

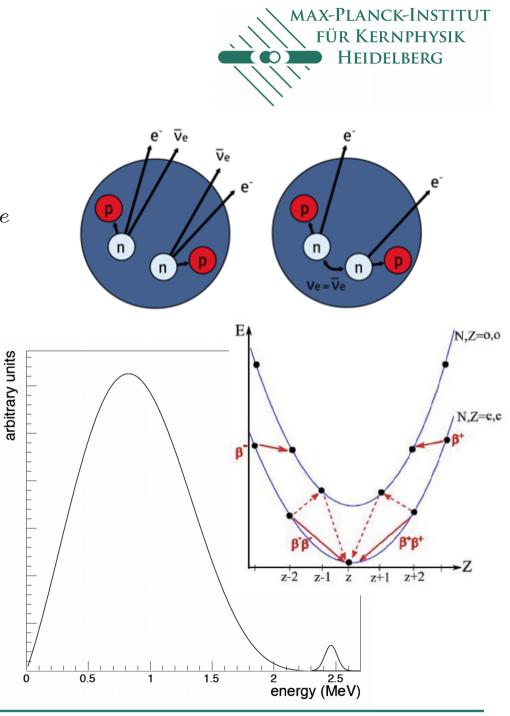
Probing New Physics with Standard Double Beta Decay

Lukas Graf lukas.graf@mpi-hd.mpg.de

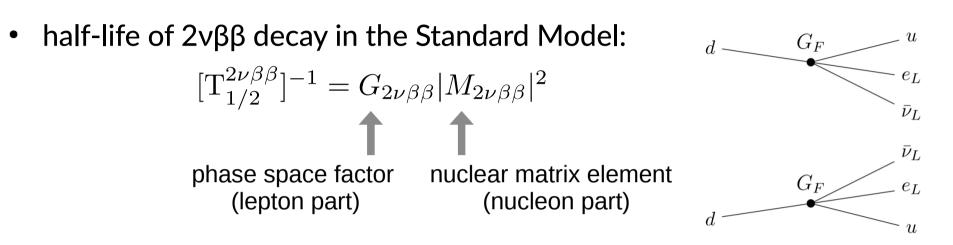
Max Planck Institute for Nuclear Physics, Heidelberg

Phenomenology Symposium

May 2020


Introduction & Motivation

- neutrinos neutral, left-handed fermions, they mix → oscillate
 → have mass! → new physics needed to explain this
- Dirac or Majorana nature?
- Majorana masses \leftrightarrow LNV \leftrightarrow neutrinoless double beta ($0\nu\beta\beta$) decay
- searches for $0\nu\beta\beta$ decay \rightarrow background: standard $2\nu\beta\beta$ decay data collected ~ $10^5 10^6$ events
- New Physics in $2\nu\beta\beta$ decay? How would it look like?
- right-handed currents? \rightarrow 2003.11836 (F. F. Deppisch, LG, F. Simkovic)
- neutrino self-interactions? \rightarrow 2004.11919 (F. F. Deppisch, LG, W. Rodejohann, X. Xu)


Double Beta Decays

- two-neutrino double beta decay $({\rm A},\,{\rm Z}) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- neutrinoless double beta decay $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$ \rightarrow lepton number violated
- experiments: $T_{1/2}^{2\nu\beta\beta} \sim 10^{18} - 10^{21} \text{ y}$ $T_{1/2}^{0\nu\beta\beta} \sim (0.1 \text{ eV}/m_{\nu})^2 \times 10^{26} \text{ y}$
- a variety of isotopes: ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, ...

2νββ Decay

• full differential decay rate:

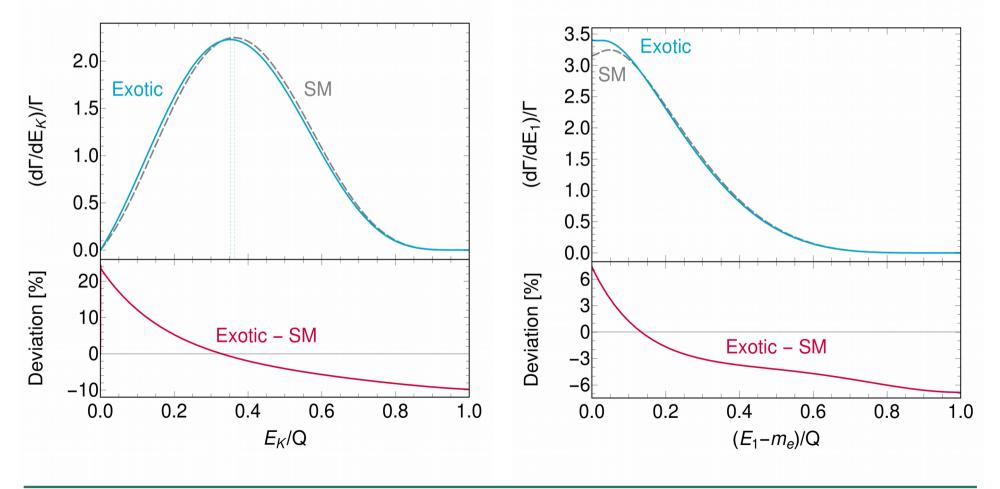
$$\frac{\mathrm{d}\Gamma^{2\nu}}{\mathrm{d}E_{e_1}\mathrm{d}E_{e_2}\mathrm{d}\cos\theta} = \frac{\Gamma^{2\nu}}{2} \frac{\mathrm{d}\Gamma^{2\nu}_{\mathrm{norm}}}{\mathrm{d}E_{e_1}\mathrm{d}E_{e_2}} \left(1 + \kappa^{2\nu}(E_{e_1}, E_{e_2})\cos\theta\right)$$

 observables: electron energy distribution (single electron energy or total kinetic energy of the electrons) and angular correlation of the two emitted electrons (NEMO-3, SuperNEMO)

Exotic 2vββ Decay – RHCs

• $2\nu\beta\beta$ decay in presence of right-handed currents? \rightarrow Lagrangian:

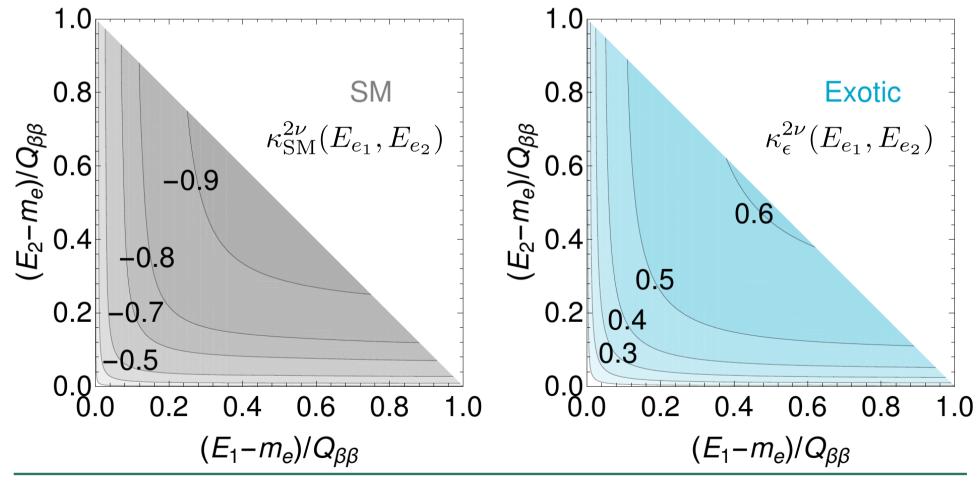
$$\mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left((1 + \delta_{\rm SM} + \epsilon_{LL}) j_L^{\mu} J_{L\mu} + \epsilon_{RL} j_L^{\mu} J_{R\mu} + \epsilon_{LR} j_R^{\mu} J_{L\mu} + \epsilon_{RR} j_R^{\mu} J_{R\mu} \right) + \text{h.c.}$$


with $j_{L,R}^{\mu} = \bar{e}\gamma^{\mu}(1 \mp \gamma_5)\nu, \ J_{L,R}^{\mu} = \bar{u}\gamma^{\mu}(1 \mp \gamma_5)d$

- take the one linear in exotic effective coupling ϵ_{XR} , calculate the observables and get the bound imposed by the experimental data
- rate: $[T_{1/2}^{2\nu\beta\beta}]^{-1} = \epsilon_{XR}^2 G_{2\nu\beta\beta} |M_{2\nu\beta\beta}|^2$
- here, everything for ¹⁰⁰Mo, other isotopes similar see 2003.11836

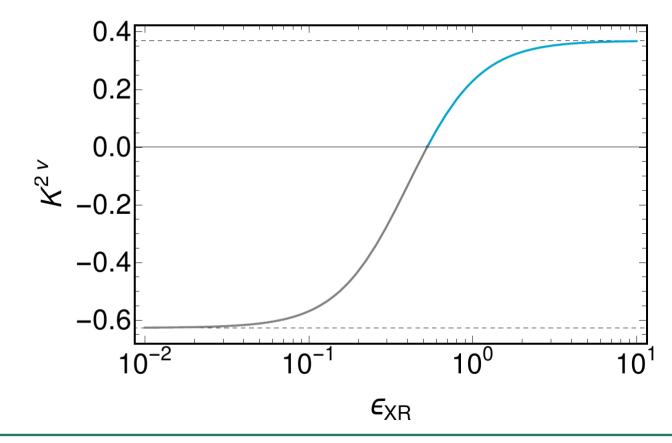
Electron Energy Distribution

 2vββ decay (both the SM and the exotic RHC-induced contributions) distribution in total kinetic (left) and single electron kinetic (right) energy



Probing New Physics with Standard Double Beta Decay

Electron Angular Correlation


• angular correlation of the electrons in the SM $2\nu\beta\beta$ decay (left) and the exotic $2\nu\beta\beta$ decay induced by right-handed lepton currents (right)

Electron Angular Correlation

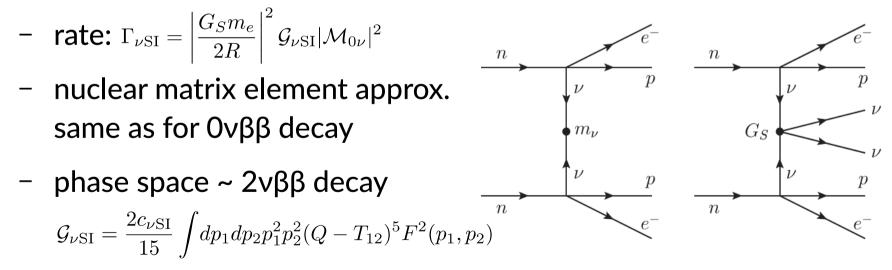
• observed angular correlation: mixture of the SM and exotic contributions – correlation factor $K^{2\nu}$ as a function of ϵ_{XR} interpolates between the SM (ϵ_{XR} = 0, grey) and exotic (ϵ_{XR} >> 1, blue) cases

Bound on $\epsilon_{_{XR}}$ Coupling

- total rate nuclear matrix elements not accurate enough
- electron energy distribution small deviations, could be probed, but certain degeneracy given by nuclear structure effects
- best option: measure the angular correlation of the emitted electrons and look for the forward-backward asymmetry
- possible at NEMO-3 experiment using ¹⁰⁰Mo (or in future at SuperNEMO)
- insensitive of the overall rate
- largely insensitive to the nuclear part of the amplitude QRPA used in our case, but very similar results expected to be obtained with other nuclear structure models

Bound on $\epsilon_{_{XR}}$ Coupling

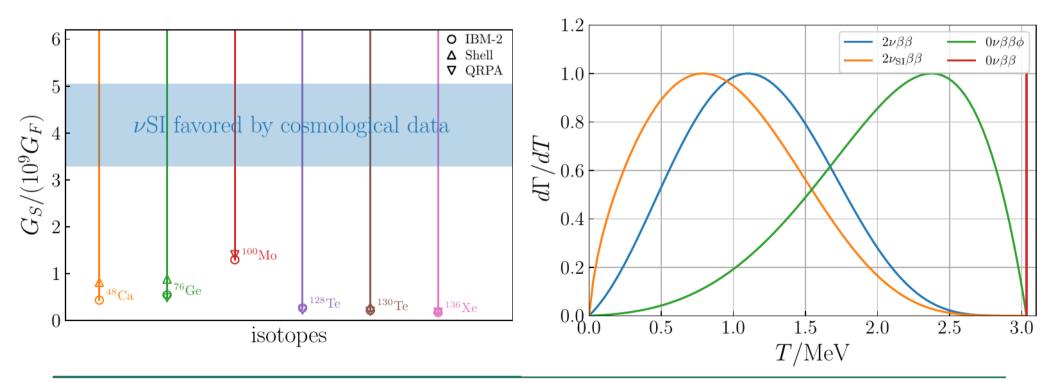
- angular distribution: $\frac{\mathrm{d}\Gamma^{2\nu}}{\mathrm{d}\cos\theta} = \frac{\Gamma^{2\nu}}{2} \left(1 + K^{2\nu}\cos\theta\right)$ with correlation factor: $K^{2\nu} \approx K_{\mathrm{SM}}^{2\nu} + \alpha \,\epsilon_{XR}^2$, for ¹⁰⁰Mo: $\alpha \approx 6.1$
- forward-backward asymmetry: $A_{\theta}^{2\nu} = \frac{N_{\theta > \pi/2} N_{\theta < \pi/2}}{N_{\theta > \pi/2} + N_{\theta < \pi/2}} = \frac{1}{2}K^{2\nu}$
- estimated accuracy of NEMO-3: $K_{\rm SM}^{2\nu} = -0.63 \pm 0.0027$


ightarrow bound on the effective coupling at 90% CL: $\epsilon_{XR} \lesssim 2.7 imes 10^{-2}$

- more stringent limit than the one obtained from the standard beta decay measurements
- SuperNEMO would further improve this bound to: $\epsilon_{XR} \lesssim 4.8 \times 10^{-3}$
- estimates only, a dedicated experimental analysis necessary

ββ Decay Induced by vSI

- neutrino self-interaction potential to resolve the 4σ Hubble tension
- effectively: $G_{S}(\nu\nu)(\nu\nu)$, where G_{s} should be much larger than G_{F}
- strong, but purely neutrino interaction \rightarrow not easy to probe in a lab
- idea: vSI would induce a contribution to double beta decay



 \rightarrow vSI could affect 2v $\beta\beta$ decay – total rate, but also spectra

ββ Decay Induced by vSI

- now: using condition $\Gamma_{\nu SI}/\Gamma_{2\nu}^{ex} < 1$ self-interaction G_s can be constrained – from total rate (assuming G_s to be constant; left), or spectral shape (for energy dependent G_s; right)
 - \rightarrow vSI preferred by cosmology is disfavoured by 2v $\beta\beta$ decay

Probing New Physics with Standard Double Beta Decay

Conclusion

- Although observation of 0vββ decay is the primary goal of double beta decay searches, its background process, 2vββ decay, can be also used as a probe of New Physics.
- Following a derivation of the contribution to $2\nu\beta\beta$ decay induced by general right-handed vector currents a stringent limit, competitive with other probes, on respective effective coupling has been obtained upon employing currently available data. $\rightarrow 2003.11836$
- Study of the $\beta\beta$ decay contribution induced by neutrino self-interaction shows that the $2\nu\beta\beta$ decay observations disfavour the magnitudes of this new coupling preferred by cosmology. $\rightarrow 2004.11919$

Conclusion

- Although observation of 0vββ decay is the primary goal of double beta decay searches, its background process, 2vββ decay, can be also used as a probe of New Physics.
- Following a derivation of the contribution to $2\nu\beta\beta$ decay induced by general right-handed vector currents a stringent limit, competitive with other probes, on respective effective coupling has been obtained upon employing currently available data. $\rightarrow 2003.11836$
- Study of the $\beta\beta$ decay contribution induced by neutrino self-interaction shows that the $2\nu\beta\beta$ decay observations disfavour the magnitudes of this new coupling preferred by cosmology. $\rightarrow 2004.11919$

Thank You for attention and stay safe!