Higgs Troika for Baryon Asymmetry Phys. Rev. D 101, 055010 (2020), arXiv:1909.02044, by Hooman Davoudiasl, Ian M. Lewis, Matthew Sullivan

Matthew Sullivan

University of Kansas

Pheno 2020

- Sakharov conditions are three necessary conditions for a model to produce a baryon asymmetry
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium
- Standard Model (SM) doesn't meet all the requirements
 - Electroweak (EW) sphalerons can give baryon number violation
 - C and CP violation present, but CP phase from quark sector not large enough
 - Potential source of out of equilibrium interaction would be a first order EW phase transition; phase transition in SM is not first order
- Experimental observation of baryon asymmetry motivates looking for physics Beyond the Standard Model (BSM)

- SM has massless neutrinos
- Mixing between different neutrino species implies neutrinos have different masses
 - The lightest neutrino species may or may not have zero mass
- Including right-handed neutrino singlets leads to more Yukawa interaction terms
- Majorana neutrinos and a seesaw mechanism are a straight-forward way to reproduce three light neutrino species

- SM has three generations of fermions but only one Higgs doublet why?
- BSM models can have extended scalar sectors
- More Higgs doublets means more Yukawa couplings
 - More sources of CP violation
 - Have to worry about flavor constraints
- Heavy Higgs doublet decays before EW symmetry breaking
 - CP violating Yukawa couplings means a heavy Higgs doublet and its anti-particle can decay differently
- To avoid fine tuning, we will include three total Higgs doublets, hence our "Higgs Troika"

Benchmark Flavor Model, Yukawa Sector

- We work with three Higgs doublets Φ_1 , Φ_2 , Φ_3
- Impose that the Higgs doublets Φ_{2,3} and lepton doublets L are odd under a Z₂ symmetry
- We get the following Yukawa terms:

$$y_{1}^{\mu}\tilde{\Phi}_{1}^{*}\bar{Q}u + y_{1}^{d}\Phi_{1}^{*}\bar{Q}d + \sum_{b=2,3}y_{b}^{\nu}\tilde{\Phi}_{b}^{*}\bar{L}\nu_{R} + y_{b}^{\ell}\Phi_{b}^{*}\bar{L}\ell$$
(1)

- We will use order 1 couplings for the largest quark and charged lepton Yukawa couplings
- ullet To reproduce the top quark mass, we want $v_1 \sim v_{EW} = 246~\text{GeV}$
- Using Φ_2 to generate lepton masses, we get $v_2 \sim 2.5~\text{GeV}$ to reproduce the tau mass

Benchmark Flavor Model, Scalar Sector

- We allow for soft-breaking of the Z_2 by mass terms
- Our potential looks like (leaving off uninteresting terms)

$$-\mu^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} + m_{3}^{2} \Phi_{3}^{\dagger} \Phi_{3}$$
$$-\left(\mu_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \mu_{13}^{2} \Phi_{1}^{\dagger} \Phi_{3} + \text{h.c}\right) + \lambda (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \cdots \qquad (2)$$

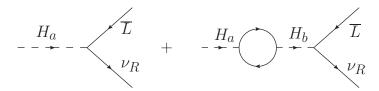
- The masses m_2 , m_3 are $\sim 1~{
 m TeV}$
- After symmetry breaking, the soft-breaking mass terms lead to tadpole terms for Φ_2 , Φ_3 that lead to small vevs:

$$v_2 \approx v_1 \frac{\mu_{12}^2}{m_2^2} \ll v_1 \text{ and } v_3 \approx v_1 \frac{\mu_{13}^2}{m_3^2} \ll v_1$$
 (3)

• $v_2\sim 2.5~{
m GeV}$ only requires $\mu_{12}\sim 100~{
m GeV}$

• To leading order, we can perform the following rotation to the doublet mass eigenbasis:

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} \approx \begin{pmatrix} 1 & \mu_{12}^2/m_2^2 & \mu_{13}^2/m_3^2 \\ -\mu_{12}^2/m_2^2 & 1 & 0 \\ -\mu_{13}^3/m_3^2 & 0 & 1 \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix}$$
(4)


• This is also the Higgs basis: $\langle H_2 \rangle = \langle H_3 \rangle = 0$

In the Higgs basis, with the vev hierarchy v₁ ≫ v₂ ≫ v₃, the Yukawa coupling are:

$$\begin{aligned} \lambda_{1}^{u,d} &\approx y_{1}^{u,d}, & \lambda_{2,3}^{u,d} \approx y_{1}^{u,d} v_{2,3} / v_{EW}, \\ \lambda_{1}^{\ell} &\approx y_{2}^{\ell} v_{2} / v_{EW}, & \lambda_{2,3}^{\ell} \approx y_{2,3}^{\ell}, \\ \lambda_{1}^{\nu} &\approx (y_{2}^{\nu} v_{2} + y_{3}^{\nu} v_{3}) / v_{EW}, & \lambda_{2,3}^{\nu} \approx y_{2,3}^{\nu} \end{aligned}$$
(5)

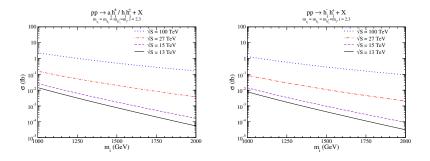
- We have three right-handed neutrinos, ν_{R1} , ν_{R3} , ν_{R3}
- Choose $m_{R3} \sim 100$ GeV and $m_{R1,2} \sim 10$ TeV
- This means ν_{R3} is the only right-handed neutrino that the heavy doublets can decay into

Our Baryogenesis Mechanism

- Before EW symmetry breaking, a population of H_3 is created by the decay of a heavy modulus with mass m_{Φ}
- We use an asymmetry of decays of H_3 into a lepton doublet and right-handed neutrino:

$$\varepsilon \equiv \frac{\Gamma(H_a \to \bar{L}\nu_R) - \Gamma(H_a^* \to \bar{\nu}_R L)}{2\Gamma(H_a)} \tag{6}$$

• With our flavor and mass structure, this looks like:


$$\varepsilon = \frac{1}{8\pi} \frac{m_3^2}{m_2^2 - m_3^2} \frac{|\lambda_2^\ell \lambda_2^\nu \lambda_3^\ell \lambda_3^\nu| \sin \phi}{|\lambda_3^\ell|^2 + |\lambda_3^\nu|^2} \tag{7}$$

- Lots of moving parts relate the decay asymmetry ε to the observed baryon asymmetry $\frac{n_B}{s} \approx 9 \times 10^{-11}$
- We present a parameter choice that can satisfy all of the (yet unspecified)moving parts:

$$\begin{split} m_{\Phi} &= 100 \; \text{TeV} & m_3 = 1.5 \; \text{TeV} \\ \lambda_2^{\ell} &\sim 1 & \lambda_2^{\nu} &\sim 2 \times 10^{-6} \\ \lambda_3^{\ell} &\sim 1.4 \times 10^{-3} & \lambda_3^{\nu} &\sim 1.4 \times 10^{-3} \end{split}$$

• With an order 1 CP phase ϕ and around a 10% mass degeneracy for H_2 and H_3 , this leads to $\varepsilon \sim 2 \times 10^{-7}$ which can generate a sufficient baryon asymmetry

Collider Production of Heavy Scalars

- These production rates are driven by gauge couplings
- The heavy scalar states will decay to various interesting final states, such as many leptons, missing energy, etc.
- LHC may probe around 1 TeV mass; future colliders might be needed for higher masses

Changes to Yukawa Coupling of 125 GeV Scalar

- The doublet *H*₁ had SM-like quark and charged lepton Yukawa couplings
- But the 125 GeV scalar is a mixture of the H_1 , H_2 , and H_3 neutral, CP-even components h_1 , h_2 , h_3 (predominantly h_1)
- Mixing of h_1 and h_2 is expected to be $\sim v_1\,v_2/m_2^2$
- While the mixing is small, the charged lepton Yukawa coupling coming from H_2 is large
- $\bullet\,$ The branching ratios of the 125 GeV scalar to charged leptons can be changed by $\sim 20\%\,$
 - Observable at HL-LHC

- Neutron electric dipole moment (EDM) isn't very constraining
- $(g_{\mu}-2)$ effects are too small to explain the observed anomaly
- Electron EDM and $\mu \rightarrow e \gamma$ give relevant constraints
- One person's constraint is another person's opportunity
 - Future electron EDM and $\mu \to e \gamma$ experiments may be able to see signatures of our model

- Three Higgs doublets can generate the baryon asymmetry of the universe
- Interesting collider signatures for the heavy scalar production
- Predicts an order 20% change to charged lepton branching ratios for the 125 GeV scalar
- Low energy avenues via electron EDM and $\mu
 ightarrow e \gamma$

Our Baryogenesis Mechanism, Detailed

- Pre-EWSB, sphalerons can change (left-handed) lepton asymmetries into baryon asymmetries, but don't touch the right-handed singlet neutrinos
- The end baryon asymmetry is then given by:

$$\frac{n_B}{s} = \frac{21}{79} \left(\frac{r T_{rh} \varepsilon}{E_3} \right).$$
(9)

- $r \leq 1$ the ratio of SM energy density to H_3 energy density
- E_3 , the typical energies of the H_3 population, is set by the mass of the modulus m_{Φ}
- The reheat temperature T_{rh} should be $\gtrsim 100~{\rm GeV}$ so that sphalerons are active

- We need to make sure decays to happen before any appreciable annihilation of H_3 population
 - Larger E_3 suppresses annihilation rates relative to decay rates, but also lowers asymmetry
- We need to make sure that H_1 , H_2 , and H_3 can't efficiently mediate 2 to 2 washout processes
 - This puts constraints on the Yukawa couplings
 - This also requires H_2 and H_3 to be heavy compared to T_{rh}
- We need to make sure the heavy neutrinos decay after EWSB

Higgs-mediated Washout

- We have to make sure that 2 to 2 processes of the form $L\nu_R \rightarrow Ff$ won't wash out the asymmetry up until EW symmetry breaking at $T_* \sim 100 \text{ GeV}$
- Processes mediated by the SM doublet, H_1 , lead to a washout rate:

$$\Gamma \sim (\lambda_1^{\nu} \lambda_1^f)^2 T \tag{10}$$

• Heavy doublets, H_2 and H_3 , lead to a different, mass-suppressed washout rate:

$$\Gamma \sim (\lambda_a^f \lambda_a^\nu)^2 T^5 / m_a^4 \tag{11}$$

- Avoiding washout requires $\Gamma(T_*) \lesssim H(T_*)$, with the Hubble rate $H(T) \approx g_*^{1/2} T^2/M_P$
- With TeV scale heavy doublets, this leads to a constraint on the Yukawa couplings:

$$\lambda_1^{\nu}\lambda_1^f \lesssim 10^{-8}, \lambda_{2,3}^{\nu}\lambda_{2,3}^f \lesssim 10^{-6}$$
 (12)

• Let's look at the asymmetry from decays of H_2 with H_1 as the intermediate scalar:

$$\varepsilon \sim \frac{\lambda_1^{\nu} \lambda_1^{f} \lambda_2^{\nu} \lambda_2^{f}}{8\pi \left(\lambda_2^{f'}\right)^2} \tag{13}$$

- The requirement that $\varepsilon\gtrsim 10^{-9}$ is in tension with the washout constraint $\lambda_1^\nu\lambda_1^f\lesssim 10^{-8}$
- The washout constraint $\lambda_{2,3}^\nu\lambda_{2,3}^f\lesssim 10^{-6}$ for the heavy doublets would give more room
- If we want to avoid a large degree of fine tuning while using this mechanism, we need two heavy doublets