System for on Axis Neutrino Detection (SAND) Status and Outlook

Sergio Bertolucci University of Bologna and INFN

DUNE ND today

- The decision of DUNE to adopt the PRISM concept implies the need of **two** detectors, one staying on axis and the other moving across the beam.
- Both detectors should have a magnetic field
- Current understanding is that the moving detector consists of a large volume of LAr (Argoncube) followed by a large magnetized volume of \sim .5 T produced by a 'transparent' magnet and filled by a large HPTPC surrounded by an hermetic e.m. calorimeter (+ a possible muon detector)
- In the last few months the idea to use the KLOE magnet and the KLOE e.m. calorimeter, hosting a suitable tracker in its inner volume (\sim 43 m³), has gained consensus.
- **So KLOE** has evolved into **SAND**

Primary goals of SAND

Monitoring of the beam stability on a few-days basis

- ← Event rate: requires a large-mass active detector
- ← Beam profile: requires relatively large width and segmentation
- ✦ **Spectrum: requires a spectrometer to measure the particle momenta**

Precision in-situ flux measurements of v_{μ} **, a-** v_{μ} **,** v_{e} **, a-** v_{e}

- \rightarrow Absolute v_{μ} and a- v_{μ} flux
- \rightarrow **Relative** v_{μ} and a- v_{μ} (E) flux
- **← Ratios** v_e/v_u (**E**), a- $v_u/a-v_e$ (**E**)

Constraining systematics from nuclear effects and related smearing

- ✦ **Measurements complementary to the other Ar-based ND detectors (Lar+MPD) using different nuclear targets**
- ← Possibility of a solid hydrogen target free from nuclear effects

Provide the necessary redundancy and resolution to achieve a ND complex robust against unknown unknowns

SAND within the ND complex

ν

ArCube and MPD detectors will move off-axis (DUNE-PRISM) for about 50% of the time

SAND will be permanently on-axis in a dedicated alcove It will consist of:

- a superconducting solenoid magnet
- an Electromagnetic Calorimeter (ECAL)
- a thin active Lar target
- A 3D scintillator tracker (3DST) as active neutrino target
- and/or a Low-density tracker to precisely measure particles escaping from the scintillator

The KLOE Detector

Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT' s

Superconducting coil (5 m bore) $B = 0.6$ T ($\int B dl = 2.2$ T·m)

Coil parameters

Guaranteed heat loads

The KLOE calorimeter

- Pb scintillating fiber sampling calorimeter of the KLOE experiment at DAΦNE (LNF):
- 1 mm diameter sci.-fi. (Kuraray SCSF-81 and Pol.Hi.Tech 0046)
	- Core: polystyrene, $\rho = 1.050 \text{ g/cm}^3$, n=1.6, $\lambda_{\text{peak}} \sim 460 \text{ nm}$
- grooved lead foils from molding .5 mm plates
- Lead: Fiber: Glue volume ratio $= 42:48:10$
- $X_0 = 1.6$ cm $\rho = 5.3$ g/cm³
- Calorimeter thickness = 23 cm
- Total scintillator thickness \sim 10 cm

Electromagnetic calorimeter

2440 cells total 2440 channels

The KLOE calorimeter

• Operated from 1999 till March 2018 with good performances and high efficiency for electron and photon detection, and also good capability of $\pi/u/e$ separation

> Energy resolution: σ _E/E=5.7%/ $\sqrt{E(GeV)}$

EMC mass reconstruction

$$
\begin{array}{l}\n\phi \to \pi^+ \pi^- \pi^0 \\
M(\pi^0 \to \gamma \gamma) \quad \sigma_M = 14.7 \text{ MeV}\n\end{array}
$$

$$
\phi \to \eta \gamma \qquad M = 546.3 \text{ MeV} \nM(\eta \to \gamma \gamma) \quad \sigma_M = 41.8 \text{ MeV}
$$

EMC time-of-flight measurement

 T_1 - T_5 distribution can distinguish incoming/outgoing μ 's

Used to reject cosmic rays T_1 - T_5 (ns)

 $β = L/ΔT$ *L* from DC

Calorimeter efficiency for neutrons

- $E_{peak} = 180 \text{ MeV}$
- **Very high efficiency w.r.t. the naive expectation** $(-10\% \; \text{\textcircled{a}}\; 2 \; \text{MeV} \; \text{thr.})$

ε**(%)**

 $V_{\rm m}$ E_n = 180 MeV - R = 1.5 kHz/cm² • $E_n = 180 \text{ MeV} - R = 3.0 \text{ kHz/cm}^2$ **E** $E_n = 180 \text{ MeV} - R = 6.0 \text{ kHz/cm}^2$

25

60

50

40

November 2019: Two DUNE Near Detector Engineers Visited INFN Frascati To Collect Cavern Design Requirements For SAND Detector

Left Side Detector Utilities

Detector Movement System

Topics Covered During Visit:

- Cavern Interfaces
- Electrical Interfaces
- Cryogenic Interfaces
- Handling Procedures
- **Detector Assembly**

Right Side Detector Utilities

Protrusions From Detector Have Been Recorded In Detail To Ensure Detector Will Fit Within Allocated Alcove Size

1612.03.19 M. Leitner | Near Detector Integration & Installation

SAND Detector Will Serve As Stationary Beam Monitor, But Movement During Installation And Servicing Must be Planned

1712.03.19 M. Leitner | Near Detector Integration & Installation

November 2019: Two DUNE Near Detector Engineers Visited INFN Frascati To Collect Cavern Design Requirements For KLOE Detector

- Detector as-built physical sizes verified
	- Including supporting equipment on rack platforms
	- Including service space for open end yoke plates
- Utility requirements verified
	- Electrical power
	- Cooling water
- Exchanged cryogenics process flow diagrams, cryostat cool-down procedures, cryogenic connection interface details
- Validated crane requirements
- Discussed detector hydraulic lifting and movement procedures
- Evaluated future storage/staging needs at FNAL

KLOE Engineering Information Required To Finalize LBNF Conventional Facility Design Has Been Successfully Transferred To DUNE

DUNE/LBNF Is Currently Completing The Preliminary Design Of The Near Detector Cavern: SAND Space Needs Are Now Finalized

SAND Detector Now Integrated Into LBNF Conventional Facility Preliminary Design Submittal

1912.03.19 M. Leitner | Near Detector Integration & Installation

INFN and the ND

- Following the decision of the DUNE Collaboration of the two detectors configuration, **INFN is willing to provide all the needed resources** to dismount, refurbish, deliver, reassemble and commission a fully functional magnet $+$ e.m. calorimeter+ LAr active target $(2.5 t)$
- INFN has also started to contribute to the design of the magnet for the new detector, and is considering to contribute to its construction.

SAND as a component of the ND system

- Detailed simulations/analyses have been performed based on KLOE and a tracker composed by straw tubes (STT) interspersed with TRD foils and/or interchangeable targets of different materials.
- The study has shown that such a configuration has a great potential to complement the information coming from the moving detector, providing redundancy in the assessment of the systematics. We will use it as a starting point and as a reference.

(A comprehensive set of results is described in DUNE-DOC- 13262: **https://docs.dunescience.org/cgi-bin/private/RetrieveFile? docid=13262&filename=A_Near_Detector_for_DUNE.pdf&version=4)**

Lately, as a consequence of a fruitful discussion, an hybrid tracker configuration has been implemented, which consists of a large **3DST** volume surrounded by a **gaseous tracker**. The proponents of the two instances merged in a **single working group.**

The Straw Tube Tracker (STT)

- Thin passive targets (100% purity) physically separated from active tracker (straws ~3% of total mass)
- Tunable target mass & density by varying thin targets $(-97%$ of total mass) with average density $0.005 ==$ rho ϵ =0.18 g/cm^3
- A variety of thin (0.1×0) nuclear targets can be installed & replaced during data taking: C, Ca, Fe, Pb,etc

Modular design (flexible) offering a control of the configuration, chemical composition, and mass of targets comparable to e-scattering experiments

The 3D Scintillator Tracker

2018 *JINST* **13** P02006 NIM A936 (2019) 136-138

Prototype funded under the US-Japan program

- Detection efficiency at 4π (>90% for muons)
- Muon p resolution by range \sim 2-3%
- Detect protons above ~300 MeV/c
- Time resolution \sim 0.9ns per channel (MIP), i.e. \sim 0.5ns per cube (MIP)
- Very good neutron detection capability

It will be installed in the T2K Near Detector in fall 2021 (arXiv:1901.03750)

CERN-SPSC-2018-001

SPSC-P-357 arXiv:1901.03750 The 3D Scintillator Tracker

The design is based on the R&D performed for the T2K SuperFGD detector

Optimization of the box thickness will depend on FEA results and internal cube

Hamamatsu

All Events dE/dx (MC vs. Data)

7Y view only

structure

Option 3DST + Straw Tubes

Possible STT configurations:

- ✦ Straw Pure tracking in STT: remove most density & mass
- ✦ Physics measurements in STT: multiple nuclear targets, increase density & mass

Detailed studies and optimization are ongoing to evaluate performance: find optimal compromise between target mass (statistics) & resolution

Simulation

Since the beginning, we decided to use two simulation packages, **Fluka** and **G4** and to **validate** them on **KLOE data**.

Common Features:

- Flux: Optimized 3-Horn Design: https://home.fnal.gov/~ljf26/DUNEFluxes/
- KLOE Iron/coils/magnetic field from drawings. B=0.6 T in the inner volume $+$ Ecal, 1.5T in the yoke.
- KLOE ECAL: Layered in G4. In FLUKA, exact barrel description, endcap with homogeneus material, segmented readout
- Lar meniscus \sim 1.5 t, upstream
- 3DST: dimensions/materials as provided by Davide Sgalaberna
- STT: dimensions/materials as provided by Roberto Petti,
- 3DST+ Gaseous Tracker (STT or TPC's), evolving configuration

Fluka simulation

- Includes internal generation of neutrino events
- Output in ROOT trees:
- Information on
	- boundary crossing
	- energy depositions in
		- STT gas
		- 3DST 1x1cm cells, with and w/o Birks quenching
		- Ecal fibres with and w/o Birks quenching
		- Ecal "cells" (corresponding to readout granularity)
		- LAr meniscus
	- Associated particle type, energy, origin (parent from primary neutrino interaction), time

Geant4 simulation

Ingredients:

- Geometry: based on https://github.com/gyang9/dunendggd
- Neutrino Event Generator: GENIE
- Energy Deposition: Edep-sim https://github.com/ClarkMcGrew/edep-sim
- Digitization, Reconstruction and Analysis: independent tools: (https://baltig.infn.it/dune/kloe-simu)

SAND Geometries (STT, 3DST+STT)

Output: energy in 1cm cubes, and time Will reuse 3DST software for light yield and digitization.

G4: Calorimeter simulated performances

• Time and e.m. energy resolution measured by KLOE collaboration are well reproduced by MC simulation with muons and electrons.

10.1016/S0168-9002(01)01502-9

Fluka Digitization

- The hits from simulations are grouped in cell
- Generation and propagation of light from the interaction point to the PMTs, taking into account scintillation time and attenuation length for different planes
- The visible energy is converted in Npe
- The Npe are propagated inside the fiber

Stt[[1] $20⁵$

> 200 210 220

> > Only the hit in

the fibers are

π^0 from ECAL (Fluka)

Reconstructed CC sample: 20000 events

- $1 \pi^0$ 27% of events
- $2\pi^0$ 8% of events
- $> 2 \pi^0 2.5$ % of events

2 π^0 sample: π^0 invariant mass, Considering only 4-cluster vents

Resolutions: $1 \pi^0$ 16.8% $2 \pi^0$ 17.7%

3DST signal

- Work in progress to include 3DST response in the Fluka-based software
- For the moment:
	- Energy deposition in 1cm^3 cells
	- Same, with quenching of the signal according to "reasonable" Birks parameters for plastic scintillator

STT results: muons

Good resolution on p (~3%) for both targets Good resolution on dip angle $~1.7$ mrad

Same results with GEANT4

Chargemis-id ∼**0.02%**

STT results: electrons

Generated in STT with GENIE+GEANT4. Very good resolutions, tails due to circular fit approximation to be improved i.e. with Kalman filter.

Fluka based full reconstruction –no MC truth

- Interaction Vertex based on STT-hit topology (Step 0)
- Track finding (Global transform method)
- Linear or circle fits to track
- Vertex reco from crossing on two most rigid tracks (Step 1)
- Iteration...
- Matching of tracks in the two views \rightarrow tracks in 3D
- Evaluation of p_1 and dip-angle \rightarrow p estimate
- Ecal hit compatible with tracks \rightarrow ToF measurement \rightarrow β estimate \rightarrow PiD

On two views

From Vertex to Track reconstruction, no MC truth

Coordinate transformation by using reco-Vertex (z_{y},y_{y}) :

Two-step method: first rough vertex finding, allows for coordinate transform **peaks** in $φ$ correspond to tracks Second vertex finding from track intersection

v energy reconstruction (preliminary)

'All-tracks' energy only

'All-tracks' energy + Off-track Calo energy

NO MC truth $σ/E = 6.6%$

Preliminary background estimate

from CC external interactions for

SAND detector

MC samples by FLUKA

"Internal" events: ν^µ **(CC) interactions inside 3DST**

"External" events: νµ **(CC) interactions inside KLOE magnet+Calorimeter (ECal)**

Selection of internal events

- Ø **Based on Relative time between ECal and 3DST** $\left(\text{difference } \Delta T_{1st} = T_{1st}^{\text{Cal}} - T_{1st}^{\text{Sc}}\right)$
- Ø **Expected background from external interactions: Bck_1:** Time " reversal" $(T_{1st}^{cal} > T_{1st}^{sc})$ Bck 2: T^{cal} missing in the event
- Ø **Background rejection cuts**
	- **1) Fiducial Volume cut on 1st 3DST-hit position**
	- **2) Cut on 3DST-hit multiplicity**

Results (preliminary)

Preliminary background estimate using:

- **1)** $\Delta T_{1st} = T_{1st}^{Cal} T_{1st}^{Sc} > 1$ ns
- **2) Fiducial Volume cut on 3DST (1st hit position)**

(10cm cut on X sides) [⊗] (15cm cut on Y sides) [⊗] **(20cm cut on Z front side and 10cm cut on Z rear side)**

68%

3) (N_{Scin} > 30) **(negligible effect on signal after FV)**

$$
Bck_{beam} \sim (1.4 \pm 0.4)
$$
 %
(from CC interactions in magnet and Calorimeter)

What next?

- Study the performances of the tracker configurations, assessing their merits and their potential shortcomings for the physics signals and the backgrounds.
- Validate simulations with the ongoing and future prototypes data.
- Provide a realistic engineering design, evaluate tracker cost
- Provide a complete set of KLOE drawings, operation manuals, specs to the FNAL engineers. Harmonize and update all the relevant certifications, safety codes, etc.
- Decide what to keep and what to change in the KLOE electronics and DAQ. Do a detailed spare inventory.
- Contribute to the write-up of the CDR.

THANK YOU