
23 October 2019

University of Bristol

Simone Bologna
simone.bologna@bristol.ac.uk

Introduction to HLS

mailto:simone.bologna@bristol.ac.uk

Introduction to HLS, Simone Bologna - 23 October 2019 2/42

Outline

● Introduction to FPGA, VHDL, and HLS
● Getting started with HLS
● Life of a toy project from conception to (almost) implementation
● Tips and tricks
● Using C++ constructs in Vivado HLS

Introduction

Introduction to HLS, Simone Bologna - 23 October 2019 4/42

Field Programmable Gate Arrays (FPGA)

● FPGA are circuits that are programmable on the field
● FPGAs are powerful and flexible devices
● Components of FPGA

– Flip-Flops (FF), small memory component able to store a bit
● Typical used as a fast register to store data

– Look-Up Tables (LUT), small memories used to store truth tables and
perform logic functions

● Typically used to perform operation such as “and”, “or”, sums or
subtractions

– Digital Signal Processor (DSP), small processor able to quickly perform
mathematical operation on streaming digital signals

● Typically used for multiplication and additions
– Block RAM (BRAM), memory able to store data

● Can store a fair amount of data, but slow and with a limited number of
ports limiting memory throughput

Introduction to HLS, Simone Bologna - 23 October 2019 5/42

VHDL and HLS

● What is VHDL?
– VHSIC Hardware Design Language

● Very High Speed Integrated Circuit Hardware Description Language
– … ergh…

– Used to describe circuits that will be implemented on FPGA via code
– Not covered here!

● High-Level Synthesis (HLS) enables user to transform (synthesise)
C/C++/SystemC code into VHDL
– Enables users to program FPGA in high-level languages!
– Focusing on C++

● Analogies with assembly and high-level languages are stretched
– Each language works better in specific situations

Introduction to HLS, Simone Bologna - 23 October 2019 6/42

When to use each language?

● Collecting here opinions I have heard from various experts
● When to use VHDL?

– When you want full control on how your design is going to be
implemented

– When you need some clock-dependent applications
● i.e. receive data and hold it for three clock cycle

– Receiving data and sorting in specific manners
● When to use HLS?

– Rapid prototyping
● I would suggest to use it in doubt, implementing stuff in HLS will

generally take less time than using VHDL
– Designing some processing/analysis block

● i.e. developing some particle identification algorithm

Getting started

Introduction to HLS, Simone Bologna - 23 October 2019 8/42

HLS in Bristol

● excession.phy.bris.ac.uk is the FPGA development machine
● Two strategies to develop in HLS:

– Write code in your favourite editor and use Vivado HLS’ command line
interface (CLI)

– Use Vivado HLS’s GUI to do both editing and synthesis
● Vivado HLS’ command line does not provide all the tools

– Vivado HLS GUI is required when you need to investigate design
performance in detail

● Using editor + Vivado HLS CLI here
● I recommend using VNC to log into excession if you want to use

Vivado GUI
– Feel free to ask me help to set it up :)

Introduction to HLS, Simone Bologna - 23 October 2019 9/42

How to begin

● Get an account on excession
● Add Vivado to your environment

– source /software/CAD/Xilinx/2018.2/Vivado/2018.2/settings64.sh

– 2019.1 is available, I started on 2018.2 and I am keeping it for consistency
● Run vivado_hls in your terminal to open the vivado_hls GUI

– Use if you have mounted /software locally or if you are working via VNC
● vivado_hls -i opens the interactive TCL shell

– Development tools through command line
● vivado_hls <.tcl file> runs a .tcl script

– Typically I use it to build my firmware and test
● Back to tcl in a sec

● vivado_hls -f <.tcl file> runs a .tcl script and keeps the console open
– Useful for .tcl scripts that sets up your project before running some

interactive operation

Introduction to HLS, Simone Bologna - 23 October 2019 10/42

Terminology

● HLS file, C/C++ code that will be synthesised and run on FPGA
● Test bench (TB) file, C/C++ code that is run to test the HLS code. It

calls the HLS functions and can run tests on their output, e.g. C
asserts.

● Tcl scripts, set of tcl instructions executed by the Vivado HLS shell
● Synthesis, C/C++ → HDL lang (VHDL/Verilog)
● Project, collection of HLS and test bench (TB) files

– Has a top-level function name that is the starting point for synthesis
● Solution, specific implementation of a project

– Runs on a specific device at a specific clock frequency
● C simulation, HLS + TB files are compiled with gcc against HLS

headers and lib and plainly run as any other executable
● C/RTL cosimulation, synthesised HLS code is run on a simulator and

results tested on the C/C++ test bench

Introduction to HLS, Simone Bologna - 23 October 2019 11/42

Setting up your first project

● In a base project you will typically have
– At least a HLS .c/.cpp files
– A header used to link HLS code to test bench code
– At least a TB .c/.cpp file
– A .tcl script to set up your Vivado HLS project and solution

Introduction to HLS, Simone Bologna - 23 October 2019 12/42

General workflow

● Problem
● Define your inputs & output

– They will translate as the parameters of your HLS top-level function
● Write up your code
● Test your C++ code
● Synthesis, i.e. convert to VHDL code

– Optimise it to get the desired performance while staying in your HW limits
● Test synthesised design
● Export design, typically in Vivado IP (Intellectual Property) format
● Implement in Vivado on actual FPGA

Building and optimising a project

Introduction to HLS, Simone Bologna - 23 October 2019 14/42

Our problem

● Problem definition:
– We want to design a high-throughput vector adder and multiplier

● Throughput: amount of data items passing through the process

● Input & output definition
– We receive two 100-dimensional vector of 16-bit signed integer
– We output a 100-dimensional vector of 16-bit signed integer as the sum

and an additional 16-bit integer as the product

Introduction to HLS, Simone Bologna - 23 October 2019 15/42

Write up your code

Code time!

https://github.com/simonecid/VivadoTutorial

https://github.com/simonecid/VivadoTutorial

Introduction to HLS, Simone Bologna - 23 October 2019 16/42

Testing

● Before optimising your design, you need a reliable system to check
that it works as expected

● Testbench!
– C++ which runs your HLS function with a defined sets of inputs, of

which you already know the output
● e.g. two vectors you know the sum and product of

● Having a test bench that runs through tests is extremely beneficial
– You can use it to keep on checking that your code keeps on working

fine after you have altered it
● After going through synthesis you might want to redesign parts of it in

order to better suit your needs or optimise it
● Typical test runs the function and checks its results via C asserts

– More extensive and sophisticated test unit libraries, e.g. CPPunit, are
available, but let’s keep it simple :)

Introduction to HLS, Simone Bologna - 23 October 2019 17/42

Testing

● Add test bench files
with
– add_files -tb “FILE”

● Run your test bench
with
– csim

● Abbreviation of
csim_design

Introduction to HLS, Simone Bologna - 23 October 2019 18/42

Synthesis

● If the design is working and has been tested, you can proceed with the
synthesis
– Run csyn (abbreviation of csynth_design)

● Vivado HLS synthetises VHDL and Verilog (another HDL language) from
your C++ code

● Synthesis starts from a top-level function, declared in you .tcl file with
set_top

● Parameters of the top-level functions are translated into ports, by
default:
– N-bit variables are translated into STD_LOGIC_VECTORS, i.e. array of 1-bit

ports
– Structs and classes are converted to ports by creating ports for each one

of their attributes
– Arrays are translated into ports able to read from an external memory

Introduction to HLS, Simone Bologna - 23 October 2019 19/42

Post-synthesis analysis

● After synthesis, HLS produces a report describing the performance of
your design under <ProjectName>/<SolutionName>/syn/report/ in
.rpt format, human readable, and .xml, useful for automated analysis

Latency: minimum and maximum number
of clocks to finish processing, may change if
you have variable length loops
Initiation Interval (II): number of clocks
before new data can be processed
Pipeline: if the function has been
pipelined (more on this soon)

Loop breakdown: label your loops to make sure you can
see and study its performance.
Trip count is the number of iteration of the loop

Clock estimate: gives an initial
estimate of whether your design meets
the required clock period
Note: final clock can only be known
after implementation on actual device,
sometimes HLS really messes up

Loop breakdown: label your loops to make sure you can
see and study its performance.
Trip count is the number of iteration of the loop

Utilisation estimates: breakdown of resource
usage.
Note: LUTs and FFs are typically overestimated,
even by a factor 2

Introduction to HLS, Simone Bologna - 23 October 2019 20/42

Post-synthesis analysis breakdown

● You can see how your resources
are being used

● 1 DSP used by multiplication
● 75 for the sums
● 108 used for temporary memory

Introduction to HLS, Simone Bologna - 23 October 2019 21/42

Optimising your design

● Base throughput: 1.2 Gb/s
● Let’s work on improving this
● Introducing three new concepts:

– Pipelining: enables an iteration of a function
or a loop to be executed before the previous
one is over

● Increases throughput w/ minimal resource
usage increase

– Unrolling: enables multiple iterations of a for
loop to run in parallel, if independent

● Greatly reduces latency and throughput
● Can have an impact on resource usage

based on loop size
– Memory partitioning: splits array

(implemented in BRAM1P/2P or memory port
by default) into single registers or ports,
enable fast parallel memory access

Base design
throughput
1.2 Gb/s

Introduction to HLS, Simone Bologna - 23 October 2019 22/42

Pipelining

● Let’s partition the memories and pipeline the main body of the loops
– Partition in the body of the function where the variable or the parameter is

declared; in main:
#pragma HLS array_partition variable=inVector1/2/3

● Breaks down the memory interface into single 16-bit ports
– Put this pragma in loop body to pipeline it; in sumLoop and productLoop:

#pragma HLS pipeline
● Following pipelining and partitioning

– Latency: 802 → 206
– II: 802 → 206

Introduction to HLS, Simone Bologna - 23 October 2019 23/42

Pipelining

Base design
throughput
1.2 Gb/s

Pipelined
throughput
4.7 Gb/s

Introduction to HLS, Simone Bologna - 23 October 2019 24/42

Unrolling

● Let’s unroll the loops
– Instead of instantiate logic for a single loop and execute it 100 times,

instantiate logic for each iteration and execute in parallel
● Essentially you increase resource usage by a factor 100

– DSP: 1 → 100
– Put this pragma in loop body to unroll it; in sumLoop and productLoop:

#pragma HLS unroll
● Latency: 206 → 8
● II: 206 → 8

Introduction to HLS, Simone Bologna - 23 October 2019 25/42

Unrolling

Base design
throughput
1.2 Gb/s

Pipelined
throughput
4.7 Gb/s

Unrolled
throughput
120 Gb/s

Introduction to HLS, Simone Bologna - 23 October 2019 26/42

Pipelining the top-level function

● The pipeline pragma pipelines the function in which it is located and
unroll and pipelines every underlying loop
– If we place a pipeline pragma in the top-level function body, everything

will be unrolled and pipelined, maximising performance
● Latency: 8 → 8
● II: 8 → 1, data can be input every clock cycle, max. throughput

Introduction to HLS, Simone Bologna - 23 October 2019 27/42

Pipelining the top-level function

Base design
throughput
1.2 Gb/s

Pipelined
throughput
4.7 Gb/s

Unrolled
throughput
120 Gb/s

Fully
pipelined
throughput
960 Gb/s

Introduction to HLS, Simone Bologna - 23 October 2019 28/42

Finishing touches

● Whenever you create a function, HLS creates a separate logic block
and connects it to the logic block of the main function
– Increases latency
– Prevents HLS from running optimisations that reduces resource usage
– In the function body (not top-level): #pragma HLS inline

● Inlines and integrates the sub-function in the calling one
● Latency: 8 → 7

Introduction to HLS, Simone Bologna - 23 October 2019 29/42

Testing and exporting the synthesised design

● Synthetised design can be tested in HDL
simulator in the C test bench
– Run cosim (abbreviation of cosim_design)

● First tests the C code, then the synthetised
design

● If everything looks good, you can export it for
actual implementation
– Using IP catalog now, but other formats are

available
– Final product of Vivado HLS
– export_design -format ip_catalog

● Exported design can be found in
<ProjectName>/<SolutionName>/impl/ip

● From here on is Vivado domain, not covered
here, but you can load IP and implement it

Tips and tricks

Introduction to HLS, Simone Bologna - 23 October 2019 31/42

Various tips and tricks

● You can use C++11 and higher constructs, e.g. auto or constexpr:
add_files -cflags "-std=c++11 "<HLS_FILE>"

● Run thorough tests on software, do not be lazy like me!
– Debugging stuff at later stages Is just way harder and confusing

● If you do not trust me, ask Aaron!
● Read the list of pragmas and experiment a lot with them

– Array_partition, pipeline, and unroll accept options, study them!
– Pragmas try to bridge the gap between C++ and HLS, master them

● HLS likes ternary operators, if possible use them instead of if
statements! Ternary operator

Equivalent if statement

https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html

Introduction to HLS, Simone Bologna - 23 October 2019 32/42

Various tips and tricks
Splitting designs
● Big designs take long to synthesise
● Split your problem in smaller projects
● Each project can be exported in IP format

and then linked in a chain
● Saves lots of synthesis time
● Increases flexibility

– Blocks can be run at different clock
speeds

● Example: the jet trigger algorithm I work
on is made of three blocks
– Histogrammer
– Data buffer
– Jet finder

● Divide et impera reigns!

History taught us that this
strategy works!

Introduction to HLS, Simone Bologna - 23 October 2019 33/42

Various tips and tricks
Scaling designs

● Your time is precious!
Do not waste it implementing large borken designs.

● Start small and write code that can be easily scaled up!
● For instance, let’s say you need to do some processing on a large

number of inputs
– Make the number of inputs a parameter of your code with a

#define NUMBER_OF_INPUTS XX
and make your code depend on it

– Do your initial testing on a scaled-down version of your code, i.e. with
few inputs, then increase it

● Takes way less time to implement a smaller design

Introduction to HLS, Simone Bologna - 23 October 2019 34/42

Various tips and tricks
Getting more accurate estimates

● Final timing and resource usage results are only obtainable after
implementation

● Vivado HLS provides tools to implement design without using Vivado
– Not sure how it works, I presume it makes some basic assumptions on

how you are going to place your design in a FPGA and implements it
● By running it you can get a more accurate estimates of timing and

resource usage, although not final they tend to be much closer
● Run export_design -format ip_catalog -evaluate vhdl

– This implements the VHDL design on FPGA
– 10 minutes to run for the small test design, against XX for synthesis
– Results in <ProjectName>/<SolutionName>/impl/report/vhdl/

Introduction to HLS, Simone Bologna - 23 October 2019 35/42

Various tips and tricks
Getting more accurate estimates

Introduction to HLS, Simone Bologna - 23 October 2019 36/42

Various tips and tricks
HLS libraries

● FOR THE LOVE OF GOD DO NOT USE THE C/C++ STANDARD LIBRARY!
– I have heard it gives horrible results

● I do not even know how they managed to get HLS to synthesise
● Do not reinvent the wheel!

– Vivado HLS has libraries doing many interesting things
● It is all in the manual

– For instance, #include <hls_math.h> for HLS math libraries

Using C++ constructs

Introduction to HLS, Simone Bologna - 23 October 2019 38/42

Using C++ constructs

Code time!

https://github.com/simonecid/VivadoTutorial/tree/cpp_version

https://github.com/simonecid/VivadoTutorial/tree/cpp_version

Introduction to HLS, Simone Bologna - 23 October 2019 39/42

Using C++ constructs

● Rewritten the vector add and
multiply by developing a generic
Vector class via template
– Generic, flexible, easy to use

● N-dimensional
● Uses any type

● Same resource usage
● Clever usage of C++ constructs

provides great flexibility without
usage penalties

● Note:
– Partitioning of class attributes

must be invoked in constructors
– Inline every class method!

Introduction to HLS, Simone Bologna - 23 October 2019 40/42

Using C++ constructs

Introduction to HLS, Simone Bologna - 23 October 2019 41/42

Summary
● HLS enables users to write FPGA firmware in high-level languages

– More flexible and easier to use
● HLS pragmas can be used to produce high-throughput designs

– Pipeline functions, unroll loops and partition memory
– Used it on a vector adder and multiplier

● The machine excession is available in Bristol per FPGA development
● Went through a number of tips and tricks
● Using C++ classes and template does not affect resource usage while

improving code flexibility and ease of use
● Collection of my FPGA bookmarks in next slide
● Contacts:

– simone.bologna@bristol.ac.uk
– Skype: simonecid
– Office: 4.57

mailto:simone.bologna@bristol.ac.uk

A first approach to HLS, Simone Bologna - 12 March 2019 42/42

Useful links

● HLS guide by Xilinx,
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-le
vel-synthesis.pdf

● Optimisation in HLS by Xilinx
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-
opt-methodology-guide.pdf

● Pipelining and Unrolling tips,
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/cal
ling-coding-guidelines/concept_pipelining_loop_unrolling.html

● Parallelising function tip,
https://forums.xilinx.com/t5/Vivado-High-Level-Synthesis-HLS/How-to-set-the-two

● HLS tips, https://fling.seas.upenn.edu/~giesen/dynamic/wordpress/vivado-hls-learnings/
● HLS pragma list,

https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.htm
l

● Introductory slides to HLS,
http://home.mit.bme.hu/~szanto/education/vimima15/heterogen_vivado_hls.pdf

● Improving performance in HLS,
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Perform
ance.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
https://forums.xilinx.com/t5/Vivado-High-Level-Synthesis-HLS/How-to-set-the-two
https://fling.seas.upenn.edu/~giesen/dynamic/wordpress/vivado-hls-learnings/
https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html
http://home.mit.bme.hu/~szanto/education/vimima15/heterogen_vivado_hls.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

