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The Basic Question

● While the maps from the underlying physics to f(p), and from f(p) to 
P(k) are clearly not invertible, it is nevertheless possible to “work 
backwards” and obtain substantial information about the dark sector 
from information contained in the matter power spectrum.   

● The early-universe dynamics which produces the dark matter gives 
rise to a particular dark-matter phase-space distribution f(p).  This, in 
turn, affects the shape of the matter power spectrum P(k).
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What we oberve

To what extent can we work backwards and reconstruct the 
properties of f(p) – and the dynamics that gave rise to it – 
from information encoded in P(k)?

Q

What we’d like to 
understand
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Describing the Phase-Space Distribution
● We’re going to describe the phase-space distribution in a slightly 
atypical way.  We’ll begin with some motivation.

● This motivates us define the “log-space” DM phase-space distribution:

● Physical number density:

● Comoving number density:

Number of internal 
degrees of freedom

Area under curve:
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The Cosmological Conveyor Belt
● The reason g(p,t) turns out to be a useful quantity is that it evolves with 
time in a particularly straightforward manner. 

● Indeed, in the absence of sources/sinks, N(t´) = N(t) is conserved and 
g(p,t) quantity evolves with time according to the relation

● Thus, as t increases, the g(p,t) distribution retains the same overall 
profile, which simply redshifts undistorted to lower values of log(p).

● In other words, g(p,t) is carried along like a 
cucumber on a conveyor belt, moving to 
lower and lower log(p) at speed |dlogp/dt| = 
H(t), but retaining a fixed shape.
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Dark-Sector Dynamics and Non-Trivial g(p)
● Things become more interesting, of course, when sources and sinks 
are included, such as those associated with particle decays. 

● Consider a dark sector involving three 
scalars ϕ0, ϕ1, and ϕ2 with similar quantum 
numbers and masses m2 > 2m1 > 4m0.   

● For purposes of illustration, let’s assume

● We’ll also work in the instantaneous-
decay approximation, wherein each ϕi  
decays completely at its lifetime τi.  

● We’ll also assume that ϕ2 is initially the only 
state populated.  
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Dark-Sector Dynamics and Non-Trivial g(p)
● Things become more interesting, of course, when sources and sinks 
are included, such as those associated with particle decays. 

● Consider a dark sector involving three 
scalars ϕ0, ϕ1, and ϕ2 with similar quantum 
numbers and masses m2 > 2m1 > 4m0.   

● For purposes of illustration, let’s assume

● We’ll also work in the instantaneous-
decay approximation, wherein each ϕi  
decays completely at its lifetime τi.  

Non-thermal, multi-
modal DM phase-
space distribution! ● We’ll also assume that ϕ2 is initially the only 

state populated.  
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Dark-Sector Dynamics and Non-Trivial g(p)
● Generally speaking, we expect multi-modal phase-space distributions 
to arise in dark-sector decay scenarios wherein...

● These conclusions remain robust 
even when we include all relevant 
physical effects (exponential decay, 
time-dilation, etc.). 

Multiple decay pathways to the 
lightest (stable) state exist.

Decay pathways with substantial 
overall branching fractions have 
significantly different timescales.

Scattering rates in the dark sector 
are sufficiently low that states don’t 
have time to thermalize.

Full numerical results for 
three-field scenarios with: 

Multi-
modal g(p)

● Let’s therefore investigate how we might 
obtain evidence of such multi-modality in 
the matter power specturm.  
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Deciphering the Matter Power Spectrum

● Departures from a purely CDM 
cosmology can be expressed in terms 
of the transfer function T(k), where

Linear Matter Power Spectrum

● The matter power spectrum provides an observational handle on the 
velocity distribution of DM particles.

● Dark matter particles with sufficient speed can escape from 
gravitational potential wells as they form, leading to a suppression of 
structure on small scales.

Particles moving at sufficient 
speeds can escape potential 

wells of size ~ k-1
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Our Approach
● The free-streaming horizon for a particle of mass m and present-day 
momentum p in an expanding universe is

O(1) constant

● By contrast, we shall consider a somewhat unorthodox procedure in 
which we regard khor(p) as a functional map between p and k.

Jacobian

● We can use this map to define a phase-
space distribution in k-space which 
correspond to g(p) in momentum space.

● The usual approach (e.g., for warm DM) is to define a single “free-
streaming-horizon” scale kFSH using the average DM velocity          :

Inverse of khor(p)
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Relating g(p) to T2(k)
● Let’s first consider the case of a simple g(p,tnow) which consists of a 
single log-normal peak with average momentum      and width σ.

● We’ll begin simply by fixing       and σ  and varying the normalization 
of the peak, assuming that the rest of ΩDM is made up by cold DM.   

DM acoustic oscillations (the “wiggles”) become more pronounced.   

The slope of T2(k) at k above the peak in g(k,tnow) increases.  

● Increasing the abundance Ω associated with the peak, we find... 

~
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Relating g(p) to T 
2(k)

● Now let’s hold Ω and      fixed and vary the width σ of the peak.

● Different values of σ lead to different amounts of suppression in T2(k) 
for k above the peak in g(k,tnow), but essentially identical slopes! ~

The abundance associated with a peak in g(k,tnow) 
correlates not with supression in T2(k), but rather the slope. 

~
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Relating g(p) to P(k)
● In order to test this conjecture, let’s consider a distribution consisting of 
two log-normal peaks with the same σ, but different values of     .  

● Here, ΩDM is partitioned entirely between the two peaks (no extra cold 
DM component).  We vary their relative normalizations.  

● Indeed, once again, we observe that the abundance associated with a 
peak in g(k,tnow) is correlated with the change in the slope of T2(k).~
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Fraction of DM number density 
which free-streams at k

The Hot-Fraction Function

● Motivated by these empirical findings, let us define the “hot-fraction 
function” F(k) as follows:

● The slope of the transfer function at a given value of k seems to 
correlate with the the total number density of particles which can 
free-stream at that value of k – particles with momenta p > k

hor
-1(k).

Fraction of DM number density 
which free-streams at k
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A Reconstruction Conjecture
● Our conjecture, then, is that there exists some invertible functional 
relationship between F(k) and T2(k).

● Taking the derivative of both sides, we obtain an approximate analytic 
expression for reconstructing g(k) from T2(k).

● Empirically, from numerical investigations (using CLASS) of the 
relationship between these two quantities, we find that

~
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* See talk by Fei Huang 
immediately following 

this talk for details.

How Well Does This Work in Practice?
● In order to determine how accurately our reconstruction procedure can 
reproduce the DM velocity distribution from the transfer function, we 
need examine how well it works in practice.

● Indeed, we find that our procedure is capable of 
reproducing the broad-brush features of the DM 
velocity distribution quite robustly in the context 
of a concrete example model.*   

Blue: actual g(k) distribution for the model in question

Red: reconstructed g(k) distribution using our procedure

The Upshot:

Our reconstruction procedure provides a 
novel and effective method for extracting 

detailed information about the DM 
velocity distribution from the matter 

power spectrum.
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Summary
● Non-trivial dynamics in the early universe can lead to a complicated – 
and even multi-modal – DM velocity distribution, which in turn affects the 
shape of the matter power spectrum.

● Motivated by these results, we have formulated a conjecture for 
reconstructing the dark-matter velocity distribution from the shape 
of the matter power spectrum.

● This reconstruction procedure provides a way of probing the internal 
dynamics within the dark sector which produced the DM through purely 
gravitational means. 

● In an effort to work backwards, we have studied the relationship 
between P(k) and the DM velocity distribution and found that the slope 
of the transfer function at a given k is related to the fraction of the DM 
number density which can free-stream on the scale k.

● We have shown that this reconstruction conjecture can reliably capture 
the salient features of the velocity distribution.
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