Studies of rare production and decay processes of the Higgs boson at the ATLAS experiment

Proklova N. on behalf of the ATLAS Collaboration

> Phenomenology 2020, 05.05.2020

Introduction

Many Higgs boson decay channels/ production modes have been discovered and measured → consistent with the SM within uncertainties

- **BUT**: BSM physics may still manifest itself in the Higgs sector.

 Rare or forbidden decays provide novel probes to new physics

 $\sigma \times \text{BR}$ normalized to SM

- **Rare decays**: searches of $H \rightarrow Z\gamma$, $H \rightarrow ee$ and $H \rightarrow \mu\mu$,

CP properties probe with ttH+tH, $H \rightarrow \gamma \gamma$

- Forbidden decays: vanishing in the SM,

e.g. flavour violating decays $H \rightarrow e\tau/\mu\tau$, $H \rightarrow e\mu$

$\begin{array}{c} \text{ttH+tH}, \text{H} \rightarrow \gamma \gamma - \text{CP properties} \\ \text{SM Higgs boson is CP-even: } J^{CP} = 0^{++} \\ \text{But ttH&tH processes allow to probe CP-violation i} \\ \text{the top-Yukawa coupling at tree level:} \\ \end{array}$

<u>Parameters of Interest</u>: κ_t: top-Yukawa coup.par. α: CP-mixing angle

Production

ttH+tH, $H \rightarrow \gamma \gamma$ CP: Analysis strategy

Data : full Run 2 , 139 fb⁻¹

Event selection:

- 2 tight, isolated photons, \geq 1 b-tagged jet
- Two regions:
 - Hadronic: $N_{jets} \ge 3$, $N_{lep} = 0$
 - Leptonic: $N_{lep} \ge 1$

Categorisation:

1) **Bkg. rejection BDT** to separate ttH like events from continuum bkg (non tight isolated data) 2) CP BDT – separate CP-even ttH/tH from CP-odd

- 20 kinematic / angular / event variables + dedicated BDT to reconstruct top quarks

Data

0.4

SM ttH + tH

 $\alpha = 90^{\circ}, \kappa = 1 \text{ ttH} + \text{tH}$

0.5 0.6

0.5

0.4

3) Event Categorisation (20 categories) based on 2D plane of BKG and CP BDTs

Hadronic Bkg. Rej. Discriminant

0.8

0.8 0.9

0.7

0.7

0.6

Hadronic Bkg. Rej. Discriminant

ttH+tH, H→γγ CP: Results

ttH significance:

signal strength: $1.4 \pm 0.4(\text{stat}) \pm 0.2(\text{sys})$ obs. (exp.) sign.: 5.2σ (4.4σ)

tH cross section upper limit: obs. : < 12 x SM at 95% CL

H→γγ (and ggH) rates constrained to combination results

 $|\alpha| > 43^{\circ}$ excluded at the 95% CL (expected exclusion: $|\alpha| > 63^{\circ}$)

CP-odd hypothesis rejected: at **3.9σ** (expected : **2.5σ**)

$H \rightarrow \mu \mu$ decay search

- H→μμ is a sensitive channel to explore the Higgs boson coupling to the second generation of fermions BUT: BR_{SM}=2.2×10⁻⁴ and large background 10^9 yreliminary 10^9 yreliminar
- Experimentally clean & good mass resolution
- Signal would appear as a peak in $m_{\mu\mu}$ on top of smoothly falling distribution that mainly consists of Drell-Yan process

In a 110 < $m_{\mu\mu}$ <160 GeV window: ~2.5M events in data (139 fb⁻¹) mostly from Drell-Yan (Z/ $\gamma^* \rightarrow \mu\mu$) - Expected S~860 events (ϵ =60%)

$H \rightarrow \mu \mu$ decay search

Analysis strategy

- -BDT-based categorization to increase signal sensitivity (based on the **production mode**)
- Data driven approach used for bkg estimation
 Spurious signal (SS) estimated with large statistics fast-Sim (~700 times the data luminosity)
- S+B PDF used to fit the observed $m_{\mu\mu}$ spectra simultaneously in all the categories to derive the final signal strength μ

Signal and bkg modelled by analytic functions

No significant excess: **0.8\sigma obs (1.5\sigma exp)** $\mu = 0.5\pm0.7 (1.0\pm0.7 \text{ exp.}) ->$ $\mu < 1.7 @95\%$ CL (2.2 exp)

Statistically limited

 $H \rightarrow ee/H \rightarrow e\mu$ results provided by the same group

$H \rightarrow Z\gamma$ decay search

more difficult than Higgs→γγ -(B[H→Zγ]×B[Z→ee/μμ]= ~10⁻⁴)

-BUT: Small background → great sensitivity

Sensitive to new physics through the loop diagrams (may contain new charged particles)

Focus only on Z→ee/µµ decays as they have good invariant mass resolution and background rejections BUT: less signal

than H->yy

Q

$H \rightarrow Z\gamma$ decay search: Analysis strategy

H→Zγ decay search: Results

The total uncertainty is dominated by the **statistical component** (43%) of data, with a large contribution from the spurious signal systematic uncertainties (15%)

For m_H = 125.09 GeV:

Best fit signal strength $\mu = 2.0^{+1.0}_{-0.9} = 2.0^{+0.9}_{-0.9}(stat.)^{+0.4}_{-0.3}(syst.)$ (obs.) $\mu = 1.0^{+0.9}_{-0.9} = 1.0^{+0.8}_{-0.8}(stat.)^{+0.3}_{-0.3}(syst.)$ (exp.) Limits on μ at 95% CL: Obs.: $\mu < 3.6$

Exp: μ < 1.7 (2.6) assuming no (SM) H→Zγ

BR(H→Zγ) < 0.55% at 95% CL σ∗BR < 305 fb at 95% CL

Summary

Rare or forbidden Higgs boson decays are presented

- $H \rightarrow Z\gamma$
- H→ee
- H→μμ
- H→lτ
- Н→еµ

Sensitive to the physics beyond Standard Model

- No significant excess seen

Most of the analyses are still statistically limited

+ CP property constraints of the top Yukawa coupling with ttH+tH process and $H \rightarrow \gamma \gamma$ decays

Looking forward to Run3

Backup Slides

Lepton-flavour-violation with $H \rightarrow e\tau/H \rightarrow \mu\tau$

Analysis strategy

- -Using MC and data-driven background to estimate SM bkg (SM H→ττ is background) -2015+2016 dataset (**36 fb**-1)
- -Two independent channels:

H→eτ or H→μτ considering both tau decay to leptons (τ_l) and with hadrons (τ_h)
MVA performed to enhance the signal/bkg separation: BDT output used to perform a shape analysis of the data

- Analysis categories:

- -VBF category (VBFH): n_{jets} >=2, high m_{jj}
- -Non-VBF category (dominated by ggH)
- Exploited the jet kinematics, the leptons momentum disparity and the mass reconstruction
- -Two Control Regions defined for the τ_{lep} sub-channel to constrain top and $Z\tau\tau$ bkg
- Limits set on BR H \rightarrow et and BR H \rightarrow µt separately

CERN-EP-2019-184

H \rightarrow ee and H \rightarrow eµ decay searches Analysis strategy

- Data driven analysis; MC only used for signal shape fit and spurious signal fit in $H\rightarrow$ ee
- Event categorisation: 7 (8) categories for ee ($e\mu$)
- The signal appears as a peak on top of a smooth background in the mll spectrum
- Signal parameterised as Crystal Ball + Gaussian for both decay channels
- Background parameterised as (Voigtian + exp[am_I]/m_I^3) for ee, Bernstein polynomial for eµ
- Systematics accounted for as nuisance parameters in final fit
- Limits calculated from fit using CL_s method

