)$$

 $\tilde{\epsilon}_{DS} = (0.21 \pm 0.04) \%$

🛠 Fermilab 🛛 🕬 🖓

%

Linearity

Observed (first approx) over the entire range of energies.

The slope gives the light yield $LY = 102 \ Ph/GeV$ from (only) one ARAPUCA module, relative to a diffused light source (EM shower) at a distance of about 3 m

The non-zero (negative) y-intercept (p0 from the fit) corresponds to an incident energy offset

$E_o = 82 \pm 14 \; MeV$

compatible with expected energy loss in material upstream TPC

Energy Resolution from light

$$\frac{\sigma_E}{E} = p_0 \oplus \frac{p_1}{\sqrt{E}} \oplus \frac{p_2}{E}$$

- Stochastic term: $p_1 = 10\%$ from limited photo-sensitive area coverage
- <u>Noise term:</u> $p_2 = 55 MeV$ from excellent SiPM readout S/N ratio
- <u>Constant term:</u> $p_0 = 6.2\%$ from beam momentum spread & uncertainty and non-uniformities in light collection (non linearity)

26 Dec. 5, 2019 Flavio Cavanna

LBNC Meeting December 5-7, 2019 - CERN ProtoDUNE-SP Status, Analysis and Ops Parameters

🛟 Fermilab 🛛 🕰

ProtoDUNE Measurement Plan & Goals

Short-term goals – *Detector Performance*

☑ (noisy or dead channels map) - update ☑ Noise level, signal to noise ratio - update Electron lifetime (LAr purity) - update

Medium-term goals – *Detector Response*

✓dE/dx of ✓muons, ✓pions, ✓protons, ✓electrons update - new

- Energy and momentum resolutions *in progress*
- Long-term goals *Physics Measurements* e.g. *π-Ar cross sections*

(*started*) Total pion cross section in [1-7] GeV range

- EVER MEASURED - Exclusive channels Cross Section - *in progress*:
 - π absorption: $\pi^{\pm} \rightarrow 2p$, 3p, 2p1n,...
 - $\pi^{\pm} \rightarrow \pi^{0}$ charge exchange, etc.

Information for DUNE physics TDR

Physics publications

stages of data processing and noise mitigation

(a) After pedestal subtraction and calibration.

(b) After mitigation (Sticky code)

Charge after correlated noise removal for APA 3z

(c) After tail removal.

(d) After correlated noise removal.

TPC + CE Performance (1): Signal to Noise Ratio

where

<u>Signal</u>: detected Charge (*hit Peak-amplitude*) in individual channel waveform (from U,V,C wire-plane) from mip tracks corrected by angle of incidence

<u>**Noise</u>**: σ of baseline fluctuation in corresponding channel waveform</u>

160e/ADC

Beam Data - Calibration

Resolution in DATA appears better than in MC

dE/dx width is found to depend on diffusion constants

Diffusion Coefficient(s)

dE/dx width is found to depend on diffusion constants

Stopping muon dE/dx distributions for the ProtoDUNE-SP cosmic data and MC.

longitudinal diffusion of 6.2cm^2/sec

Width of dE/dx for data and MC doesn't agree Diffus

Diffusion in data appears to be less than in simulation

🛠 Fermilab 🛛 🕬

Space Charge & Fluid Flow

Effect of Space Charge accumulation in Drift Volume:

Geometric Distortion Aberration

Beam right

Beam left

Track selection

Select tracks that are contained within the central part of the TPC, where distortion along y and z axes are negligible

Number of hits for YZ plane for X= 0 cm to X=3cm tomographic imaging Number of hits for YZ plane for X=-3cm to X=0cm Y coordinate Y coordinate 10 1 Z coordinate Z coordinate

 Better agreement between data and MC for model w/ fluid flow – larger on side where beam comes in ("beam right")

PROTO DUCE^{SP} MISSION (ACCOMPLISHED)

- ☑ Prototyping production and installation procedures for DUNE Far Detector Design
- ☑ Validating design from perspective of basic detector performance → inform TDR
- Accumulating test-beam data to understand/calibrate response of detector to different particle species

Model Demonstrating long term operational stability of the detector

ProtoDUNE-SP Performance

Detector Parameter	Specification	Goal	ProtoDUNE Performance
Electric Drift Field	> 250 V/cm	500 V/cm	500 V/cm *
Electron Lifetime	> 3 ms	10 ms	> 15 ms **
Electronics Noise	< 1000 enc	ALARA	550-650 enc (raw) 450-560 enc***

*99.5% uptime ** inside TPC (500 V/cm) *** coherent noise removed

36 01.08.19 Eric James I DUNE Project Status

‡ Fermilab

Cryogenic Circulation Studies

S. Pordes - NP04 operations meeting

Ionization e-Charge in the TPC Volume from cosmic tracks as fcn. of distance from Cathode: Attenuation by impurity attachment opposed by Space Charge effect due to accumulation of slowly moving lons in LAr Volume (EF=500 V/cm).

e-Lifetime, Attachment Rate Constant and Impurity Concentration

The rate constant of the attachment process <u> k_A depends on the EF</u>. Measurements from Pur. Mon. at low EF, measurements from TPC at much higher EF: at the same impurity concentration level [X] ppt, τ_e from PurMon expected ~3 times shorter than from τ_e from TPC

Impurity Concentration in the range of 50 ppt [O2 equivalent] compatible with both Pur Mon and TPC measurements

Detected hit count during Resurrection Period

DUNE

Yes, by Xe Doping

When doping LAr with **Xe** the **Energy Transfer** process occurs: $Ar_2^* + Xe \rightarrow (ArXe)^* + Ar$ eventually leading to wavelength shifting from 128 nm (Ar) to 174 nm (Xe) light emission

In mixture of N₂ and Xe in liquid Ar, since rate constants $k_{EnT}(Xe) > \simeq k_Q(N_2)$, for equal concentrations of N₂ and Xe in LAr the N₂ Quenching process and the Xe Energy Transfer process compete.

When Xe doping is at concentrations higher than the N_2 contamination, the En Transfer of Ar2* to Xe will largely win over N_2 quenching, recovering light (from Xe₂*) otherwise lost by N_2 quenching.

e.g. for [N2] = 5 ppm and [Xe]=20 ppm:

f_{EnT} ~ **70%** - Ar₂* Triplet **fraction converted by Xe (174 nm photon emission)**

 $f_Q \approx 10\%$ - Ar₂* Triplet fraction lost by N₂ quenching

f_T= 20% - Ar₂* Triplet fraction surviving (128 nm photon emission)

Small scale test demonstrated theory above - Xe doping in protoDUNE-SP in January (for N₂ contamination recovery and Xe doping stability in time and uniformity in the LAr Volume)

S/N ratio - photoSensor read/out

LightGuide Bar photoSensors

ARAPUCA Cell photoSensors

DATA

Light Response "linearity"

MONTECARLO

ProtoDUNE-SP Run 5809 Event 10747 @2018-11-07 11:58:22 UTC

ProtoDUNE-SP Run 5770 Event 59001 @2018-11-02 20:51:09 UTC

ProtoDUNE-SP Run 5145 Event 27948 @2018-10-1

ProtoDUNE-SP Run 5770 Event 50648 @2018-11-02 20:32:06 UTC

ProtoDUNE-SP Run 5772 Event 15132 @2018-11-03 10:09:15 UTC

