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• Standard view of cosmology suggests RDE -> 
MDE -> Today 

• Theoretical motivation for a modified expansion 
history  

• Gravitational waves produced during PT 

• Typically assumed PT happened during  RDE with 
equations in Minkowski spacetime

Introduction
2

• Sound Shell model (Hindmarsh 2019) provides the best model for the acoustic GWs 

• Equations in an expanding universe can be rescaled to have Minkowski form 

• Suppression in spectrum observed when using Sound Shell model for short phase transitions

De Angelis A., Pimenta M. (2018)
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• FLRW metric:  

• Conformal time:   

• GW sourced by T.T. part of perturbed energy momentum tensor 

• Einstein equation describes time evolution of each Fourier component of GWs 

• Solve by method of Green’s function

ds2 = − dt2 + a2(δij + hij(x))dx2

dt = a dη

Gravitational Waves in Expanding Universe
3

h′ ′ q + 2
a′ 

a
h′ q + q2hq = 16πGa2πT

q 𝒫GW =
dΩGW

d ln k
=

1
24π2H2

k3P ·h (t, k)

∝ v2
⟨ ·hij(t, q) ·hij(t, q)⟩
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• Average over the random processes 
generating the GWs 

• GW power spectrum depends on 2 point 
correlator of the T.T. energy momentum 
tensor 

• Model correlator with Sound Shell model   

• Ignore highly oscillatory terms  

•

(η̃1 + η̃2)

η̃ = qη

Spectral Density of 
·h

4

hij(t, q) = 16πG∫
η̃

η̃0

dη̃′ G(η̃, η̃′ )
a2(η′ )πT

ij (η′ , q)
q2

⟨ ·hij(t, q) ·hij(t, k)⟩ = (2π)−3δ3(k + q)P ·h

∂G(η̃, η̃1)
∂η̃

∂G(η̃, η̃2)
∂η̃

=
η̃1η̃2

2
× {

η̃−2 (1 + η̃−2) cos(η̃1 − η̃2)

η̃−4 (1 + 3η̃−2 + 9η̃−4) ((η̃1 − η̃2)sin(η̃1 − η̃2) + (1 + η̃1η̃2 cos(η̃1 − η̃2))
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• Important source of GWs 

• Colliding sound shells 

• Compression waves surrounding the 
expanding bubbles of the stable phase 
propagate long after the phase 
transition 

• Computable from relativistic 
hydrodynamics  

• Detectable at LISA

Acoustic Gravitational Waves
5

arXiv:1004.4187

arXiv:1705.01783



PHENO 2020
DANIEL VAGIE (UNIVERSITY OF OKLAHOMA)

• Dominate source of shear stress is the local velocity field from the sound waves in plasma 

• Fluid velocity field is the linear superposition of single-bubble contributions 

• E.O.M of fluid, and hence sound waves of plasma, same as Minkowski spacetime in expanding 
universe 

• Interpret velocity w.r.t. to conformal time 

• GWs produced from the propagation of the sound shells  

• Computed from the convolution of power spectrum  sourced by the velocity field 

Sound Shell Model
6
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• Velocity field, after most bubbles collide, is obtained by adding all the individual bubble contributions 

• Velocity profile becomes initial condition for freely propagating sound waves 

• Total number of bubbles nucleated within a Hubble volume with co-moving size  is  

• Velocity field follows a Gaussian distribution to a good approximation 

Vc Nb

Velocity Spectral Density
7

vi
q =

Nb

∑
n=1

vi(n)
q

• Randomness removed by doing an ensemble average

⟨vi
qvj*

q ⟩ = ̂qi ̂qj(2π)3δ3(q1 − q2)
1

R3
*cβ6

c ∫ dT̃T̃6ν(T̃) |A(
qT̃
βc

) |2 ,

≡Pv(q)
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Dimensionless Velocity Power Spectrum
8

𝒫v = 2
(qR*)3

2π2R3
*

Pv(q)

βc = (8π)1/3 vw

R*c αn = 0.0046, vw = 0.92, a = 1

• Causality arguments require  to go as  
and  for low/high frequencies 

•  should go as  and  

• Contains information on the shape of fluid 
shells, fluid shell thickness, wall speed, and 
peak amplitude 

𝒫GW k9

k3

𝒫v k5 k−1
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• T.T. component of energy momentum tensor is the source of the GWs from the metric 
perturbations  

• Fluid variables can be rescaled   

• Needed to compute  to get  and ultimately  

• Directly calculated from the velocity power spectrum in the Sound Shell model

⟨ ·hij(t, q) ·hij(t, k)⟩ P ·h 𝒫GW

Shear Stress UETC in Expanding Universe
9

⟨πT
ij (η1, k)πT

ij (η2, q)⟩ =
a8

*

a4(η1)a4(η2) [( ¯̃ϵ + ¯̃p) U2
f ]

2
L3

f Π̃ (kLf, kη1, kη2)

Π2 (k, η1, η2) = 4 (ϵ̄ + p̄)2 ∫
d3q

(2π)3

q2

q̃2
(1 − μ2)2Pv(q)Pv(q̃)cos(ωη−)cos(ω̃η−)
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• Assume that the autocorrelation time of the 
fluid fluctuation is small compared to Hubble 
time:  ,   

•  = conformal time at phase transition 

•  should go as  and  and redshifted by 

x = 1/2(η̃1 + η̃2) and z = η̃1 − η̃2 x ≫ z

η*

𝒫GW k9 k−3

1/a(η)4

Dimensionless GW Power Spectrum
10

 𝒫GW = 3(1 + ω̄)2Ū2
f ( a4

*

a4

H2
*R

H2 ) (H*Ra*η*) (H*Ra*Lf) ×

(kLf)
3

2π2 {
η̃*(η̃−1

* + η̃−1)(1 + η̃−2)

1/3 η̃3
*(η̃

−3
* + η̃−3)(1 + 3η̃−2 + 9η̃−4)}

1
kLf ∫ dz

cos(z)
2

Π̃(kLf )

αn = 0.0046, vw = 0.92, a = 1
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RDE Detonation

, αn = 0.0046, vw = 0.92 Δη = η̃ − η̃*

• Approximations agree with full calculation for 
 

• Suppression in spectrum when  

• Slight enhancement for  in low frequency 
regime  

• Not yet calculated spectrum observed today 

η ≫ η*

η* ∼ η

η − η* = 1

( a4
*

a4

H2
*,R

H2 )

 

                          

𝒫GW ∝ (1 + η̃−2)∫
η̃

η̃*

dx∫
z+

z−

dz
1
2

×

η2
*

(x2 − z2/4)
cos(z)Π̃(k, q, q̃, z)
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RDE Deflagration

, αn = 0.0046, vw = 0.5 Δη = η̃ − η̃*

• Approximations agree with full calculation 
for  

• Suppression in spectrum when  

• Slight enhancement for  in low 
frequency regime  

• Not yet calculated spectrum observed 
today

η ≫ η*

η* ∼ η

η − η* = 1

 

                          

𝒫GW ∝ (1 + η̃−2)∫
η̃

η̃*

dx∫
z+

z−

dz
1
2

×

η2
*

(x2 − z2/4)
cos(z)Π̃(k, q, q̃, z)
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MDE Deflagration 

, αn = 0.0046, vw = 0.5 Δη = η̃ − η̃*

• Approximations agree with full calculation 
for  

• Suppression in spectrum when  

• Slight enhancement for  in low 
frequency regime  

• Not yet calculated spectrum observed 
today

η ≫ η*

η* ∼ η

η − η* = 1

 𝒫GW ∝ (1 + 3η̃−2 + 9η̃−4)∫
η

η*

dx∫
z+

z−

dz
1
2

×

η4
*

(x2 − z2/4)3 (z sin(z) + (1 + x2 − z2/4) cos(z)) Π̃(k, q, q̃, z)
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• PT produces GWs through bubble nucleation 

• Sound Shell model can be used to calculate the GW spectrum for various cosmological histories 

• Suppression for short phase transitions and MDE 

• Things to do:  

• Compute the GWs that would be observed today 

• See if there are noticeable deviations for various cosmological histories such as early MDE or Kination

Conclusion 
14

PT can serve as a cosmological witness to non standard cosmological histories which are 
motived by dark matter and string theory.
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Back Up Slides

15
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• Essential step in EWBG by providing an out of 
equilibrium environment 

• Electroweak symmetry restoration at high T

Electroweak Phase Transition
16

• First order phase transition proceeds 
through bubble nucleation 

• Dynamics of nucleated bubbles in plasma 
will generate GWs

Tc

TpTn

T0
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•  required for EWBG and GW calculations  

• Velocity profile computed from boundary conditions at the bubble wall, conserving 
energy - momentum tensor, and knowledge of the phase transition dynamics (  ) 

• Equations in expanding universe same form as Minkowski space time ( , 
, and all other quantities in terms of conformal time)

vw

αn

ϵ̃ = a4ϵ
p̃ = a4p

Relativistic Hydrodynamics
17

Tμν = ∂μϕ∂νϕ −
1
2

gμν∂μϕ∂ϕμ + (ϵ + p)UμUν + gμνp

2
v
ξ

=
1 − vξ
1 − v2 [ μ2

cs
− 1] ∂ξv
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• FLRW metric:  

• Conformal time:   

• Fourier space:  

• GW sourced by T.T. Part of perturbed energy momentum tensor:  

• Einstein equation describes time evolution of each Fourier component of GWs:  

ds2 = − dt2 + a2(δij + hij(x))dx2

dt = a dη

hij(t, x) = ∫ d3qeiq⋅xhij(t, q)

δTij = a2πT
ij + . . .

Gravitational Waves in Expanding Universe
18

h′ ′ q + 2
a′ 

a
h′ q + q2hq = 16πGa2πT

q
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• GW energy density:  

• Power spectrum:  

• Dimensionless energy density fraction:   

•  for deep in the horizon 

• Use fluid-scalar system to build model for  - Sound Shell Model

ρGW(t) =
1

32πG ⟨ ·hij(t, x) ·hij(t, x)⟩
⟨ ·hij(t, q) ·hij(t, k)⟩ = (2π)−3 δ3 (k + q) P ·h (k, t)

ΩGW =
ρGW

ρc

𝒫GW ∼
1
a4

P ·h

Power Spectrum
19

𝒫GW =
dΩGW

d ln k
=

1
24π2H2

k3P ·h (t, k)
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• Long lasting sound waves produced during phase transition dominate source of GWs 

• Numerical simulations based on fluid-scalar system in Minkowski Space 

• Connect equations to FLRW metric 

•  

• Scalar/Vector components of the conservation of energy momentum equation in a scalar 
universe can be rescaled to match Minkowski form ( , , and all other quantities in 
terms of conformal time) 

• Can neglect scalar field and analytically determine the velocity profiles of the plasma 

Tμν = ∂μϕ∂νϕ −
1
2

gμν∂μϕ∂ϕμ + (ϵ + p)UμUν + gμνp

ϵ̃ = a4ϵ p̃ = a4p

Fluid and Scalar Field System
20
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Fluid System
21

(a4Si)′ + ∇ ⋅ (a4Siv) + ∂i (a4p) = 0

(a4ϵγ)′ + [γ′ + ∇ ⋅ (γv)] (a4p) + ∇ ⋅ (a4ϵγv) = 0

γ2 (v′ +
1
2

v̂ ⋅ ∇v2) [a4 (ϵ + p)] + v (a4p)′ + v̂ ⋅ ∇(a4p) = 0
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• Changes to the dynamics of the Phase Transition in an expanding universe 

• Bubble nucleation rate, fraction of false vacuum, unbroken area of the walls at a certain time, 
bubble final radius, lifetime distributions, bubble number density, and  

• Changes due to Hubble parameter through scale factor 

• Number of nucleated bubbles 

β/Hn

Dynamics of Phase Transition
22

Nb = ∫
t2

t1

p(t)g(tc, t)a3Vcov(t)dt
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Bubble Nucleation Rate
23

S3 ( ⃗ϕ , T) = 4π∫ drr2 1
2 ( d ⃗ϕ (r)

dr )
2

+ V ( ⃗ϕ , T)
d ⃗ϕ (r)

dr r=0
= 0, ⃗ϕ (r = ∞) = ⃗ϕ out

p(t) =
p0exp [−

S3(T0)
T0

+ β(t − t0)]
p0exp [−

S3(T0)
T0

− 1
2 β2

2(t − t0)2]

No T = 0 
barrier

T = 0 
barrier

Exponential Instantaneous
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False Vacuum Fraction
24

g(tc, t) = exp [−
4π
3 ∫

t

tc

dt′ p(t′ )a3(t′ )r(t′ , t)3] ≡ exp [−I(t)]

r (t′ , t) = ∫
t

t′ 

dt′ ′ 

vw

a (t′ ′ )
a
ac

= ( Tc

T )
−1/γ

H(T)2 =
8πG

3
ρR,c ( ac

a )
3

(κM +
ac

a )

T dependence of  through scale factorg (tc, t)
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Unbroken Bubble Wall Area
25

dg(t0, t) =
dVFalse

VAll
= − 𝒜c(t)vw

dt
a

𝒜 =
1
a

𝒜c

𝒜 =
γH(T)T

vw

dg (TC, T)
dT

• Area increases as bubbles form and 
expand 

• Area decreases as bubbles collide 
and VFalse → 0
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Bubble Lifetime Distribution 
26

r = ∫
tf

ti

dt
vw

a(t)
= vwηLT

ñb,c (ηLT) = vw ∫
∞

tc

dt′ p(t′ )a3(t′ )𝒜c (t′ , vwηLT)

η′ − ηc = ∫
t′ 

tc

dt
a(t)

=
1
ac ∫

Tc

T′ 

dT′ ′ 

T′ ′ 

1
γH (T′ ′ ) ( Tc

T′ ′ )
−1/γ

≡ Δη (T′ , Tc)

ηLT + (η′ − η0) = Δη (T, Tc) t → t2,  and t′ → t0
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Mean Bubble Separation
27

nb =
Nb

VPhysical
d [nba3]

dt
= p(t)g (tc, t) a3(t)

nb(T ) = ( T
Tc )

(3/γ)

∫
Tc

T

dT′ 

T
1

γH(T′ )
p̄0T′ 4 exp [−

Sc(T′ )
T′ ] g (Tc, T) ( Tc

T′ )
3/γ

R*(t) = (
VPhysical

Nb(t) )
1/3

= ( 1
nb(t) )

1/3

•  increases for delayed false 
vacuum fraction
R*
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Nucleation Temperature
28

∫
tn

tc

dt
p(t)

H(t)3
= 1

T ∝ a−γ, a = catn, H = ·a/a

∫
Tc

Tn

dT
T

p(T)
γH(T)4

= 1

∫
Tc

Tn

dT
T ( 90

8π3g* )
2

( mP

T )
4

exp [−
S3(T)

T ] = 1

Radiation dominated universe

                                             

• MDE and :  same form as RDE but with 
different H(T). . Harder to 
satisfy criteria and lower  

• MDE and : criteria easier to satisfy within 
same Hubble Volume. 

γ = 1
HMDE(T) > HRDE(T)

Tn

γ = 3/8

Probability that one bubble nucleates per Hubble volume at  Tn
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Percolation Temperature
29

Temperature at which the true vacuum is 30 % of the total volume 

p(tp) = 0.7, or I(tp) ≈ 0.34

1
a3(t)VFalse

d [a3(t)VFalse]
dt

t=tp

< 0Strong super-cooling (VDU)
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Inverse Time Duration
30

S3

T
=

S3

T tn

+
d (S3/T)

dT
tn

(t − tn)
β

Hn
= −

1
Hn

dT
dt

d (S3/T)
dT

tn

sR(T)a3 = const.

a = cntn

sR ∝ T3 → T ∝ 1/a ∝ t−n T ∝ a−3/8

No injection Injection

T = cTt−nγ

β
Hn

= γT
d (S3/T)

dT
t=tnIn general
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• Normalized to 1 

• Related to the probability distribution of 
lifetimes   

• Exponential or Simultaneous bubble nucleation 

Bubble Lifetime Distribution
31

v (T̃) = ∫
Tc

T*

dT′ 

T′ 

1
γH(T′ )

p̄0T′ 4 exp [−
S3(T′ )

T′ ] R*(T′ )3�̄�c (T (T′ , T̃))

n(Ti)dTi =
β
R3

*
ν(βTi)dTi
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One Bubble
32

vi(η < ηc, x) =
1
2 ∫

d3q
(2π)3 [ṽi

q(η)eiq⋅x + ṽi*
q (η)e−iq⋅x]

Before collision 

vi(η > ηc, x) = ∫
d3q

(2π)3 [vi
qe−iωη+q⋅x + vi*

q eiωη−iq⋅x]
After collision 

• Equations governing sound waves are 2nd order and require two initial conditions    

• Initial conditions for  and  at  

• Force term in equation governing  - calculate it from the energy fluctuations

ṽi
q ṽi′ 

q ηbc

ṽi′ 

q

λ(x) =
e(x) − ē

ω̄

λ̃′ 

q + iqjṽq
j = 0

ṽ j′ 

q + ic2
s qjλ̃q = 0
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N-th Bubble
33

•  at  from self-similar invariant profile of bubbleṽi
q(η) and ṽi′ 

q(η) ηbc

vn(η, x) = R̂(x)v(ξ) where 
R ≡ x − x(n)

ξ ≡ |R(n) | /T(n)

T(n)(η) ≡ η − η(n)

ṽ j(n)
q ηbc = e−iq⋅x(n) (T(n))3 i ̂zj f′ (z)

η=ηbc

λ̃(n)
q = e−iq⋅x(n) (T(n))3 l(z)

η=ηbc

v j
q =

1
2 [ṽ j

q(ηbc + csq̃jλ̃(ηbc)] eiωtc

v j(n)
q = i ̂zjT(n)3

bc eiωηbc−iq⋅x(n)
bc A(zbc)

A(zbc) =
1
2 (f′ (zbc) − icsl(zbc))

• n-th bubble’s contribution to the Fourier coefficient of the sound waves
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Functions for Velocity Field
34

f(z) =
4π
z ∫

∞

0
dξv(ξ)sin(ξz)

l(z) =
4π
z ∫

∞

0
dξλξ sin(ξz)

 invariant profiles from solving fluid equations of motion v(ξ) and λ(ξ)
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• Velocity field, after most bubbles disappear, is obtained by adding all the individual bubble contributions 

• Total number of bubbles nucleated within a Hubble volume with comoving size  is  

• Velocity field follows a Gaussian distribution to a good approximation 

Vc Nb

Velocity Power Spectrum 
35

vi
q =

Nb

∑
n=1

vi(n)
q

• Randomness removed by doing an ensemble average

⟨vi
qvj*

q ⟩ = ̂qi ̂qj(2π)3δ3(q1 − q2)
1

R3
*cβ6

c ∫ dT̃T̃6ν(T̃) |A(
qT̃
βc

) |2 ,

≡Pv(q)
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Gravitational Spectral Density 
36

⟨ ·hij(t, q) ·hij(t, k) = (2π)−3δ3(k + q)P ·h(k, t)

P ·h =
a6

*

a4(η) [16πG(¯̃ϵ + ¯̃pU2
f ]

2
L3

f { 1 + η̃−2

1 + 3η̃−2 + 9η̃4}∫
η̃

η̃*

dx∫ dz

×
1
2

η̃2
*

x2 − z2/4
η̃4

*

(x2 − z2/4)3

{ cos z
z sin z + (1 + x2 − z2/4)cos(z)} Π̃2(L̃f, η̃1, η̃2)P̃GW(kLf) =

1
kLf ∫ dz

cos z
2

Π̃ (L̃f, z)


