Update on the η' mass-modification effect in exact solutions of hydrodynamics

T. Csörgő^{1,2} and <u>G. Kasza^{1,2}</u>

Wigner RCP, Budapest, Hungary
 EKU KRC, Gyöngyös, Hungary

Day of Femtoscopy, Gyöngyös

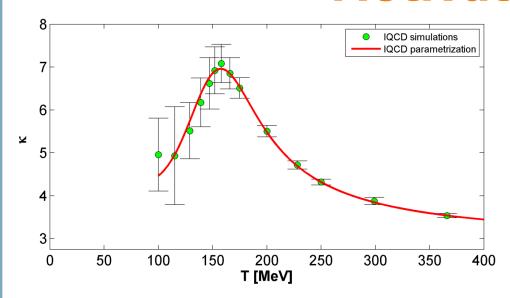
31st of October, 2019

Partially supported by EFOP-3.6.1-16-2016-00001 (Hungary)

Outlook

- Lattice QCD EoS parametrization from hydro
- Non-relativistic solutions with c_s(T)
- Quark-hadron transitions
 - Crossover
 - 2nd order PT
- Fine tuning:
 - -Multi-component hadronic solution
 - -Temperature dependent mass
- Observables
 - Scaling behaviour is explained by MC-solution

Motivation

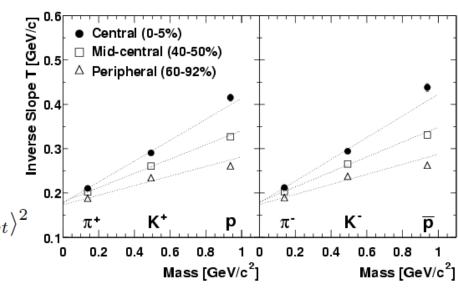


 $\kappa(T) = \epsilon/p$ from lattice QCD arXiv:1007.2580

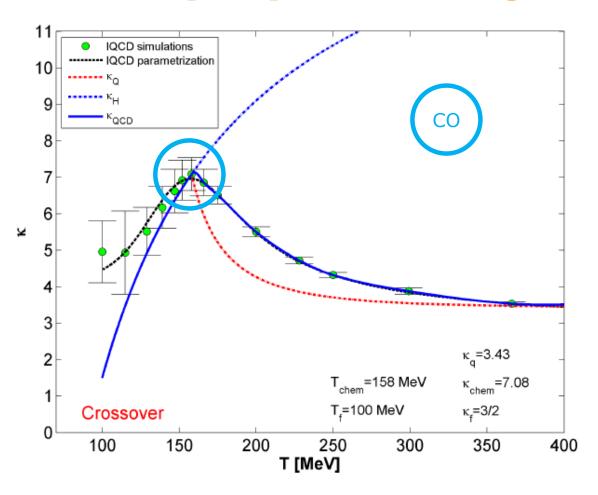
Can they be understood in a consistent picture?

Scaling behaviour of single particle spectra nucl-ex/0307022

$$T = T_f + m\langle u_t \rangle^2 \Longrightarrow T_i = T_f + m_i \langle u_t \rangle^2$$



Crossover (CO), lattice QCD EoS



■ EoS of the whole $[T_f, T_0]$ interval:

$$\kappa(T) = \Theta(T_{chem} - T)\kappa_H(T) + \Theta(T - T_{chem})\kappa_{QCD}(T)$$

Multi-component (MC) HM solutions

QM	$\sigma\left(\vec{r},t\right) = \sigma_0 \frac{V_0}{V} e^{-s/2}$	
$T > T_{chem}$	$(1+\kappa) \left[\frac{d}{dT} \left(\frac{\kappa T}{1+\kappa} \right) \right] \frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$	
	$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = \frac{1}{1+\kappa}$	
мс нм	$n_i(\vec{r},t) = n_{i,0} \frac{V_0}{V} e^{-s/2}$	
$T < T_{chem}$	$\left[\frac{d}{dT}\left(\kappa T\right)\right]\frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$	
	$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = \frac{T}{\langle m \rangle}$	
SC HM	$n\left(\vec{r},t\right) = n_0 \frac{V_0}{V} e^{-s/2}$	
$T < T_{chem}$	$\left[\frac{d}{dT}\left(\kappa T\right)\right]\frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$	
	$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = \frac{T}{m}$	

$$m \Leftrightarrow \langle m \rangle = \frac{\sum_i m_i n_i}{\sum_i n_i} \quad \begin{array}{l} \text{Multi-component hadronic matter (HM):} \\ \text{Expands and rotates together} \end{array}$$

■ Temperature equation at a crossover

$$(1+\kappa) \left[\frac{d}{dT} \left(\frac{\kappa T}{1+\kappa} \right) \right] \frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$$

Equation of state

$$\varepsilon = \sum_{i} m_i n_i + \kappa p$$

Infinitesimal relations

$$dp = \sigma dT$$

$$d\varepsilon = \sum_{i} m_{i} dn_{i} + \kappa \sigma dT + p d\kappa$$

■ Temperature equation at a crossover

$$(1+\kappa) \left[\frac{d}{dT} \left(\frac{\kappa T}{1+\kappa} \right) + \frac{f_H}{1+\kappa} \left\langle \frac{dm}{dT} \right\rangle \right] \frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$$

Equation of state

$$\varepsilon = \sum_{i} m_i(T) n_i + \kappa p$$

Infinitesimal relations

$$dp = \sigma dT + \sum_{i} n_{i} dm_{i}$$

$$d\varepsilon = \sum_{i} m_{i} dn_{i} + \kappa \left(\sigma + \sum_{i} n_{i} \frac{dm_{i}}{dT} \right) dT + p d\kappa$$

if m is T dependent...

Equations of motion:

$$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = \frac{1}{1 + \kappa + f_H \frac{\langle m \rangle}{T}}.$$

■ Low temperature limit with $\kappa(T < T_f) = \kappa_f$ condition:

$$\lim_{T \to 0} \frac{1}{1 + \kappa + f_H \frac{\langle m \rangle}{T}} = \frac{T}{\langle m \rangle}$$

■ High temperature limit:

$$\lim_{T \to \infty} \frac{1}{1 + \kappa + f_H \frac{\langle m \rangle}{T}} = \frac{1}{1 + \kappa_Q}$$

Equations of motion:

$$X\left(\ddot{X} - R\omega^2\right) = Y\ddot{Y} = Z\left(\ddot{Z} - R\omega^2\right) = \frac{1}{1 + \kappa + f_H \frac{\langle m(T) \rangle}{T}}.$$

■ Low temperature limit with $\kappa(T < T_f) = \kappa_f$ condition:

$$\lim_{T \to 0} \frac{1}{1 + \kappa + f_H \frac{\langle m(T) \rangle}{T}} = \frac{T}{\langle m(T) \rangle}$$

■ High temperature limit:

$$\lim_{T \to \infty} \frac{1}{1 + \kappa + f_H \frac{\langle m(T) \rangle}{T}} = \frac{1}{1 + \kappa_Q}$$

if m is T dependent...

Slopes: linear mass dependence

	SC HM	мс нм
	$T_x = T_f + m_f \dot{X_f}^2$	$T_{x,i} = T_f + m_{i,f} \dot{X_f}^2$
$\omega_0 = 0$	$T_y = T_f + m_f \dot{Y_f}^2$	$T_{y,i} = T_f + m_{i,f} \dot{Y_f}^2$
	$T_z = T_f + m_f \dot{Z_f}^2$	$T_{z,i} = T_f + m_{i,f} \dot{Z_f}^2$
	$T'_{xx} = T_f + m_f \left(\dot{X_f}^2 + \omega_f^2 R_f^2 \right)$	$T'_{xx,i} = T_f + m_{i,f} \left(\dot{X_f}^2 + \omega_f^2 R_f^2 \right)$
$\omega_0 \neq 0$	$T'_{yy} = T_f + m_f \dot{Y_f}^2$	$T'_{yy,i} = T_f + m_{i,f} \dot{Y_f}^2$
(K' frame)	$T'_{zz} = T_f + m_f \left(\dot{Z_f}^2 + \omega_f^2 R_f^2 \right)$	$T'_{zz,i} = T_f + m_{i,f} \left(\dot{Z_f}^2 + \omega_f^2 R_f^2 \right)$

■ Transform to the lab. frame ($\omega_0 \neq 0$) with **M** rotation matrix:

$$\mathbf{T}_i^{-1} = \mathbf{M}^{-1} \mathbf{T}_i'^{-1} \mathbf{M}$$

- Linear mass dependence
- Scaling behaviour

Hydro scaling: $T = T_f + m < u_t > 2$

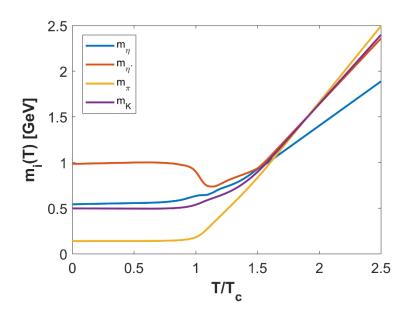
HBT results: Gaussian radii

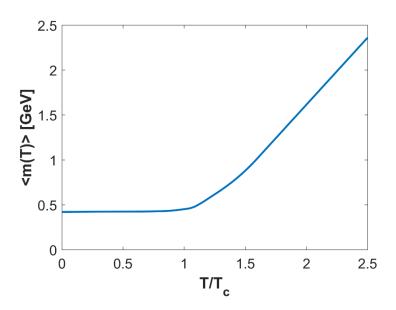
	SC HM	мс нм
	$R_x^{-2} = X_f^{-2} \frac{T_x}{T_f}$	$R_{x,i}^{-2} = X_f^{-2} \frac{T_{x,i}}{T_f}$
$\omega_0 = 0$	$R_y^{-2} = Y_f^{-2} \frac{T_y}{T_f}$	$R_{y,i}^{-2} = Y_f^{-2} \frac{T_{y,i}}{T_f}$
	$R_z^{-2} = Z_f^{-2} \frac{T_z}{T_f}$	$R_{z,i}^{-2} = Z_f^{-2} \frac{T_{z,i}}{T_f}$
	$R_{xx}^{\prime -2} = X_f^{-2} \frac{T_{xx}^{\prime}}{T_f} \left[1 - \frac{T_{xz}^{\prime 2}}{T_{xx}^{\prime} T_{zz}^{\prime}} \right]$	$R_{xx,i}^{\prime-2} = X_f^{-2} \frac{T_{xx,i}^{\prime}}{T_f} \left[1 - \frac{T_{xz,i}^{\prime 2}}{T_{xx,i}^{\prime} T_{zz,i}^{\prime}} \right]$
$\omega_0 \neq 0$	$R_{yy}^{\prime -2} = Y_f^{-2} \frac{T_{yy}}{T_f}$	$R_{yy,i}^{\prime -2} = Y_f^{-2} \frac{T_{yy,i}}{T_f}$
(K' frame)	$R_{zz}^{\prime -2} = Z_f^{-2} \frac{T_{zz}}{T_f} \left[1 - \frac{T_{xz}^{\prime 2}}{T_{xx} T_{zz}} \right]$	$R_{zz,i}^{\prime-2} = Z_f^{-2} \frac{T_{zz,i}^{\prime}}{T_f} \left[1 - \frac{T_{xz,i}^{\prime 2}}{T_{xx,i}^{\prime} T_{zz,i}^{\prime}} \right]$

- Transform to the lab. frame ($\omega_0 \neq 0$): $\mathbf{R} = \mathbf{M}^{-1}\mathbf{R}\mathbf{M}$
- Linear mass dependence
- Scaling behaviour

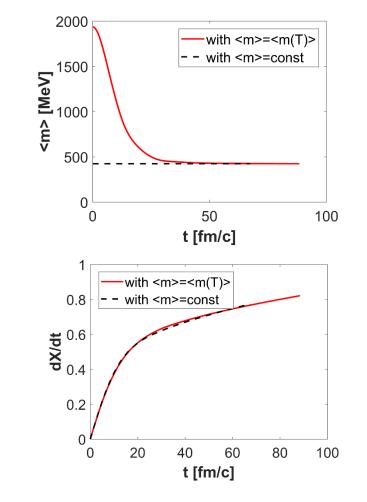
$m_{\eta'}(T)$ and $m_{\eta'}=const$ comparison

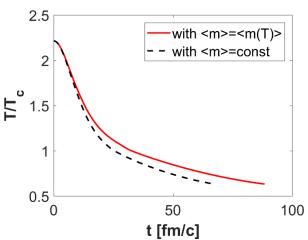
- Temperature dependence of masses: D. Klabucar's calculations (Rank 2)
- Calculation of <m(T)> was based on Kaneta model

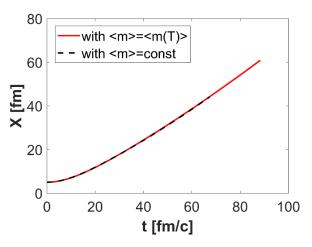




$m_{\eta'}(T)$ and $m_{\eta'}=const$ comparison (dynamics)

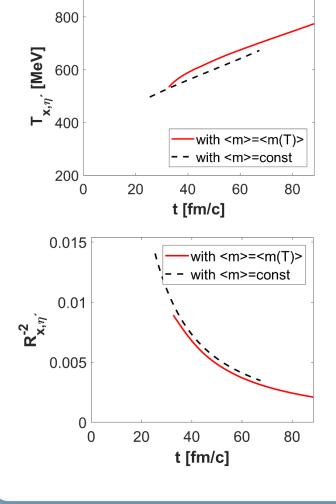


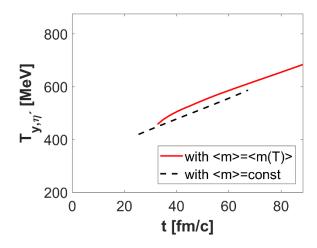


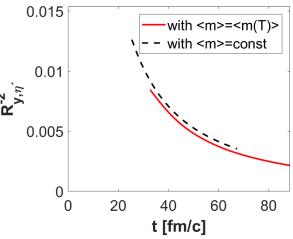


 T_0 =350 MeV X_0 =5 fm Y_0 =6 fm Z_0 =4 fm $dX/dt|_{t0}$ =0 $dY/dt|_{t0}$ =0 $dZ/dt|_{t0}$ =0 ω_0 =0.02 c/fm T_{chem} =158 MeV T_f =100 MeV

$m_{\eta'}(T)$ and $m_{\eta'}=const$ comparison (observables)

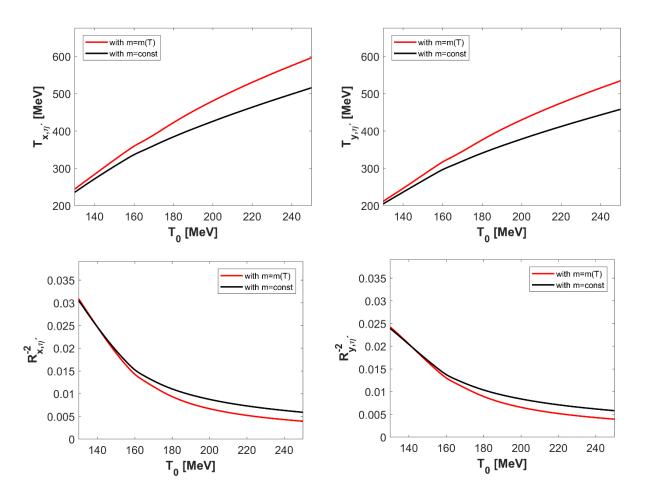






 $X_0=5 \text{ fm}$ $Y_0=6 \text{ fm}$ $Z_0=4 \text{ fm}$ $dX/dt|_{t0}=0$ $dY/dt|_{t0}=0$ $dZ/dt|_{t0}=0$ $\omega_0=0.02 \text{ c/fm}$ $T_{chem}=158 \text{ MeV}$ $T_f=100 \text{ MeV}$

$m_{\eta'}(T)$ and $m_{\eta'}=const$ comparison (observables)



For every T_0 : $X_0=5$ fm $Y_0=6$ fm $Z_0=4$ fm $dX/dt|_{t0}=0$ $dY/dt|_{t0}=0$ $dZ/dt|_{t0}=0$ $\omega_0=0$ c/fm $T_{chem}=158$ MeV $T_f=100$ MeV

Summary

- IQCD equation of state is parametrized by considerations based on hydro
- This parametrization is ready to apply in the $c_s \rightarrow c_s(T)$ generalization of CKCJ solution (future plan)
- m → m(T) generalization: hardly effect the dynamics and the observables
- Hydro does not really sensitive to η' mass drop

Backup slides

Non-relativistic hydrodynamics

Nonrelativistic approximation:

$$|\vec{v}|^2 \ll c^2$$

$$\mathbf{QM} \ (T_i \ge T \ge T_{chem}) \qquad \qquad \mathbf{HM} \ (T_{chem} > T \ge T_f)$$

$$\partial_t \sigma + \nabla (\sigma \mathbf{v}) = 0 \qquad \qquad \partial_t n_i + \nabla (n_i \mathbf{v}) = 0, \quad \forall i$$

$$T\sigma \left(\partial_t + \mathbf{v}\nabla\right) \mathbf{v} = -\nabla p \qquad \qquad \sum_i m_i n_i \left(\partial_t + \mathbf{v}\nabla\right) \mathbf{v} = -\nabla p$$

$$\frac{1+\kappa}{T} \left[\frac{d}{dT} \frac{\kappa T}{1+\kappa}\right] \left(\partial_t + \mathbf{v}\nabla\right) T + \nabla \mathbf{v} = 0$$

$$p = \sigma T/(1+\kappa) \qquad \qquad p = \sum_i p_i = T \sum_i n_i$$

$$\varepsilon + p = \sum_{i} \mu_{i} n_{i} + T \sigma,$$
 $\varepsilon + p \approx T \sigma, \qquad (T_{i} \geq T \geq T_{chem}),$
 $\varepsilon + p \approx \sum_{i} m_{i} n_{i} \qquad (T_{chem} > T \geq T_{f}).$

Relativistic hydrodynamics

$$\mathbf{QM} \ (T_i \ge T \ge T_{chem}) \qquad \qquad \mathbf{HM} \ (T_{chem} > T \ge T_f)$$

$$\partial_{\mu} \sigma u^{\mu} = 0 \qquad \qquad \partial_{\mu} n_i u^{\mu} = 0, \quad \forall i$$

$$T \sigma u^{\nu} \partial_{\nu} u^{\mu} = (g^{\mu\nu} - u^{\mu} u^{\nu}) p \qquad \qquad \left(\sum_{i} m_i n_i\right) u^{\nu} \partial_{\nu} u^{\mu} = (g^{\mu\nu} - u^{\mu} u^{\nu}) p$$

$$\frac{1+\kappa}{T} \left[\frac{d}{dT} \frac{\kappa T}{1+\kappa}\right] u^{\mu} \partial_{\mu} T + \partial_{\mu} u^{\mu} = 0$$

$$p = \sigma T/(1+\kappa) \qquad \qquad p = \sum_{i} p_i = T \sum_{i} n_i$$

$$\varepsilon + p = \sum_{i} \mu_{i} n_{i} + T \sigma,$$
 $\varepsilon + p \approx T \sigma, \qquad (T_{i} \geq T \geq T_{chem}),$
 $\varepsilon + p \approx \sum_{i} m_{i} n_{i} \qquad (T_{chem} > T \geq T_{f}).$

Rotation angles, p and q space

Rotation angle of the momentum space (K' frame):

$$\theta_p' = \frac{1}{2} \arctan\left(\frac{2T_{xz}'}{T_{xx}' - T_{zz}'}\right) = \frac{1}{2} \arctan\left(\frac{2\omega R}{\dot{X} + \dot{Z}}\right)$$

In laboratory frame: $\theta_p = \vartheta_f + \theta_p'$

■ Rotation angle of the HBT space (K' frame):

$$\theta'_{q,i} = \frac{1}{2} \arctan\left(\frac{2XZT'_{xz,i}}{Z^2T'_{xx,i} - X^2T'_{zz,i}}\right) =$$

$$= \frac{1}{2} \arctan\left(\frac{2m_iXZ\omega R\left(\dot{X} - \dot{Z}\right)}{(T + m_i\omega^2R^2)(Z^2 - X^2) + m_i\left(Z^2\dot{X}^2 - X^2\dot{Z}^2\right)}\right)$$

In laboratory frame: $\theta_{q,i} = \vartheta_f + \theta'_{q,i}$

lacksquare $\theta_{q,i}$, θ_p correlation: it can be a new possibility to measure the type of the quark-hadron transition

Observables from the new solutions - triaxial, rotating and expanding

Coordinate-space ellipsoid at the beginning of time evolution Final coordinate-space ellipsoid at freeze-out

 $\frac{\vartheta_f}{\theta}$

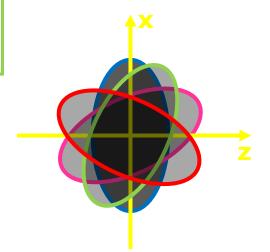
"Momentum-space ellipsoid" (eigenframe of single-particle spectrum)

 $\frac{\theta_p}{\theta_q}$

"HBT-space ellipsoid" (eigenframe of HBT correlations)

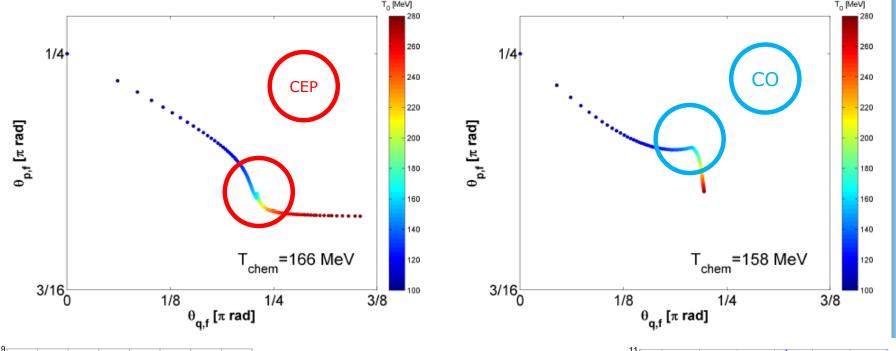
$$\theta_p' = \frac{1}{2} \arctan\left(\frac{2T_{xz}'}{T_{xx}' - T_{zz}'}\right) = \frac{1}{2} \arctan\left(\frac{2\omega R}{\dot{X} + \dot{Z}}\right)$$

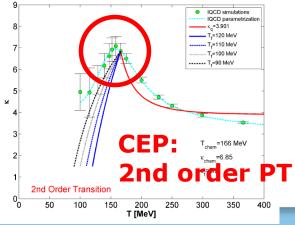
$$\theta'_{q,i} = \frac{1}{2} \arctan \left(\frac{2XZT'_{xz,i}}{Z^2T'_{xx,i} - X^2T'_{zz,i}} \right)$$



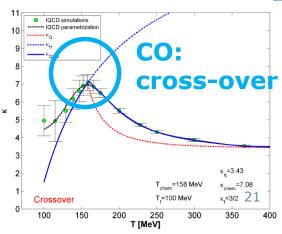
M.I. Nagy and T. Csörgő: <u>arXiv:1606.09160</u>

Correlation of p and q space difference of dynamics at CEP and CO QCD transition



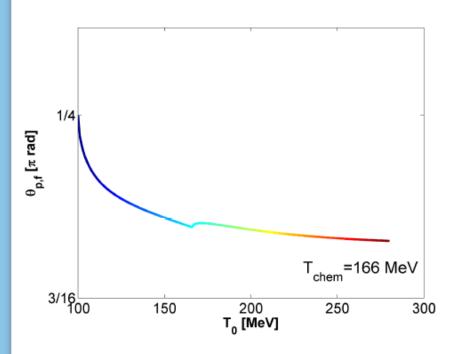


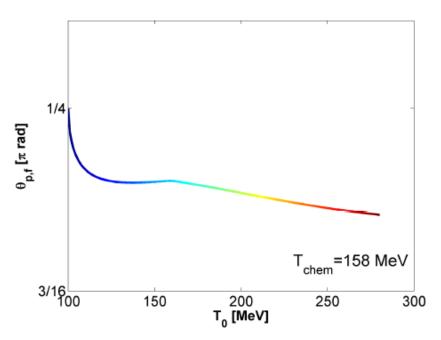
Correlation of angles in momentum and in HBT space: sensitive to CEP, CO, in general to QCD EoS



Rotation angles, p space

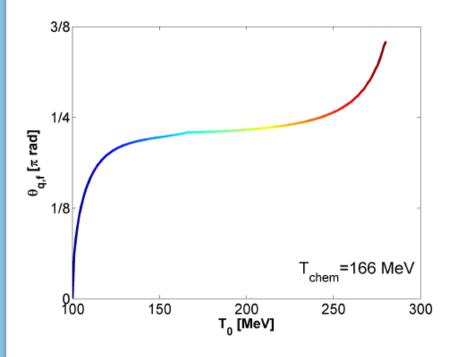
- lacksquare θ_p as a function of the initial temperature
- Left: 2nd Order PT, right: crossover

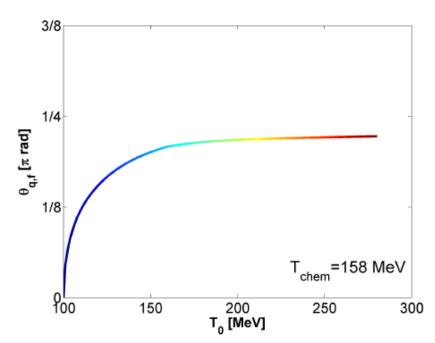




Rotation angles, q space

- lacksquare $\theta_{q,i}$ as a function of the initial temperature
- Left: 2nd Order PT, right: crossover





Triaxial, rotating exact hydro solutions

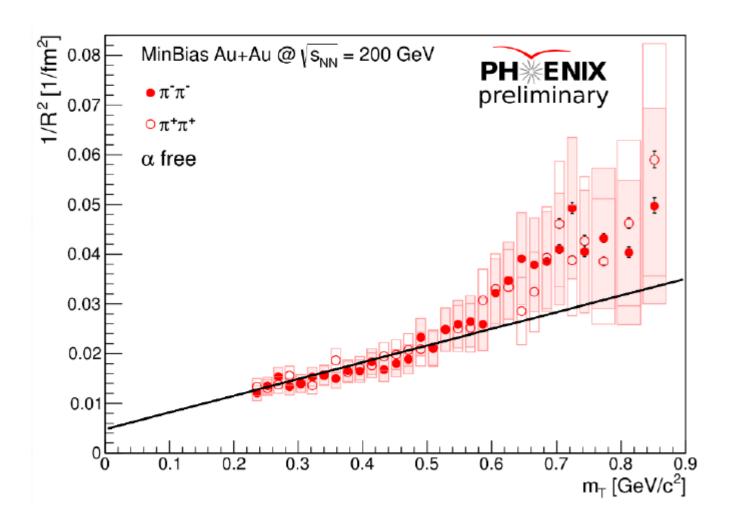
In both frames:				
$H_x = \frac{\dot{X}}{X}, H_y = \frac{\dot{Y}}{Y}, H_z = \frac{\dot{Z}}{Z},$ $\frac{\mathrm{d}[T\kappa(T)]}{\mathrm{d}T}\frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0 \text{if}$				
$V = (2\pi)^{3/2} XYZ, n = n_0 \frac{V_0}{V} \exp(-s/2), \qquad T = T_0 \left(\frac{V_0}{V}\right)^{1/\kappa}$ if	$f \kappa(T) = const$			
$\dot{\vartheta} \equiv \frac{\omega}{2}, \qquad \omega = \omega_0 \frac{R_0^2}{R^2}, \qquad R = \frac{X+Z}{2}, \qquad X(\ddot{X} - \omega^2 R) = Y\ddot{Y} = Z($	$(\ddot{Z} - \omega^2 R) = \frac{T}{m_0},$			
in laboratory frame K :	in the co-rotating frame K' :			
$s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2} + \left(\frac{1}{Z^2} - \frac{1}{X^2}\right) \left[(r_x^2 - r_z^2) \sin^2 \vartheta + r_x r_z \sin(2\vartheta) \right]$	$s = \frac{{r_x'}^2}{X^2} + \frac{{r_y'}^2}{Y^2} + \frac{{r_z'}^2}{Z^2}$			
$\mathbf{v}(\mathbf{r},t) = \mathbf{v}_H(\mathbf{r},t) + \mathbf{v}_R(\mathbf{r},t)$	$\mathbf{v}'(\mathbf{r}',t) = \mathbf{v}'_H(\mathbf{r}',t) + \mathbf{v}'_R(\mathbf{r}',t)$			
$\mathbf{v}_{H}(\mathbf{r},t) = \begin{pmatrix} (H_{x}\cos^{2}\vartheta + H_{z}\sin^{2}\vartheta)r_{x} \\ H_{y}r_{y} \\ (H_{x}\sin^{2}\vartheta + H_{z}\cos^{2}\vartheta)r_{z} \end{pmatrix} + (H_{z} - H_{x})\frac{\sin(2\vartheta)}{2} \begin{pmatrix} r_{z} \\ 0 \\ r_{x} \end{pmatrix}$	$\mathbf{v}_{H}'(\mathbf{r}',t) = \begin{pmatrix} H_{x}r_{x}' \\ H_{y}r_{y}' \\ H_{z}r_{z}' \end{pmatrix}$			
$\mathbf{v}_{R}(\mathbf{r},t) = \dot{\vartheta} \begin{pmatrix} r_{z} \\ 0 \\ -r_{x} \end{pmatrix} + \dot{\vartheta} \begin{pmatrix} \left(\frac{X}{Z}\cos^{2}\vartheta + \frac{Z}{X}\sin^{2}\vartheta\right)r_{z} \\ 0 \\ -\left(\frac{X}{Z}\sin^{2}\vartheta + \frac{Z}{X}\cos^{2}\vartheta\right)r_{x} \end{pmatrix} + \dot{\vartheta} \left(\frac{X}{Z} - \frac{Z}{X}\right) \frac{\sin(2\vartheta)}{2} \begin{pmatrix} r_{x} \\ 0 \\ -r_{z} \end{pmatrix}$	$\mathbf{v}_{R}'(\mathbf{r}',t) = \dot{\vartheta} \begin{pmatrix} \frac{X}{Z} r_{z}' \\ 0 \\ -\frac{Z}{X} r_{x}' \end{pmatrix}$			

TABLE II: Summary of the new rotating solution of the hydrodynamical equations, written up both in the intertial, laboratory frame K and in the K' frame, where the coordinate axes rotate together with the (X, Z) axes of a triaxial ellipsoid.

M. Nagy and T. Csörgő, <u>arXiv:1610.02197</u>

Hydro: mass systematics of HBT radii

■ Linear mass dependence



Crossover (CO), lattice QCD EoS

Energydensity and pressure:

$$\varepsilon = \varepsilon_Q + \varepsilon_H = g_Q \varepsilon + g_H \varepsilon$$
$$p = p_Q + p_H = f_Q p + f_H p$$

EoS of the crossover:

$$\kappa_{QCD} = f_Q \kappa_Q + f_H \kappa_H$$

■ Weights:

$$0 \le g_Q = \varepsilon_Q/\varepsilon \le 1$$
 $0 \le g_H = \varepsilon_H/\varepsilon \le 1$
 $0 \le f_Q = p_Q/p \le 1$ $0 \le f_H = p_H/p \le 1$

■ Connection between g_i and f_i :

$$g_Q = \frac{\kappa_Q}{\kappa_{QCD}} f_Q$$
 $g_H = \frac{\kappa_H}{\kappa_{QCD}} f_H$

Method of multi-component solutions

- Suppose we know the u^{μ} velocity field
- The scale variable (s) of the fireball satisfies

$$u^{\mu}\partial_{\mu}s = 0$$

■ We assume that T and n are known, and a connection between n and n_i :

$$n_i = \frac{n_{i,0}}{n_0} n$$

■ If $p \propto n$ then the pressure of the MC scenario is

$$p_{MC} = \sum_{i} p_i = p \frac{n_{i,0}}{n_0}$$

In this way, if we know a single component solution then we get the multi component generalization with this trivial method

It works for relativistic and nonrelativistic!

Three classes of analytic solutions

Class A: T = T(t) and $\kappa = \kappa(T)$

Gaussian integrals: all observables are analytic.

$\mathbf{QM} \ (T_i \ge T \ge T_{chem})$	$\mathbf{HM} \ (T_{chem} > T \ge T_f)$
$\mathbf{v} = (\frac{\dot{X}}{X}r_x, \frac{\dot{Y}}{Y}r_y, \frac{\dot{Z}}{Z}r_z)$	$\mathbf{v} = (\frac{\dot{X}}{X}r_x, \frac{\dot{Y}}{Y}r_y, \frac{\dot{Z}}{Z}r_z)$
$\sigma = \sigma_0 \frac{V_0}{V} \exp\left(-\frac{r_x^2}{2X^2} - \frac{r_y^2}{2Y^2} - \frac{r_z^2}{2Z^2}\right)$	$n_i = n_{i,c} \frac{V_c}{V} \exp\left(-\frac{r_x^2}{2X^2} - \frac{r_y^2}{2Y^2} - \frac{r_z^2}{2Z^2}\right)$
$(1+\kappa) \left[\frac{d}{dT} \frac{\kappa T}{1+\kappa} \right] \frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$	$\frac{d(\kappa T)}{dT}\frac{\dot{T}}{T} + \frac{\dot{V}}{V} = 0$
$X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{1}{1+\kappa(T)}$	$X\ddot{X} = Y\ddot{Y} = Z\ddot{Z} = \frac{T}{\langle m \rangle}$

Class B: T = T(t,r), but $\kappa \neq \kappa(T)$

Allows to handle init. temp. inhomogeneities analytically. But class B excludes the use of lattice QCD EoS.

What about class C?

Three classes of analytic solutions

Class C: T = T(t,r) AND $\kappa = \kappa$ (T) but ...

κ (T) has to have special form! *Is it QCD compatible?*

Analytic solution - QM $(T > T_c)$:

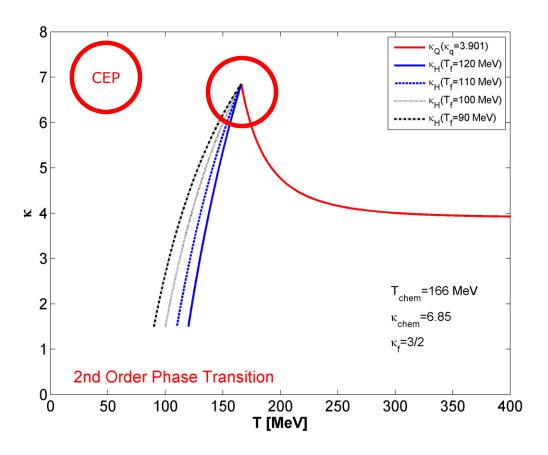
$$\kappa_Q(T) = \frac{\kappa_q \left(\frac{T}{T_{chem}}\right)^{1+\kappa_q} + \frac{\kappa_{chem} - \kappa_q}{\kappa_{chem} + 1}}{\left(\frac{T}{T_{chem}}\right)^{1+\kappa_q} - \frac{\kappa_{chem} - \kappa_q}{\kappa_{chem} + 1}}$$

Analytic solution - HM ($T < T_c$)

$$\kappa_H(T) = \frac{\kappa_{chem} T_{chem} - \kappa_f T_f}{T_c - T_f} - \frac{\kappa_{chem} - \kappa_f}{T_{chem} - T_f} \frac{T_{chem} T_f}{T}$$

- \bullet $\kappa_Q(T)$: EoS of the quark matter
- $\kappa_H(T)$: EoS of the hadronic matter $\kappa_f = \kappa(T_f)$
- $\kappa_{chem} = \kappa(T_{chem})$

2nd Order Phase Transition (CEP)



■ Combined EoS at T_{chem} :

$$\kappa(T) = \Theta(T_{chem} - T)\kappa_H(T) + \Theta(T - T_{chem})\kappa_Q(T)$$

Dynamics at the QCD Critical Point

Boundary conditions:

$$T_Q(t_{chem}) = T_H(t_{chem}) = T_{chem}$$
$$\vec{v}_Q(\vec{r}, t_{chem}) = \vec{v}_H(\vec{r}, t_{chem})$$
$$\kappa_Q(T_{chem}) = \kappa_H(T_{chem})$$

From the equations of motion:

$$\frac{1}{1 + \kappa_{chem}} \approx 0.13 < \frac{T_{chem}}{\langle m \rangle} \approx 0.59$$

- The 2nd derivative of the scales jump at t_{chem}
- Second explosion: starts just after the conversion to the HM

Second explosion for <m> ~ 280 MeV

Second explosion

