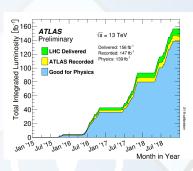


Diboson Resonance Searches at ATLAS

Alex Emerman, on behalf of the ATLAS Collaboration

Columbia University


May 4, 2020

Outline

- ▶ Diboson searches using full Run-2 ATLAS dataset, 139 fb⁻¹
- Search for diboson resonances in hadronic final states
 - ► arxiv link: 1906.08589
- Search for heavy diboson resonances in semi-leptonic final states
 - ► arxiv link: 2004.14636
- ► Search for the $HH \rightarrow b\bar{b}b\bar{b}$ process via vector-boson fusion production
 - ► arxiv link: 2001.05178

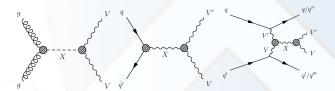
VV hadronic and semi-leptonic

Search for diboson resonances in hadronic final states in 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

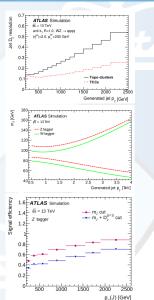


VV Hadronic and Semi-leptonic Searches

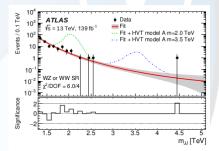
- \triangleright VV = WW, WZ or ZZ
 - $V_h \rightarrow \text{large-R jet (merged) or 2}$ small-R jets (resolved)
 - $V_{\ell} \rightarrow \nu \nu$, $\ell \nu$, or $\ell \ell$

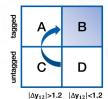
- ► Hadronic $V_h V_h$ (merged)
- ightharpoonup Semi-leptonic $V_{\ell}V_h$

- ▶ 3 production mechanisms, depending on final state
 - luon-gluon fusion
 - Drell-Yan
 - vector boson fusion


- 3 benchmark models, depending on final state
 - ► Spin-0 radion (Randall-Sundrum)
 - Spin-1 vector (Heavy Vector Triplet)
 - ► Spin-2 graviton (Randall-Sundrum)

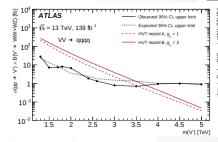
Hadronic Boson Identification

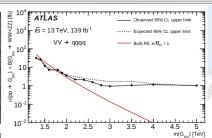

- ► Track-CaloCluster (TCC) jets improve substructure resolution
 - Use angular information from tracks and energy scale from calorimeter
- Dedicated W/Z taggers provides background discrimination
 - ightharpoonup Tighter cuts at low p_T , where background is highest
 - ► Hadronic search
 - cuts on mass, D₂, number of tracks
 - Semi-leptonic search
 - Mass cut identifies boson candidates
 - D₂ separates high-purity, low-purity regions



- Fully hadronic final state
- Dominant background from QCD
 - Estimated entirely from data
- \triangleright Parametric fit to m_{JJ} spectrum
 - $\frac{dn}{dx} = p_1(1-x)^{p_2-\xi p_3}x^{-p_3}$, where $x \equiv \frac{m_{JJ}}{13 \text{TeV}}$
 - ξ chosen to minimise correlation between p_2 and p_3

- Fit validated using untagged data
- Distribution reweighted to match tagged data
- \triangleright Mapping $C \rightarrow A$ allows estimate of signal region B from D

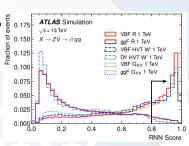




- No significant excess found
- ► Search sets limits on benchmark models

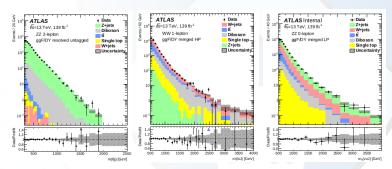
Limits for different radion masses

Mass [TeV]	Observed Limit [fb]	Expected Limit [fb]
2.0	5.72	5.75
3.0	1.86	2.85
4.0	1.98	2.34
5.0	1.98	2.02



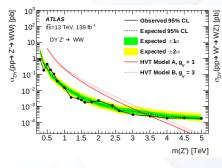
Diboson Resonance Searches at ATLAS

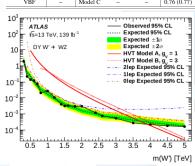
- ► Semileptonic search has 40 total signal regions
 - ▶ 0, 1 or 2 electrons/muons
 - VBF or ggF/DY production
 - ightharpoonup merged or resolved V_h
 - merged region split into high/low-purity
 - ▶ ggF/DY Z→qq candidates split into b-tagged/untagged
- ► Recursive Neural Network trained to separate VBF signal from ggF/DY
 - Uses jets not part of V_h reconstruction
- ▶ D₂ cut defines high/low-purity regions
- Multivariate b-tagging algorithm creates low-background tagged regions



VV Semi-leptonic Backgrounds

- ▶ V+jets dominates background in most regions
- ► Control region measurements constrain V+jets, tt backgrounds
- ▶ In 0-lepton channel transverse mass used instead of invariant mass


$$ightharpoonup m_T = \sqrt{(p_T^J + E_T^{\text{miss}})^2 - (\vec{p}_T^J + \vec{E}_T^{\text{miss}})^2}$$



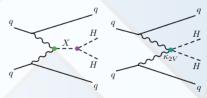
- ► No significant excess found
- Search sets limits on benchmark models for each production mode

Observed (expected) limits in TeV

Production	Radion	HVT			Graviton
process	Radion		W'	Z'	Graviton
ggF/DY	3.2 (2.9)	Model A	3.9 (3.8)	3.5 (3.4)	2.0 (2.2)
		Model B	4.3 (4.0)	3.9 (3.7)	
VBF	-	Model C	-	-	0.76 (0.77)

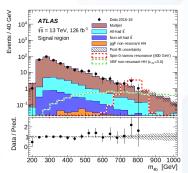
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

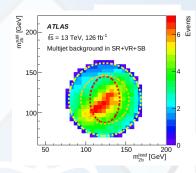
Search for the $HH \rightarrow b\bar{b}b\bar{b}$ process via vector-boson fusion production using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector


The ATLAS Collaboration

- Dedicated search for VBF production
 - ▶ Uniquely sensitive to κ_{2v}
- ► Fully hadronic final state
 - ► H $\rightarrow b\bar{b}$ branching ratio $\sim 58\%$
 - ► Multijet background dominates
- ► Resolved analysis
 - ▶ 4 b-tagged central jets form Higgs candidates
 - 2 forward jets from VBF process

- ➤ 2 scalar resonance models considered
 - ▶ Broad, $\Gamma/m_X \sim 10 20\%$
 - Narrow, $\Gamma = 4 \text{ MeV}$

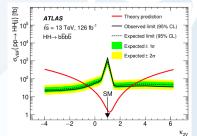

- ▶ Multivariate b-tagging algorithm suppresses QCD background
 - Uses tracks associated to jet to look for signs of long-lived b-hadron decays
 - ► Cut applied has 70% tagging efficiency, 0.3% light mis-tag rate

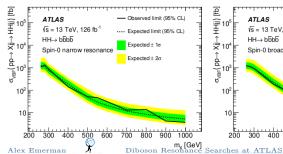


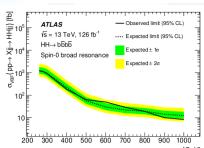
VBF HH→4b Background Estimation

- Background estimated using events with 4 central jets, but only 2 b-tags
- 2-tag events weighted to match 4-tag kinematic distributions
- Weights defined in sideband region, away from Higgs peaks

► Normalization of multijet and tt backgrounds set by sideband fit




► Background estimation checked in validation region, between signal and sideband

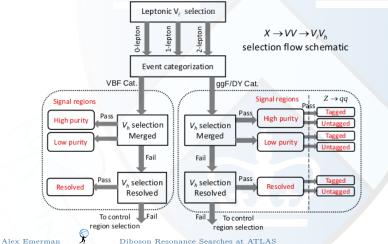


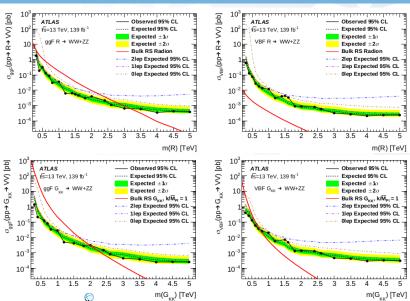
VBF HH→4b Results

- No significant excess observed
- Limits set on scalar resonance models and κ_{2n}

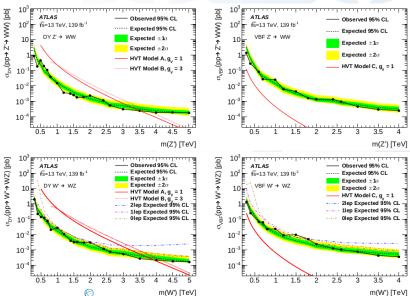
Summary

- Diboson searches sensitive to many Beyond-the-Standard-Model theories
- ▶ Improved limits set on Randall Sundrum and Heavy Vector Triplet models, as well as model-independent cross-sections
 - More data and improved techniques allow study of rarer production mechanisms, like vector boson fusion
- ▶ No significant deviations from SM found
 - ▶ Many more results on the way! Stay tuned!
- ▶ A few of the other ATLAS results being presented later today:
 - ▶ Beyond exclusive leptonic resonances (coming up next!)
 - Searches for resonances in hadronic final states
 - Searches for BSM Higgs
 - ▶ Measurements of inclusive multi-boson production





- Events categorized by number of leptons, production mechanism, merged/resolved
- RNN trained to separate VBF signal from ggF/DY



VV semi-leptonic

Alex Emerman