Probing Exotic Charged Higgs Decays in the Type-II 2HDM through Top Rich Signal at a Future 100 TeV pp Collider

Shuailong Li shuailongli@email.arizona.edu

In collaboration with Shufang Su and Huayang Song

Physics Department, University of Arizona

PHENO-2020, May 4, 2020

Outline

- 1. Motivation and Objective
- 2. Charged Higgs in Type-II 2HDM
- 3. Current Search
- 4. Search Strategy
- 5. Search Results
- 6. Summary

1. Motivation and Objective

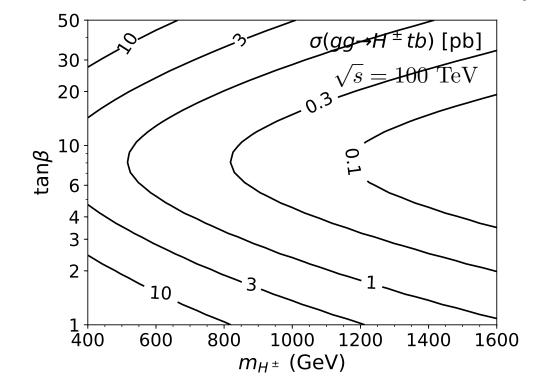
- Many Beyond Standard Models (BSM) contain charged Higgs. Two Higgs Doublet Models (2HDM) provides the simplest option.
- Observation of charged Higgs gives direct evidence of BSM physics.
- Conventional Higgs search channels are challenging.
- We search Charged Higgs in type-II 2HDM via exotic decay mode $H^{\pm} \rightarrow AW^{\pm}/HW^{\pm}$ with $A/H \rightarrow tt$ using top tagging technique in a future 100 TeV pp collider.

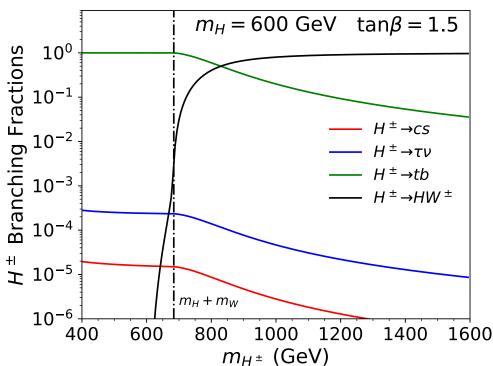
2. Charged Higgs in Type-II 2HDM

Two SU(2)_L Higgs doublets

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a)/\sqrt{2} \end{pmatrix}, \quad a = 1, 2.$$

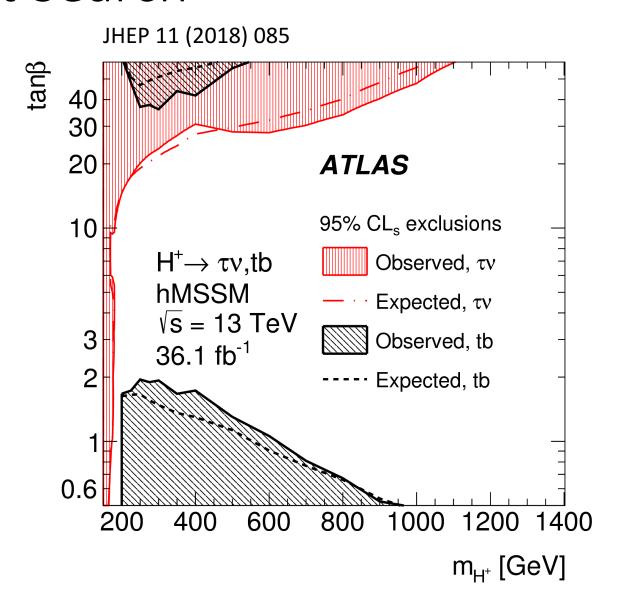
- Five Higgs bosons: two charged (H^+,H^-) , two neutral CP-even (h,H), one neutral CP-odd (A), after electroweak symmetry breaking.
- Six free parameters: tan β , cos($\beta-\alpha$), m_{12}^2 , m_H , m_A , $m_{H\pm}$.
- h be the SM-like 125 GeV Higgs $\rightarrow \cos(\beta \alpha) = 0$; to respect unitarity for heavy Higgs $\rightarrow m_{12}^2 \cos \beta \sin \beta = m_H^2$; to allow exotic charged Higgs decay $\rightarrow m_A = m_{H\pm} > m_H$.


2. Charged Higgs in Type-II 2HDM


Interactions involving charged Higgs

$$g_{H^{\pm}hW^{\mp}} = \frac{g\cos(\beta - \alpha)}{2} (p_h - p_{H^{\pm}})^{\mu} \simeq 0,$$

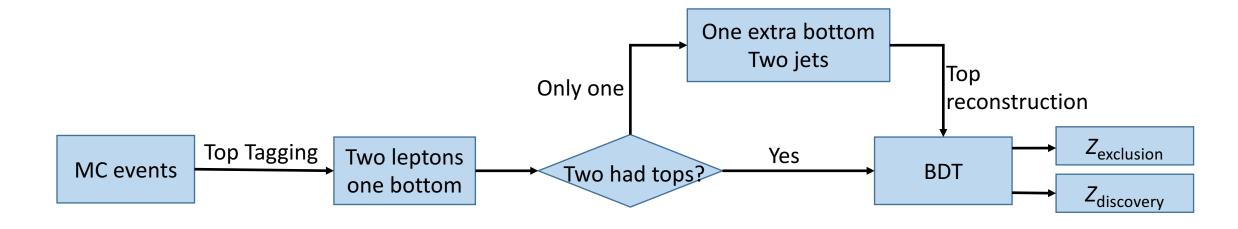
$$g_{H^{\pm}HW^{\mp}} = \frac{g\sin(\beta - \alpha)}{2} (p_h - p_{H^{\pm}})^{\mu} \simeq \frac{g}{2} (p_H - p_{H^{\pm}})^{\mu},$$


$$g_{H^{\pm}u_{i}d_{j}} = \frac{V_{ij}}{\sqrt{2}} \left[(t_{\beta}y_{d} + t_{\beta}^{-1}y_{u}) + (t_{\beta}y_{d} - t_{\beta}^{-1}y_{u})\gamma^{5} \right]$$

Production cross section and decay branching fractions

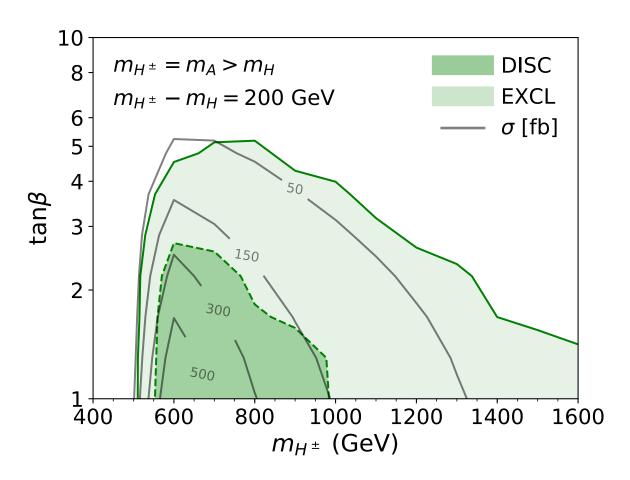
3. Current Search

4. Search Strategy

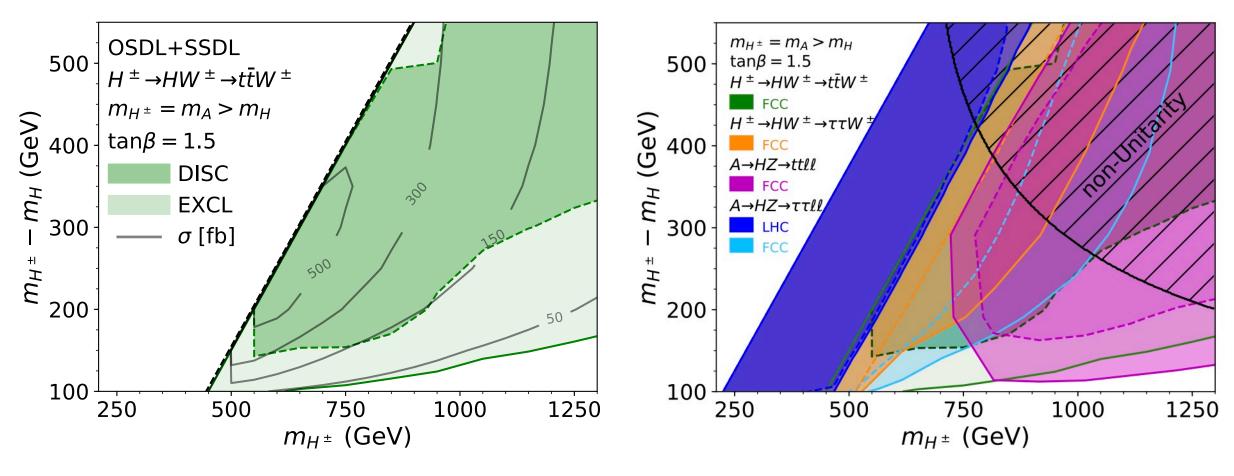

• Search exotic charged Higgs decay through $H \rightarrow tt$ channel in a future 100 TeV pp collider with integrated luminosity $\mathcal{L} = 3000 \text{ fb}^{-1}$,

$$gg \to tbH^{\pm} \to tbHW^{\pm} \to t\bar{t}tbW^{\pm}$$

- Irreducible backgrounds: tttt, σ_{NLO} = 4.93 pb; tttbW, σ_{LO} = 0.623 pb.
- Use top tagging technique to detect boosted hadronic tops.
- Collect events with two leptons in the final states.
- Use boosted decision tree (BDT) to distinguish signal and background events.
- Discovery and exclusion significances are estimated assuming 10% systematic uncertainty in background cross section.


4. Search Strategy

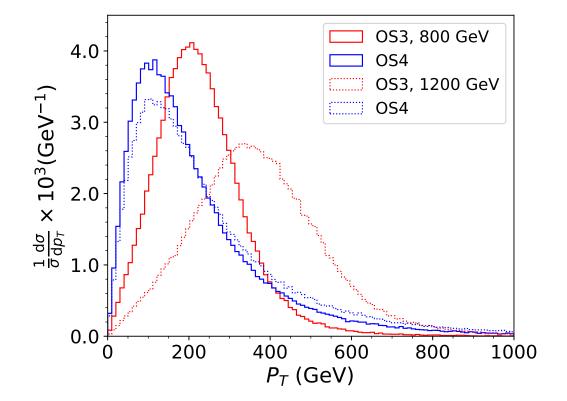
Cuts flow



• BDT inputs: $p_{T,l1}$, $p_{T,l2}$, $p_{T,t1}$, $p_{T,t2}$, m_{t1t2} , N_j , $\Delta \eta_{l1,l2}$, H_T , miss E_T .

5. Search Results

5. Search Results


arXiv: 1812.01633

6. Summary

- Top-tagger provides a powerful tool to search non-SM heavy Higgs in the future colliders.
- Exotic decays provide new opportunities for the discovery of non-SM Higgses, which are complementary to the conventional channels.
- Combining all exotic Higgs decay channels, almost the entire parameter space in hierarchical 2HDMs can be probed at a future 100 TeV pp collider.

Backup slides

Channel	Divisions	Combinations	Channel	Divisions	Combinations
OSDL	OS1	$(H \to t_h \bar{t}_h) t_{\bar{\ell}} \bar{b} W_{\ell}^-$	SSDL		
	OS2	$(H \to t_{\bar{\ell}} \bar{t}_h) t_h \bar{b} W_{\ell}^-$		SS1	$(H \to \bar{t}_{\ell} t_h) t_h \bar{b} W_{\ell}^-$
	OS3	$(H \to t_h \bar{t}_\ell) t_{\bar{\ell}} \bar{b} W_h^-$		SS2	$(H \to \bar{t}_h t_{\bar{\ell}}) t_{\bar{\ell}} \bar{b} W_h^-$
	OS4	$(H \to t_{\bar{\ell}} \bar{t}_{\ell}) t_h \bar{b} W_h^-$			

