A simple family of solutions of relativistic viscous hydrodynamics for fireballs with Hubble flow and ellipsoidal symmetry

Márton Nagy¹,

In collaboration with: Tamás Csörgő, Máté Csanád (and ZeFang Jiang...)

Present status: arXiv:1909.02498

 1 Eötvös University, Budapest, Hungary

Gyöngyös, Oct 31, 2019 Day of Femtoscopy

Introduction

- \bullet Ideal fluid (=perfect fluid) hydrodynamics:
	- Well-proven theory, clear basic equations
	- Good at describing bulk development in heavy-ion collisions ⇔ QGP viscosity (experimentally) small
	- Analytic solutions (vs. numerical ones)
	- Non-relativistic: many well known simple fireball solutions
	- Relativistic: historical $+$ (more or less) recent developments
- Viscous hydrodynamics:
	- Non-relativistic: basic equations clear (?)
	- Fireball NR solutions \rightarrow generalization works
	- Relativistic: basic equations NOT well settled
		- Landau theory vs. Eckart's theory (1940s):
			- 1st order (parabolic PDEs, acausality, instability...)
		- Israel-Stewart theory: hyperbolic PDEs (complicated; more coefficients)
	- **Exact relativistic viscous solutions lacking**
- Goal: study relativistic viscous effect in simplest possible way

Basic equations

- \bullet Ideal fluid (=perfect fluid) case (a reminder):
	- $T_{\mu\nu}$ stress-energy-momentum tensor, $\partial_{\nu}T^{\mu\nu}=0$.
	- $T_{\mu\nu} = (\varepsilon + p)u_{\mu}u_{\nu} pg_{\mu\nu}$, =definition of p, ε .
		- \Rightarrow energy equation: $(\varepsilon + \rho)\partial_{\nu}u^{\nu} + u^{\nu}\partial_{\nu}\varepsilon = 0$
		- \Rightarrow Euler equation: $(\varepsilon+p)u^{\nu}\partial_{\nu}u^{\mu} = (g^{\mu\rho}-u^{\mu}u^{\rho})\partial_{\rho}\rho$.
	- Need Equation of State (EoS): eg. $\varepsilon = \kappa(T)p$.
	- Simplest choice: κ =const.
	- Two cases in what follows:

 $p\!=\!nT$ (with conserved charge n, $\partial_{\nu}(nu^{\nu})\!=\!0)$ vs.

 $\rho \!=\! \rho_0(\,\mathcal{T}/\,\mathcal{T}_0)^{\kappa+1}$ (no conserved charge, only σ entropy density)

- Viscous hydrodynamics, first order theory:
	- \bullet $T_{\mu\nu}=(\varepsilon+p)u_{\mu}u_{\nu}-pg_{\mu\nu}+q_{\mu}u_{\nu}+q_{\nu}u_{\mu}+\pi_{\mu\nu}$ q_{μ} : thermal conduction $(q_{\mu}u^{\mu}=0)$, $\pi_{\mu\nu}$: viscous tensor $(\pi_{\mu\nu}u^{\nu}=0)$.
	- Conservation of particle number (charge): $\partial_{\mu}N^{\mu}=0$ N^{μ} = nu^{μ} + j^{μ} with $u_{\mu}j^{\mu}$ = 0.
		- j^{μ} : ambiguity in definition of u^{μ} .

Eckart vs. Landau frame

Eckart frame: $N^{\mu} = nu^{\mu}$ (ie: $j^{\mu} = 0$): choice for definition of u^{μ}

$$
\bullet \ \ q_\mu = \lambda (g_{\mu\nu} - u_\mu u_\nu) \cdot (\partial^\nu T - T u^\rho \partial_\rho u^\nu)
$$

- $\pi_{\mu\nu} = \eta \big[(g_{\mu\rho} u_{\mu} u_{\rho}) \partial^{\rho} u_{\nu} + (g_{\nu\rho} u_{\nu} u_{\rho}) \partial^{\rho} u_{\mu} \frac{2}{d} (g_{\mu\nu} u_{\mu} u_{\nu}) \partial^{\rho} u_{\rho} \big] +$ $+\zeta (g_{\mu\nu} - u_{\mu}u_{\nu})\partial^{\rho}u_{\rho}$
- Expressions: from increase of entropy

• λ : thermal conductivity, η : shear viscosity, ζ : bulk viscosity, $d=3$.

Landau frame: q_{μ} =0, choice for definition of u^{μ}

$$
\bullet \, j_{\mu} = \lambda \left(\frac{nT}{\varepsilon + \rho}\right)^2 \left(g_{\mu\nu} - u_{\mu} u_{\nu}\right) \cdot \partial^{\nu} \frac{\mu}{T}
$$

- $\pi_{\mu\nu}$ similar form as for Eckart (definition of u^μ not the same. . .)
- In what follows: take $\lambda=0$, investigate role of ζ
	- η : famous lower limit $\frac{\eta}{s} \!\geq\! \frac{\hbar}{4\tau}$ $\frac{h}{4\pi}$ from AdS/CFT
		- P. Kovtun, D. T. Son, A. O. Starinets, PRL 94, 111601 (2005)
	- ζ : not straightforward; general consensus $\zeta \ll n$.

Eg. in monatomic gases, $\zeta = 0$

I. M. Khalatnikov, Sov. Phys. JETP 2, 169 (1956)

Hubble-type solution & generalization

Well-known (in fact, simplest) 3D solution in perfect fluid case:

$$
u^{\mu} = \frac{x^{\mu}}{\tau} \qquad \qquad n = n_0 \left(\frac{\tau_0}{\tau}\right)^d, \qquad \qquad T = T_0 \left(\frac{\tau_0}{\tau}\right)^{d/\kappa}.
$$

See e.g. T. Csörgő, et al., PLB 565, 107 (2003)

• Ansatz for viscous solution (with $\lambda=0$, continuity works)

$$
u^{\mu} = \frac{x^{\mu}}{\tau} \qquad \quad n = n_0 \left(\frac{\tau_0}{\tau}\right)^d, \qquad \quad T \equiv \mathcal{T}(\tau), \quad \Rightarrow \quad p \equiv p(\tau)
$$

Choice for ζ bulk viscosity & EoS??? Cases investigated are:

 $\textbf{1}$ Case A: $\zeta\!=\!\zeta_0$ constant, no conserved \textit{n} , $\textit{p}\!=\!\textit{p}_0(\textit{T}/\textit{T}_0)^{\kappa+1}$ 2 Case B: $\zeta = \zeta_0$ constant, conserved *n*, $p = nT$ \bullet Case C: $\zeta\!=\!\zeta_0(\,\mathcal{T}/\mathcal{T}_0)^\kappa$ (ie. $\zeta\!\propto\!s)$, no conserved n , $p\!=\!p_0(\,\mathcal{T}/\mathcal{T}_0)^{\kappa+1}$ 4 Case D: $\zeta = \zeta_0(n/n_0)$ (proxy for $\zeta \propto s$), conserved n, p=nT 5 *Case E:* $\zeta = \zeta_0 (T/T_0)^{\kappa}$ (other proxy for $\zeta \propto s$), conserved *n*, *p*=*nT*

Solving the equations. . .

- Some intermediate steps:
	- All terms containing η shear viscosity cancel
		- \Rightarrow Hubble profile: ideal to study effect of ζ
	- Also λ (heat conductive) terms cancel (if present at all)
	- Euler equation is automatically satisfied (because assumed only τ dependence)
	- \bullet In simplest case (case A,B) possibility for ellipsoidal generalization with arbitrary $V(S)$, $S = \frac{r_x^2}{X_0^2 t^2} + \frac{r_y^2}{Y_0^2 t^2} + \frac{r_z^2}{Z_0^2 t^2}$.
- Only energy equation to solve: reduces to 1 ODE for $p(\tau)$

$$
\kappa \frac{dp}{d\tau} + \frac{d(\kappa+1)}{\tau} p - \frac{d^2}{\tau^2} \zeta(p,\tau) = 0.
$$

Solution: straightforward, in each cases.

[Case A](#page-6-0)

Case A

 $\zeta\!=\!\zeta_0$ constant, no conserved $\,$ n, $\,p\!=\!p_0(\,T/\,T_0)^{\kappa+1}\,$

$$
p(\tau) = \left[p_0 - \frac{d^2}{(\kappa+1)d - \kappa} \frac{\zeta_0}{\tau_0}\right] \left(\frac{\tau_0}{\tau}\right)^{d\frac{\kappa+1}{\kappa}} + \frac{d^2}{(\kappa+1)d - \kappa} \frac{\zeta_0}{\tau}.
$$

[Case B](#page-7-0)

Case B

 $\zeta = \zeta_0$ constant, conserved *n*, $p = nT$

$$
p(\tau) = \left[p_0 - \frac{d^2}{(\kappa+1)d - \kappa} \frac{\zeta_0}{\tau_0}\right] \left(\frac{\tau_0}{\tau}\right)^{d \frac{\kappa+1}{\kappa}} + \frac{d^2}{(\kappa+1)d - \kappa} \frac{\zeta_0}{\tau}.
$$

[Case C](#page-8-0)

Case C

$$
\zeta = \zeta_0 (T/T_0)^{\kappa}
$$
 (ie. $\zeta \propto s$), no conserved *n*, $p = p_0 (T/T_0)^{\kappa+1}$

$$
p(\tau) = p_0 \left\{ \left(1 + \frac{d^2}{(\kappa+1)(\kappa-d)} \frac{\zeta_0}{p_0 \tau_0} \right) \left(\frac{\tau_0}{\tau} \right)^{\frac{d}{\kappa}} - \frac{d^2}{(\kappa+1)(\kappa-d)} \frac{\zeta_0}{p_0} \frac{1}{\tau} \right\}^{\kappa+1}
$$

[Case D](#page-9-0)

Case D

 $\zeta = \zeta_0(n/n_0)$ (proxy for $\zeta \propto s$), conserved *n*, $p=nT$

$$
p(\tau) = \left[p_0 + \frac{d^2}{\kappa - d} \frac{\zeta_0}{\tau_0}\right] \left(\frac{\tau_0}{\tau}\right)^{\frac{\kappa + 1}{\kappa}d} - \frac{d^2}{\kappa - d} \frac{\zeta_0}{\tau_0} \frac{\tau_0^{d+1}}{\tau^{d+1}}
$$

[Case E](#page-10-0)

Case E

$$
\zeta = \zeta_0 (T/T_0)^{\kappa} \text{ (other proxy for } \zeta \propto s\text{), conserved } n, \ p = nT
$$
\n
$$
\frac{p(\tau)}{p_0} = \left\{ \left(1 - \frac{d^2 \zeta_0 / (p_0 \tau_0)}{(d-1)(\kappa^2 + \kappa) + d} \right) \left(\frac{\tau_0}{\tau} \right)^{\frac{d}{\kappa}} + \frac{d^2 \zeta_0 / (p_0 \tau_0)}{(d-1)(\kappa^2 + \kappa) + d} \left(\frac{\tau}{\tau_0} \right)^{d \frac{\kappa}{\kappa+1} - 1} \right\}^{\kappa+1}.
$$

Summary and outlook

- Hydrodynamical models: perfect fluid vs. viscous fluids
- A (simple) viscous solution presented: Hubble flow, energy development distorted by bulk viscosity
- **Illustrations plotted for (somewhat) equivalent values of** ζ **in different** scenarios
- Different assumptions, different quantitative effects
- **•** Further steps
	- Of course many possibilities (beyond simplest Hubble velocity field. . .)

Thank you for your attention!

Thanks to: NKFIH grants FK123842 and FK123959