

Self-similar description of heavy-ion and p+p collisions

GÁBOR KASZA DAY OF FEMTOSCOPY, GYÖNGYÖS 31ST OF OCTOBER, 2019

> NKIFH No. FK-123842 & FK-123959 EFOP 3.6.1-16-2016-00001

Various application of hydrodynamics

- Fluid dynamics: flow of liquid and gases
- Examples:
 - Calculating forces and moments in aircrafts
 - Weather forecast
 - o Describing nebulae
 - Inner structure of stars (magnetohydrodynamics)
 - Modelling fission weapon detonation
 - Describing the Quark Gluon Plazma (QGP)
- Different systems in many aspects: however, hydro works well in all cases
- Why is hydrodynamics so effective?

Scaling behaviour

• Ideal gas: isothermal process \rightarrow constant value of *T* constrains the possible states

p and V are arbitrary, but their product is not:

 $pV = Nk_BT = konstans$

In this case <u>the system scales with the temperature</u>:

Scaling behaviour

- Ideal gas: isothermal process \rightarrow constant value of *T* constrains the possible states
- p and V are arbitrary, but their product is not:

 $pV = Nk_BT = konstans$

- In this case <u>the system scales with the temperature</u>:
- For adiabatic expansions:

$$\frac{pV}{T} = Nk_B = konstans$$

- Applicable to any N, <u>the system scales with the particle number</u>
- It is also a general feature of hydro:

"Hydrodynamics has no internal scale"

Scaling behaviour

- Ideal gas: isothermal process \rightarrow constant value of *T* constrains the possible states
- *p* and *V* are arbitrary, but their product is not:

 $pV = Nk_BT = konstans$

- In this case <u>the system scales with the temperature:</u>
- For adiabatic expansions:

$$\frac{pV}{T} = Nk_B = konstans$$

- Applicable to any *N*, *the system scales with the particle number*
- It is also a general feature of hydro:

"Hydrodynamics has no internal scale"

Analogy in heavy-ion physics? This is the topic of this presentation!

Scaling behaviour

• Ideal gas: isothermal process \rightarrow constant value of *T* constrains the possible states

p and V are arbitrary, but their product is not:

 $pV = Nk_BT = konstans$

- In this case <u>the system scales with the temperature:</u>
- For adiabatic expansions:

$$\frac{pV}{T} = Nk_B = konstans$$

- Applicable to any *N*, *the system scales with the particle number*
- It is also a general feature of hydro:

"Hydrodynamics has no internal scale"

- Rindler coordinates, velocity field: $(\tau, \eta_x) = \left(\sqrt{t^2 r_z^2}, \frac{1}{2} \ln \left[\frac{t + r_z}{t r_z}\right]\right), \ u^{\mu} = (\cosh(\Omega), \sinh(\Omega))$
- 1+1 dimensional, parametric, almost self-similar solution:

Csörgő T., Kasza G., Csanád M., Jiang Z.: arXiv:1805.01427, arXiv:1806.06794

$$\lambda: \text{ acceleration parameter} (Hwa-Bjorken: \lambda=1)$$

$$\alpha(H) = \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right)$$

$$\alpha(H) = \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right)$$

$$\alpha(H) = \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \operatorname{arctan}\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right)$$

$$\sigma(\tau, H) = \sigma_0\left(\frac{\tau_0}{\tau}\right)^{\lambda} \mathcal{V}_{\sigma}(s)\left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2}},$$

$$T(\tau, H) = T_0\left(\frac{\tau_0}{\tau}\right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s)\left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{\lambda}{2}},$$

$$realistic dN/d\eta$$

$$T(s) = \frac{1}{\mathcal{V}_{\sigma}(s)},$$

$$s(\tau, H) = \left(\frac{\tau_0}{\tau}\right)^{\lambda-1} \sinh(H)\left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\lambda/2}$$

• dN/dy is obtained from the CKCJ solution (in self-similar approximation):

$$\frac{dN}{dy} \approx \frac{dN}{dy}\Big|_{y=0} \cosh^{-\frac{1}{2}\alpha(\kappa,\lambda)-1}\left(\frac{y}{\alpha(1,\lambda)}\right) \exp\left(-\frac{m}{T_{\rm eff}}\left[\cosh^{\alpha(\kappa,\lambda)}\left(\frac{y}{\alpha(1,\lambda)}\right)-1\right]\right)$$

• If $|y| \ll 2+(\lambda-1)^{-1}$, Gaussian rapidity-density:

$$\frac{dN}{dy} \approx \frac{\langle N \rangle}{\left(2\pi\Delta^2 y\right)^{1/2}} \exp\left(-\frac{y^2}{2\Delta^2 y}\right) \longrightarrow \frac{1}{\Delta^2 y} = (\lambda - 1)^2 \left[1 + \left(1 - \frac{1}{\kappa}\right) \left(\frac{1}{2} + \frac{m}{T_{\text{eff}}}\right)\right]$$

• Depends on the combination of the physical parameters through the width (Δy)

- λ , m, T_{eff} and κ can be arbitrary, but their combination is not: Δy is determined by fits
- Physical differences are only apparent in the width of the distribution

Csörgő, Kasza, Csanád, Jiang solution: arXiv:1805.01427

Physical parameters:

 κ : inverse square of c_s

m: particle mass

 λ : acceleration parameter

T_{eff}: effective temperature

and several applications: arXiv:1806.06794 arXiv:1811.09990

• The pseudorapity distribution is the product of *dN/dy* and the Jakobian:

$$\frac{dN}{d\eta_p} \approx \frac{\langle N \rangle}{\left(2\pi\Delta^2 y\right)^{1/2}} \frac{\cosh(\eta_p)}{\left(D^2 + \cosh^2(\eta_p)\right)^{1/2}} \exp\left(-\frac{y^2}{2\Delta^2 y}\right) \bigg|_{y=y(\eta_p)}$$

• The rapidity density is depressed at midrapidity by $\frac{1}{\sqrt{1+D^2}}$

"Depression" or "Depth" parameter

 $\frac{m}{\bar{p}_T}$

K. G. , Csörgő T.: arXiv:1811.09990 arXiv:1910.03428

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.: arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:
 <u>arXiv:1811.09990</u>
 <u>arXiv:1910.03428</u>

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G., Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...

K. G. , Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...
- The collisions of small systems (p+p) and heavy-ions (Au+Au, Pb+Pb) are well described by us
- Scaling behaviour is evident: hydro works well independently on the system size ...

K. G., Csörgő T.:

arXiv:1811.09990

- Main question: Does this scaling behaviour appear in the data?
- We fitted the pseudorapidity density data with the CKCJ solution ...
- The collisions of small systems (p+p) and heavy-ions (Au+Au, Pb+Pb) are well described by us
- Scaling behaviour is evident: hydro works well independently on the system size ...

Our self-similar hydrodynamic calculations are succesful in such cases where other models fail.

CMS collab.: <u>arXiv:1902.03603</u>
Werner, Liu, Pierog: <u>arXiv:hep-ph/0506232</u>
Pierog, Karpenko, et all.: <u>arXiv:1306.0121</u>
Lokhtin, Snigirev: <u>arXiv:hep-ph/0506189</u>
Lin, Ko, et all.: <u>arXiv:nucl-th/0411110</u>

K. G. , Csörgő T.:

arXiv:1811.09990

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

Is the hydrodynamic description well-accepted?

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

Is the hydrodynamic description well-accepted?

• A+A collisions: become a major trend since 2005

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

Is the hydrodynamic description well-accepted?

- A+A collisions: become a major trend since 2005
- p+A, d+A and He+A collisions: accepted since 2019

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

Is the hydrodynamic description well-accepted?

- A+A collisions: become a major trend since 2005
- p+A, d+A and He+A collisions: accepted since 2019
- p+p collisions: not widely accepted yet

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈0.35), but it can be determined only by violating the scaling behaviour
- Low c, value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: self-similar systems

Is the hydrodynamic description well-accepted?

- A+A collisions: become a major trend since 2005
- p+A, d+A and He+A collisions: accepted since 2019
- p+p collisions: not widely accepted yet
- Xiv:hep-ex/9711009v However, describing H+H systems by hydro is not a recent idea

ESTIMATION OF HYDRODYNAMICAL MODEL PARAMETERS FROM THE INVARIANT SPECTRUM AND THE BOSE-EINSTEIN CORRELATIONS OF π^- MESONS PRODUCED IN (π^+/K^+) p INTERACTIONS AT 250 GeV/c EHS/NA22 Collaboration N.M. Agababyan^g, M.R. Atayan^g, T. Csörgő^h, E.A. De Wolf^{a,1}, K. Dziunikowska^{b,2}, A.M.F. Endler^e, Z.Sh. Garutchava^f, H.R. Gulkanvan^g, R.Sh. Hakobyan^g, J.K. Karamvan^g, D. Kisielewska^{b,2}, W. Kittel^d, S.S. Mehrabvan^g, Z.V. Metreveli^f, K. Olkiewicz^{b,2}, F.K. Rizatdinova^c, E.K. Shabalina^c, L.N. Smirnova^c, M.D. Tabidze^f, L.A. Tikhonova^c, A.V. Tkabladze^f A.G. Tomaradze^f, F. Verbeure^a, S.A. Zotkin^c ^a Department of Physics, Universitaire Instelling Antwerpen, B-2610 Wilrijk, Belgium ^b Institute of Physics and Nuclear Techniques of Academy of Mining and Metallurgy and Institute of Nuclear Physics, PL-30055 Krakow, Poland ^c Nuclear Physics Institute, Moscow State University, RU-119899 Moscow, Russia ^d High Energy Physics Institute Nijmegen (HEFIN), University of Nijmegen/NIKHEF, NL-6525 ED Nijmegen, The Netherlands Centro Brasileiro de Pesquisas Fisicas, BR-22290 Rio de Janeiro, Brazil Institute for High Energy Physics of Tbilisi State University, GE-380086 Tbilisi, Georgia Institute of Physics, AM-375036 Yerevan, Armenia ^h KFKI, Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary Abstract: The invariant spectra of π^- mesons produced in (π^+/K^+) interactions at 250 GeV/c are

Dec 1997

19

0

analysed in the framework of the hydrodynamical model of three-dimensionally expanding cylindrically symmetric finite systems. A satisfactory description of experimental data is achieved. The data favour the pattern according to which the hadron matter undergoes predominantly longitudinal expansion and non-relativistic transverse expansion with mean transverse velocity $\langle u_t \rangle = 0.20 \pm 0.07$, and is characterized by a large temperature inhomogeneity in the transverse direction: the extracted freezeout temperature at the center of the tube and at the transverse rms radius are 140 ± 3 MeV and 82 ± 7 MeV, respectively. The width of the (longitudinal) space-time rapidity distribution of the pion source is found to be $\Delta \eta = 1.36 \pm 0.02$. Combining this estimate with results of the Bose-Einstein correlation analysis in the same experiment, one extracts a mean freeze-out time of the source of $\langle \tau_f \rangle = 1.4 \pm 0.1$ fm/c and its transverse geometrical rms radius, $R_{\rm G}(\rm rms) = 1.2 \pm 0.2$ fm.

Nijmegen preprin HEN-405 Dec. 97

We hope that these results help to confirm the legitimacy of hydro in p+p collisions!

In conclusion...

- p+p collisions can be described as collective systems
- Our fits indicate low c_s value (≈ 0.35), but it can be determined only by violating the scaling behaviour
- Low c_s value indicate the presence of fluid, so the presence of QGP
- p+p and A+A collisions: <u>self-similar</u> systems

Is the hydrodynamic description well-accepted?

- A+A collisions: become a major trend since 2005
- p+A, d+A and He+A collisions: accepted since 2019
- p+p collisions: not widely accepted yet
- However, describing H+H systems by hydro is not a recent idea