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Introduction: phenomenology of Axion

The QCD axion is not only a promising solution to strong CP
problem, but also a candidate of dark matter (DM).
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0: QCD axion, f,: decay constant

Shift symmetry @ T > 1cp: V(@) ~ 0
No shift symmetry@ T < Tiycp: V(@) ~ y(1 — cos[d])

Peccei, Quinn, 77; Weinberg, 78; Wilczek, 78;
Kim, 79; Shifman, Vainstein, Zakharov, 80; (See also Zhitnitsky, 80; Dine, Fischler, Srednicki?l;)



“Natural” prediction of axion DM

The axion abundance is obtained Ballesteros et al, 1610.01639
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“Natural” prediction of axion DM

The axion abundance is obtained Ballesteros et al, 1610.01639
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Phenomenology of Axion

Axion DM can be tested in near future.
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Most of testable range is out of the “natural” prediction...
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What | will be talking about

Takahashi. WY and Guth 1805.08763

The QCD axion DM naturally predicts

f, ~ 1017 18GeV
if inflation scale < 108 GeV equivalently H,; S Agcp
and inflation lasts long enough.

* No isocurvature/domain-wall problem.
* No new particles required.

* DM mass <« inflation scale.



2. Low-scale inflation and QCD axion DM

A.Guth, 1980; K.Sato, 1980; A.Starobinsky, 1980; Kazanas, 1980; A.Linde, 1981; Albrecht, Steinhardt, 1981;

The Universe experienced an exponential expansion a « exp[H, ]

Afterglow Light
atts

Inflation solves "
horizon and flatness

problems.

about 400 million yrs.

Big Bang Expansion
13.77 billion years

wikipedia

Quantum fluctuation
during inflation

e has been observed in CMB.

Existence of inflation is rigid!
But H. . is still undetermined from observations. 6



Axion during inflation

During inflation temperature exists:

H. Ving
T, =—= «~—— Gibbons, Hawking, 77
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Axion during inflation

During inflation temperature exists:
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Axion during inflation

During inflation temperature exists:
Tinf - Hinf X Vinf
27[ pl

Axion gets potential for Ti,s < Tqep -

Gibbons, Hawking, 77

[ Axion during low-scale inflation m, < H,

if AN > Hz./m;> 1

(as in eternal inflation)




Axion during inflation

Quantum diffusion prevents the axion from falling into
the potential minimum.

[ Axion during low-scale inflation

Quantum jump




Axion during inflation

Quantum diffusion prevents the axion from falling into
the potential minimum.

[ Axion during low-scale inflation

Random walk




Equilibrium of classical motion and quantum diffusion

m2

a
H?
inf H '%f

N~
Hiy omg

classical
Classical motion: Aa ~ Neq X

Accumulated jumps (random walk): Agauantum Neq X
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Axion during inflation

For N> H2./m> ,the classical motion gets into

equilibrium with quantum diffusion.
Bunch Davies, 78

@) follows an equmbrlum distribution in Bunch-Davies vacuum

h

Axion distribution with

Variance:
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The QCD axion DM can be naturally explained with £, ~ 101*713GeV

Graham, Scherlis, 1805.07362,
in low-scale inflation with H,; < AQcp-  Takahashi, WY, Guth, 1805.08763
See also stochastic ALP DM with quadratic potential Ho,Takahashi, WY, 1901.01240, Marsh, WY, 1912.08188

guartic potential Nakagawa, Takahashi, WY, 2002.12195

10 3 Takahashi, WY, Guth, 1805.08763 1
' 0 =1 Assumptions: ]
! 1.N > H:./m?
— 1k 2. Axion potential
> ~ x(T") cos 0 does not change
8 during and after inflation.
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Conclusions

Peery

With long enough inflation with Hi.s < Aqcp

the dominant QCD axion DM can be
naturally realized with

£, ~ 10127 18GeV .

The axion DM mass can be a probe of low
inflation scale.

*With Higgs excursion the inflation scale can be higher H. - < 107TeV

inf ~

“Higgs false vacuum inflation” Matsui, Takahashi, WY, 2001.04464

*(ALP) Inflaton-axion mixing can lead to heavier axion DM with

10°GeV < £, < 101 GeV .
“minflation” Takahashi, WY, 1908.06071, Daido, Takahashi, WY, 1702.03284

See also Jacob Leedom’s talk.
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3. Low-scale inflation model with H,; < Agcp

ad

V=V, — ke + A
M

~/ ¢
Pmin

H¢ ~ 10MeV, m, ~ 10°GeV, @, ~ 10'*GeV ‘

Takahashi, WY, Guth, 1805.08763
Spectral indexn, ~ (.96 can be obtained by introducing a linear term

or Coleman-Weinberg correction {ith SUSY.) Nakayama, Takahashi, 1108.0070,
Takahashi 1308.4212
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Successful reheating is possible

B . " TR .

e

We introduce a coupling to right-handed neutrinos,

—_— =C
L = YN @ UpiVgi

with yy ~ 107

N
The decay rate is Fq, = Z gm(p if kinematically allowed.
1
90 \*
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106.75\ 7 m 2 [ Nelt
~ 0(10)TeV [ — 2 ) (2X ( ? > R
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cf. Inflation with Hins < O(eV) is possible. In this case the reheating

proceeds through thermal dissipation_ “ALP miracle”, Daido, Takahashi, WY, 1702.03284,
1710.11107,

“Big bang on earth” Takahashi, WY 1902.00462
16


http://arxiv.org/abs/arXiv:1903.00462

The moduli problem can be alleviated

due to (not too) low-scale inflation. (Quadratic term)
Shu-Yu Ho, Fuminobu Takahashi, and WY 1901.01240

7 : : : :
----- DM relic abundance
6. — X-ray/gamma-ray " .4 Assumption:
J 1
,,,,, P/ 2 2
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during and after inflation
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- Data taken from
X(gamma)-ray:
2l f¢:1016GeV ] Essig, et al. 1309.4091;
_ f¢:1015GeV Hinf<m¢ BBN:
Kawasaki, et al. 1709.01211;

-
-
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No moduli problem for the string axions
if Hie <OkeV) [0 SOM)PeV].
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----- DM relic abundance
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Inflation with Hi,s < O(eV) is possible with successful reheating
through thermal dissipation, and can be tested.

“ALP miracle”, Daido, Takahashi, WY, 1702.03284, 1710.11107,
“Big bang on earth”, Takahashi, WY 1902.00462.
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ALP znflation with hilltop axion DM

PoreTy

Takahashi, WY, 1908.06071,
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ALP znflation with hilltop axion DM

Takahashi, WY, 1908.06071,

Q%= 0.12 RN

“ . R : L en
. Whole region can be o 0= nl=0~0
| tested in ARIADNE! «— | |
: (If there are certain CP phases from new physics.) : i
MADMAX |
0.1 1
m, [meV] f, = 5% 10°GeV
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Opening 1Hz axion window ..«n wy 191208188
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Stochastic ALP DM with flat bottom
Nakagawa, Takahashi, WY, 2002.12195

T, = 1019GeV
| I I | I I | I I | I I | I I | T - | I I
_ Too large tensor perturbation : /
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