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Outline

● Introduction to FPGA, VHDL, and HLS
● Getting started with HLS
● Life of a toy project from conception to (almost) implementation
● Tips and tricks
● Using C++ constructs in Vivado HLS



Introduction
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Field Programmable Gate Arrays (FPGA)

● FPGA are circuits that are programmable on the field
● FPGAs are powerful and flexible devices
● Components of FPGA

– Flip-Flops (FF), small memory component able to store a bit
● Typical used as a fast register to store data

– Look-Up Tables (LUT), small memories used to store truth tables and 
perform logic functions

● Typically used to perform operation such as “and”, “or”, sums or 
subtractions

– Digital Signal Processor (DSP), small processor able to quickly perform 
mathematical operation on streaming digital signals

● Typically used for multiplication and additions
– Block RAM (BRAM), memory able to store data

● Can store a fair amount of data, but slow and with a limited number of 
ports limiting memory throughput
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VHDL and HLS

● What is VHDL?
– VHSIC Hardware Design Language

● Very High Speed Integrated Circuit Hardware Description Language
– … ergh…

– Used to describe circuits that will be implemented on FPGA via code
– Not covered here!

● High-Level Synthesis (HLS) enables user to transform (synthesise) 
C/C++/SystemC code into VHDL
– Enables users to program FPGA in high-level languages!
– Focusing on C++

● Analogies with assembly and high-level languages are stretched
– Each language works better in specific situations
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When to use each language?

● Collecting here opinions I have heard from various experts
● When to use VHDL?

– When you want full control on how your design is going to be 
implemented

– When you need some clock-dependent applications
● i.e. receive data and hold it for three clock cycle

– Receiving data and sorting in specific manners
● When to use HLS?

– Rapid prototyping
● I would suggest to use it in doubt, implementing stuff in HLS will 

generally take less time than using VHDL
– Designing some processing/analysis block

● i.e. developing some particle identification algorithm



Getting started
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HLS in Bristol

● excession.phy.bris.ac.uk is the FPGA development machine
● Two strategies to develop in HLS:

– Write code in your favourite editor and use Vivado HLS’ command line 
interface (CLI)

– Use Vivado HLS’s GUI to do both editing and synthesis
● Vivado HLS’ command line does not provide all the tools

– Vivado HLS GUI is required when you need to investigate design 
performance in detail

● Using editor + Vivado HLS CLI here
● I recommend using VNC to log into excession if you want to use 

Vivado GUI
– Feel free to ask me help to set it up :)
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How to begin

● Get an account on excession
● Add Vivado to your environment

– source /software/CAD/Xilinx/2018.2/Vivado/2018.2/settings64.sh

– 2019.1 is available, I started on 2018.2 and I am keeping it for consistency
● Run vivado_hls in your terminal to open the vivado_hls GUI

– Use if you have mounted /software locally or if you are working via VNC
● vivado_hls -i opens the interactive TCL shell

– Development tools through command line
● vivado_hls <.tcl file> runs a .tcl script

– Typically I use it to build my firmware and test
● Back to tcl in a sec

● vivado_hls -f <.tcl file> runs a .tcl script and keeps the console open
– Useful for .tcl scripts that sets up your project before running some 

interactive operation
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Terminology

● HLS file, C/C++ code that will be synthesised and run on FPGA
● Test bench (TB) file, C/C++ code that is run to test the HLS code. It 

calls the HLS functions and can run tests on their output, e.g. C 
asserts.

● Tcl scripts, set of tcl instructions executed by the Vivado HLS shell
● Synthesis, C/C++ → HDL lang (VHDL/Verilog)
● Project, collection of HLS and test bench (TB) files

– Has a top-level function name that is the starting point for synthesis
● Solution, specific implementation of a project

– Runs on a specific device at a specific clock frequency
● C simulation,  HLS + TB files are compiled with gcc against HLS 

headers and lib and plainly run as any other executable
● C/RTL cosimulation, synthesised HLS code is run on a simulator and 

results tested on the C/C++ test bench
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Setting up your first project

● In a base project you will typically have
– At least a HLS .c/.cpp files
– A header used to link HLS code to test bench code
– At least a TB .c/.cpp file
– A .tcl script to set up your Vivado HLS project and solution
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General workflow

● Problem
● Define your inputs & output

– They will translate as the parameters of your HLS top-level function
● Write up your code
● Test your C++ code
● Synthesis, i.e. convert to VHDL code

– Optimise it to get the desired performance while staying in your HW limits
● Test synthesised design
● Export design, typically in Vivado IP (Intellectual Property) format
● Implement in Vivado on actual FPGA



Building and optimising a project
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Our problem

● Problem definition:
– We want to design a high-throughput vector adder and multiplier

● Throughput: amount of data items passing through the process

● Input & output definition
– We receive two 100-dimensional vector of 16-bit signed integer
– We output a 100-dimensional vector of 16-bit signed integer as the sum 

and an additional 16-bit integer as the product
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Write up your code

Code time!

https://github.com/simonecid/VivadoTutorial

https://github.com/simonecid/VivadoTutorial
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Testing

● Before optimising your design, you need a reliable system to check 
that it works as expected

● Testbench!
– C++ which runs your HLS function with a defined sets of inputs, of 

which you already know the output 
● e.g. two vectors you know the sum and product of

● Having a test bench that runs through tests is extremely beneficial
– You can use it to keep on checking that your code keeps on working 

fine after you have altered it
● After going through synthesis you might want to redesign parts of it in 

order to better suit your needs or optimise it
● Typical test runs the function and checks its results via C asserts

– More extensive and sophisticated test unit libraries, e.g. CPPunit, are 
available, but let’s keep it simple :)
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Testing

● Add test bench files 
with 
– add_files -tb “FILE”

● Run your test bench 
with
– csim

● Abbreviation of 
csim_design
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Synthesis

● If the design is working and has been tested, you can proceed with the 
synthesis
– Run csyn (abbreviation of csynth_design)

● Vivado HLS synthetises VHDL and Verilog (another HDL language) from 
your C++ code

● Synthesis starts from a top-level function, declared in you .tcl file with 
set_top

● Parameters of the top-level functions are translated into ports, by 
default:
– N-bit variables are translated into STD_LOGIC_VECTORS, i.e. array of 1-bit 

ports
– Structs and classes are converted to ports by creating ports for each one 

of their attributes
– Arrays are translated into ports able to read from an external memory
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Post-synthesis analysis

● After synthesis, HLS produces a report describing the performance of 
your design under <ProjectName>/<SolutionName>/syn/report/ in 
.rpt format, human readable, and .xml, useful for automated analysis

Latency: minimum and maximum number 
of clocks to finish processing, may change if 
you have variable length loops
Initiation Interval (II): number of clocks 
before new data can be processed
Pipeline: if the function has been 
pipelined (more on this soon)

Loop breakdown: label your loops to make sure you can 
see and study its performance.
Trip count is the number of iteration of the loop

Clock estimate: gives an initial 
estimate of whether your design meets 
the required clock period
Note: final clock can only be known 
after implementation on actual device, 
sometimes HLS really messes up

Loop breakdown: label your loops to make sure you can 
see and study its performance.
Trip count is the number of iteration of the loop

Utilisation estimates: breakdown of resource 
usage. 
Note: LUTs and FFs are typically overestimated, 
even by a factor 2
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Post-synthesis analysis breakdown

● You can see how your resources 
are being used

● 1 DSP used by multiplication
● 75 for the sums
● 108 used for temporary memory
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Optimising your design

● Base throughput: 1.2 Gb/s
● Let’s work on improving this
● Introducing three new concepts:

– Pipelining: enables an iteration of a function 
or a loop to be executed before the previous 
one is over

● Increases throughput w/ minimal resource 
usage increase

– Unrolling: enables multiple iterations of a for 
loop to run in parallel, if independent

● Greatly reduces latency and throughput
● Can have an impact on resource usage 

based on loop size
– Memory partitioning: splits array 

(implemented in BRAM1P/2P or memory port 
by default) into single registers or ports, 
enable fast parallel memory access

Base design 
throughput
1.2 Gb/s
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Pipelining

● Let’s partition the memories and pipeline the main body of the loops
– Partition in the body of the function where the variable or the parameter is 

declared; in main: 
#pragma HLS array_partition variable=inVector1/2/3

● Breaks down the memory interface into single 16-bit ports
– Put this pragma in loop body to pipeline it; in sumLoop and productLoop:

#pragma HLS pipeline
● Following pipelining and partitioning

– Latency: 802 → 206
– II: 802 → 206
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Pipelining

Base design 
throughput
1.2 Gb/s

Pipelined 
throughput
4.7 Gb/s
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Unrolling

● Let’s unroll the loops
– Instead of instantiate logic for a single loop and execute it 100 times, 

instantiate logic for each iteration and execute in parallel
● Essentially you increase resource usage by a factor 100

– DSP: 1 → 100
– Put this pragma in loop body to unroll it; in sumLoop and productLoop:

#pragma HLS unroll
● Latency: 206 → 8
● II: 206 → 8
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Unrolling

Base design 
throughput
1.2 Gb/s

Pipelined 
throughput
4.7 Gb/s

Unrolled 
throughput
120 Gb/s
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Pipelining the top-level function

● The pipeline pragma pipelines the function in which it is located and 
unroll and pipelines every underlying loop 
– If we place a pipeline pragma in the top-level function body, everything 

will be unrolled and pipelined, maximising performance
● Latency: 8 → 8
● II: 8 → 1, data can be input every clock cycle, max. throughput
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Pipelining the top-level function

Base design 
throughput
1.2 Gb/s

Pipelined 
throughput
4.7 Gb/s

Unrolled 
throughput
120 Gb/s

Fully 
pipelined 
throughput
960 Gb/s
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Finishing touches

● Whenever you create a function, HLS creates a separate logic block 
and connects it to the logic block of the main function
– Increases latency
– Prevents HLS from running optimisations that reduces resource usage
– In the function body (not top-level): #pragma HLS inline

● Inlines and integrates the sub-function in the calling one
● Latency: 8 → 7
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Testing and exporting the synthesised design

● Synthetised design can be tested in HDL 
simulator in the C test bench
– Run cosim (abbreviation of cosim_design)

● First tests the C code, then the synthetised 
design

● If everything looks good, you can export it for 
actual implementation
– Using IP catalog now, but other formats are 

available
– Final product of Vivado HLS
– export_design -format ip_catalog

● Exported design can be found in
<ProjectName>/<SolutionName>/impl/ip

● From here on is Vivado domain, not covered 
here, but you can load IP and implement it



Tips and tricks
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Various tips and tricks

● You can use C++11 and higher constructs, e.g. auto or constexpr: 
add_files -cflags "-std=c++11 "<HLS_FILE>"

● Run thorough tests on software, do not be lazy like me!
– Debugging stuff at later stages Is just way harder and confusing

● If you do not trust me, ask Aaron!
● Read the list of pragmas and experiment a lot with them

– Array_partition, pipeline, and unroll accept options, study them!
– Pragmas try to bridge the gap between C++ and HLS, master them

● HLS likes ternary operators, if possible use them instead of if 
statements! Ternary operator

Equivalent if statement

https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html
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Various tips and tricks
Splitting designs
● Big designs take long to synthesise
● Split your problem in smaller projects
● Each project can be exported in IP format 

and then linked in a chain
● Saves lots of synthesis time
● Increases flexibility

– Blocks can be run at different clock 
speeds

● Example: the jet trigger algorithm I work 
on is made of three blocks
– Histogrammer
– Data buffer
– Jet finder

● Divide et impera reigns!

History taught us that this 
strategy works!
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Various tips and tricks
Scaling designs

● Your time is precious! 
Do not waste it implementing large borken designs.

● Start small and write code that can be easily scaled up!
● For instance, let’s say you need to do some processing on a large 

number of inputs
– Make the number of inputs a parameter of your code with a 

#define NUMBER_OF_INPUTS XX
and make your code depend on it

– Do your initial testing on a scaled-down version of your code, i.e. with 
few inputs, then increase it

● Takes way less time to implement a smaller design
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Various tips and tricks
Getting more accurate estimates

● Final timing and resource usage results are only obtainable after 
implementation

● Vivado HLS provides tools to implement design without using Vivado
– Not sure how it works, I presume it makes some basic assumptions on 

how you are going to place your design in a FPGA and implements it
● By running it you can get a more accurate estimates of timing and 

resource usage, although not final they tend to be much closer
● Run export_design -format ip_catalog -evaluate vhdl

– This implements the VHDL design on FPGA
– 10 minutes to run for the small test design, against XX for synthesis
– Results in <ProjectName>/<SolutionName>/impl/report/vhdl/
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Various tips and tricks
Getting more accurate estimates
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Various tips and tricks
HLS libraries

● FOR THE LOVE OF GOD DO NOT USE THE C/C++ STANDARD LIBRARY!
– I have heard it gives horrible results

● I do not even know how they managed to get HLS to synthesise
● Do not reinvent the wheel!

– Vivado HLS has libraries doing many interesting things
● It is all in the manual

– For instance, #include <hls_math.h> for HLS math libraries



Using C++ constructs
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Using C++ constructs

Code time!

https://github.com/simonecid/VivadoTutorial/tree/cpp_version

https://github.com/simonecid/VivadoTutorial/tree/cpp_version
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Using C++ constructs

● Rewritten the vector add and 
multiply by developing a generic 
Vector class via template
– Generic, flexible, easy to use

● N-dimensional
● Uses any type

● Same resource usage
● Clever usage of C++ constructs 

provides great flexibility without 
usage penalties

● Note:
– Partitioning of class attributes 

must be invoked in constructors
– Inline every class method!
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Using C++ constructs
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Summary
● HLS enables users to write FPGA firmware in high-level languages

– More flexible and easier to use
● HLS pragmas can be used to produce high-throughput designs

– Pipeline functions, unroll loops and partition memory
– Used it on a vector adder and multiplier

● The machine excession is available in Bristol per FPGA development
● Went through a number of tips and tricks
● Using C++ classes and template does not affect resource usage while 

improving code flexibility and ease of use
● Collection of my FPGA bookmarks in next slide
● Contacts:

– simone.bologna@bristol.ac.uk
– Skype: simonecid
– Office: 4.57

mailto:simone.bologna@bristol.ac.uk
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Useful links

● HLS guide by Xilinx, 
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-le
vel-synthesis.pdf

● Optimisation in HLS by Xilinx
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-
opt-methodology-guide.pdf

● Pipelining and Unrolling tips, 
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/cal
ling-coding-guidelines/concept_pipelining_loop_unrolling.html

● Parallelising function tip, 
https://forums.xilinx.com/t5/Vivado-High-Level-Synthesis-HLS/How-to-set-the-two

● HLS tips, https://fling.seas.upenn.edu/~giesen/dynamic/wordpress/vivado-hls-learnings/
● HLS pragma list, 

https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.htm
l

● Introductory slides to HLS, 
http://home.mit.bme.hu/~szanto/education/vimima15/heterogen_vivado_hls.pdf

● Improving performance in HLS, 
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Perform
ance.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_pipelining_loop_unrolling.html
https://forums.xilinx.com/t5/Vivado-High-Level-Synthesis-HLS/How-to-set-the-two
https://fling.seas.upenn.edu/~giesen/dynamic/wordpress/vivado-hls-learnings/
https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2018_3/sdsoc_doc/hls-pragmas-okr1504034364623.html
http://home.mit.bme.hu/~szanto/education/vimima15/heterogen_vivado_hls.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf
http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Improving_Performance.pdf
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