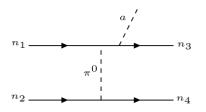
Axions in neutron star mergers

Steven Harris Washington University in St. Louis

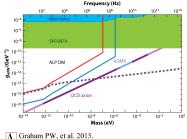
Harris, Fortin, Sinha, Alford, arXiv:2003.09768

Pheno Symposium May 4, 2020



Axions and their interactions

• Axions are very light $(m_a \ll 1 \text{ eV})$ bosons.


- Axions are ultrarelativistic $(E_a \approx |\mathbf{p}_a|)$ in dense matter.
- ▶ Produced by neutron bremsstrahlung $n + n \rightarrow n + n + a$

 $\blacktriangleright \mathcal{L} = \mathbf{G}_{an}(\partial_{\mu}a)\bar{n}\gamma^{\mu}\gamma_{5}n$

Axion-neutron coupling

- ► G_{an} and m_a are proportional for the QCD axion.
- SN1987A constrains coupling G_{an} to small values.

Granam Pw, et al. 2015. Annu. Rev. Nucl. Part. Sci. 65:485–514

Axions are produced in neutron-rich environments. What role do they play in neutron star mergers? May 3, 2020 2/9

Nuclear matter in neutron star mergers Cold neutron stars:

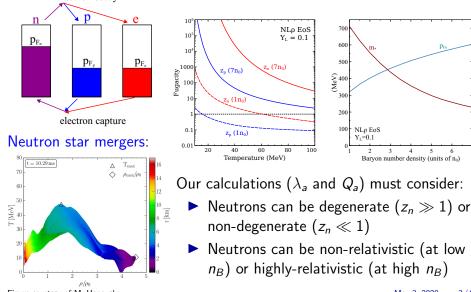
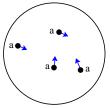
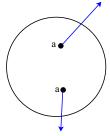
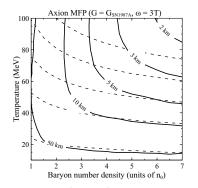



Figure courtesy of M. Hanauske.


May 3, 2020 3/9

What can axions do in mergers?

► λ_a < R: If axions are trapped (like n, p, e⁻) then they could thermally equilibrate matter in the merger


• $\lambda_a > R$: If axions escape from the merger, they cool it down.

Axion mean free path

Are axions trapped in neutron star mergers?

• Only if their mean free path (due to $n + n + a \rightarrow n + n$) is much less than 1 km ($R_{merger} \sim 20 - 30$ km.) $\lambda_a^{-1} = \int \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} \frac{d^3 p_4}{(2\pi)^3} \frac{S \sum |\mathcal{M}|^2}{2^5 E_1^* E_2^* E_3^* E_4^* \omega} (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4 + \omega) f_1 f_2 (1 - f_3) (1 - f_4) \sim G_{an}^2$

All other allowed values of G_{an} yield longer axion mean free paths.

Axions free-stream through neutron star mergers.

Axion cooling

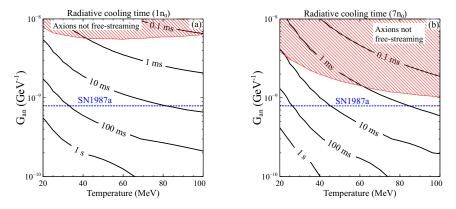
Axions escape the merger, cooling it.

$$\frac{dT}{dt} = \frac{d\varepsilon \,/\, dt}{d\varepsilon \,/\, dT} = -\frac{Q_a}{c_V}.$$

Specific Heat

 Dominated by the particle with the most low-energy excitations - in mergers, this is the neutron

$$c_V \sim p_{Fn}^2 \delta p = \\ p_{Fn}^2 \underbrace{\left(\frac{m_{\text{eff}}}{p_{Fn}}T\right)}_{T/v_{Fn}} = m_{\text{eff}} p_{Fn} T.$$

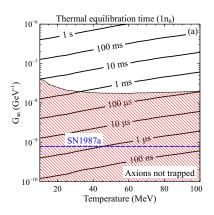

Axion emissivity

Amount of energy emitted in axions (per volume per time) due to $n + n \rightarrow n + n + a$.

$$\begin{split} Q &= \int \frac{d^3 \rho_1}{(2\pi)^3} \frac{d^3 \rho_2}{(2\pi)^3} \frac{d^3 \rho_3}{(2\pi)^3} \frac{d^3 \rho_4}{(2\pi)^3} \frac{d^3 \omega}{(2\pi)^3} \frac{S \sum |\mathcal{M}|^2}{2^5 E_1^* E_2^* E_3^* E_4^* \omega} \\ & \times (2\pi)^4 \, \delta^4(\rho_1 + \rho_2 - \rho_3 - \rho_4 - \omega) f_1 f_2 \, (1 - f_3) \, (1 - f_4) \, . \end{split}$$

Axion cooling timescale

Merger remnants survive for tens of milliseconds. Can axion cooling take place on this timescale, making it relevant for mergers?



Significant cooling can occur in a few milliseconds!

Thermal equilibration

If axions were trapped, they would help thermally equilibrate matter in a merger.

- Hot fluid element of size z has excess thermal energy E = c_VTV
- Rate of energy transfer $W = \kappa (dT/dz)A$
- Timescale for thermal equilibration:
 - Specific heat c_V is from neutrons
 - Thermal conductivity κ is from axions
 τ_κ ~ m_Lp_{Fn}z²/T²

Conclusions

- Axions have a long mean free path in merger conditions. When produced by n + n → n + n + a, the axion escapes the merger, cooling it.
- Axion cooling could take place on merger timescales (~ 10 ms) if the coupling is not too much lower than the SN1987A bound.
 - Very hot fluid elements could cool quickly via axion emission, even though they trap neutrinos.
- If axions or ALPs could be trapped, they would contribute to thermal equilibration in the merger.
 - QCD axions unlikely to be trapped, but other BSM particles could be...