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1.	Inflationary	Universe

•Standard	paradigm	in	modern	cosmology

- Solving	Horizon	&	Flatness	problems	
- Generating	primordial	density	fluctuations		

• Slow-roll	inflation

- A	simple	viable	model		
- A	scalar	field	(``inflaton’’)	with	a	flat	potential	
- Constraints	from	CMB	data	(Planck	2018)



Non-minimal	Quartic	Inflation:	simple	&	successful	scenario	

Action	in	Jordan	Frame See,	for	example,		
NO,	Rehman	&	Shafi,	PRD	82	(2010)	04352	
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• Non-minimal	gravitational	coupling

• Quartic	coupling	dominates	during	inflation
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Inflationary	Predictions	VS	Planck	2018	results		
Spectral index: 
Tensor-to-scalar ratio:  
Running spectral index:

Planck	2018
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Inflationary	Predictions	VS	Planck	2018	results		

Non-minimal	quartic	inflation	
‣ Controlled	by	only	one	free	parameter	
‣ Consistent	with	Planck	2018	dta	for				
‣ Any	scalars	with	a	quartic	potential	term	can	be	inflaton	
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‣ Can	inflaton	play	another	important	role	in	physics?			

We	consider	a	scenario	in	which	inflaton	is	identified	
with	a	Higgs	field	in	New	Physics	Models

Open	Question
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2.	Classically	Conformal	U(1)x	extended	SM
Generalization	of	the	minimal	B-L	model

3	RHNs
U(1)x	Higgs

‣ U(1)x	charge:																																					(xH=0	is	the	B-L	model)	
‣ Anomaly	free	
‣ Seesaw	Mechanism	is	automatically	implemented

QX = QY xH + QB−L
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Higgs	sector	with	classical	conformal	invariance	

‣ No	mass	term	
‣ We	set		
‣ No	symmetry	breaking	at	the	tree-level

Assuming	a	small	mixing	quartic	coupling,	the	symmetry	
breaking	occurs	in	the	following	way………	
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1st: Radiative	U(1)	symmetry	breaking	by	Colemen-Weinberg	
mechanism	 

1-loop	effective	Coleman-Weinberg	potential	

* Here,	we	set	Majorana	Yukawa	being	smaller	than	the	gauge	
coupling,	for	simplicity.		

16π2βΦ ≃ 96 g4
X
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Stationary	condition	relates	quartic	coupling	to	gauge	coupling		

à

U(1)x	Higgs	mass	relates	to	gauge	coupling	&	Z’	mass

Here,	barred	quantities	are	evaluated	at	VEV 
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2nd:	Radiative	U(1)	breaking	triggers	the	EW	symmetry	breaking	

Iso,	NO	&	Orikasa,	
PLB	676	(2009)	81	

Higgs	mass	relations	

* mh=125	GeV,	vh=246	GeV

 Negative	mass	squared	generated!
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Diagonalizing	the	scalar	mass	matrix

Here,	we	consider	a	very	light	U(1)x	Higgs	boson

à

In	Classically	Conformal	U(1)x	extended	SM,			

	are	determined	by	
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We diagonalize the mass matrix by
[
h

φ

]
=

[
cos θ sin θ

− sin θ cos θ

][
h̃

φ̃

]
, (14)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (15)

Since we are interested in the case with m2
φ ≪ m2

h and λmix ≪ 1, we find

θ ≃ vh
vX

=

√
16παXvh
mZ′

≪ 1. (16)

The mass eigenvalues are given by

m2
φ̃
= m2

φ +
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

φ −m2
hθ

2,

m2
h̃
= m2

h −
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

h. (17)

For the parameter region which will be searched by the FASER, we find mφ̃,h̃ ≃ mφ,h and φ̃, h̃ ≃ φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
inflaton mass (mφ) and its mixing angle with the Higgs field (θ) are uniquely determined by αX and mZ′ with Eqs. (11) and
(16).

Nonminimal quartic inflation: We here give a brief review on nonminimal quartic inflation with the action in the Jordan
frame:

SJ =

∫
d4x

√
−g

[
−1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)− VJ(φ)

]
, (18)

where φ is a real scalar field (inflaton), f(φ) = (1 + ξφ2) with a real parameter ξ > 0,

VJ(φ) =
1

4
λφ4 (19)

is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as

SE =

∫
d4x

√
−gE

[
−1

2
RE +

1

2
gµνE (∂µσ) (∂νσ)− VE(φ(σ))

]
, (20)

where

VE(φ(σ)) =
VJ(φ)

f(φ)2
=

1
4λφ

4

(1 + ξφ2)2
→ λ

4ξ2
(21)

, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field φ by
(
dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
. (22)

Using Eq. (22), we can express the slow-roll inflation parameters in the Einstein frame as

ϵ(φ) =
1

2

(
V ′
E

VE σ′

)2

,

η(φ) =
V ′′
E

VE (σ′)2
− V ′

E σ′′

VE (σ′)3
,

ζ(φ) =

(
V ′
E

VE σ′

)(
V ′′′
E

VE (σ′)3
− 3

V ′′
E σ′′

VE (σ′)4
+ 3

V ′
E (σ′′)2

VE (σ′)5
− V ′

E σ′′′

VE (σ′)4

)
, (23)
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Diagonalizing	the	scalar	mass	matrix	

In	terms	of	FASER	Search	of	the	exotic	scalar,	we	are	interested	
in	the	case:			

We diagonalize the mass matrix by
[
h

φ

]
=

[
cos θ sin θ

− sin θ cos θ

][
h̃

φ̃

]
, (14)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (15)

Since we are interested in the case with m2
φ ≪ m2

h and λmix ≪ 1, we find

θ ≃ vh
vX

=

√
16παXvh
mZ′

≪ 1. (16)

The mass eigenvalues are given by

m2
φ̃
= m2

φ +
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

φ −m2
hθ

2,

m2
h̃
= m2

h −
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

h. (17)

For the parameter region which will be searched by the FASER, we find mφ̃,h̃ ≃ mφ,h and φ̃, h̃ ≃ φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
inflaton mass (mφ) and its mixing angle with the Higgs field (θ) are uniquely determined by αX and mZ′ with Eqs. (11) and
(16).

Nonminimal quartic inflation: We here give a brief review on nonminimal quartic inflation with the action in the Jordan
frame:

SJ =

∫
d4x

√
−g

[
−1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)− VJ(φ)

]
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where φ is a real scalar field (inflaton), f(φ) = (1 + ξφ2) with a real parameter ξ > 0,

VJ(φ) =
1

4
λφ4 (19)

is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as

SE =

∫
d4x

√
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[
−1
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RE +

1
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gµνE (∂µσ) (∂νσ)− VE(φ(σ))

]
, (20)

where

VE(φ(σ)) =
VJ(φ)

f(φ)2
=

1
4λφ

4

(1 + ξφ2)2
→ λ

4ξ2
(21)

, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field φ by
(
dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
. (22)

Using Eq. (22), we can express the slow-roll inflation parameters in the Einstein frame as

ϵ(φ) =
1

2

(
V ′
E

VE σ′

)2

,

η(φ) =
V ′′
E

VE (σ′)2
− V ′

E σ′′

VE (σ′)3
,

ζ(φ) =

(
V ′
E

VE σ′

)(
V ′′′
E

VE (σ′)3
− 3

V ′′
E σ′′

VE (σ′)4
+ 3

V ′
E (σ′′)2

VE (σ′)5
− V ′

E σ′′′

VE (σ′)4

)
, (23)
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VJ(φ) =
1

4
λφ4 (19)

is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as
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√
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−1

2
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1
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gµνE (∂µσ) (∂νσ)− VE(φ(σ))

]
, (20)

where

VE(φ(σ)) =
VJ(φ)

f(φ)2
=

1
4λφ

4

(1 + ξφ2)2
→ λ

4ξ2
(21)

, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field φ by
(
dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
. (22)

Using Eq. (22), we can express the slow-roll inflation parameters in the Einstein frame as

ϵ(φ) =
1

2

(
V ′
E

VE σ′

)2

,

η(φ) =
V ′′
E

VE (σ′)2
− V ′

E σ′′

VE (σ′)3
,

ζ(φ) =

(
V ′
E

VE σ′

)(
V ′′′
E

VE (σ′)3
− 3

V ′′
E σ′′

VE (σ′)4
+ 3

V ′
E (σ′′)2

VE (σ′)5
− V ′

E σ′′′

VE (σ′)4

)
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After	all,	in	Classically	Conformal	U(1)x	extended	SM,				

the U(1)X gauge coupling.

αX =
gX

2

4π
mZ′ = 2gXvX (1)

The Yukawa sector of the SM is extended to include

LY ⊃ −
3∑

i,j=1

Y ij
D ℓiLHN j

R − 1

2

3∑

k=1

Y k
MΦNk C

R Nk
R, (2)

⟨H⟩ ⟨Φ⟩ ℓL (3)

where YD (YM ) is a Dirac (Majorana) type Yukawa coupling. Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the RHNs are generated by the U(1)X gauge symmetry breaking. For
simplicity, we fix Y 1,2,3

M = YM and thus RHNs have a degenerate mass spectrum, mN = YMvX/
√
2. After the electroweak

symmetry breaking, the light neutrino masses are generated via the type-I seesaw mechanism [14].
Imposing the classical conformal invariance, the Higgs potential of our model is given by

V = λH

(
H†H

)2
+ λΦ

(
Φ†Φ

)2 − λmix

(
H†H

)(
Φ†Φ

)
, (4)

V ⊃ −λmix

(
Φ†Φ

) (
H†H

)
+ λH

(
H†H

)2
(5)

→ −λmix⟨Φ†Φ⟩
(
H†H

)
+ λH

(
H†H

)2
(6)
(7)

where we set λH,Φ,mix > 0. Assuming λmix ≪ 1 (this will be justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the 1-loop level is given by [8]

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(
ln

[
φ2

v2X

]
− 25

6

)
, (8)

where φ =
√
2ℜ[Φ], vX is chosen as a renormalization scale, and the coefficient of the 1-loop corrections is approximately given

by

16π2βΦ ≃ 96g4X − 3Y 4
M ≃ 96g4X (9)

The stationary condition, dV/dφ|φ=vX
= 0, leads to

λΦ =
11

6
βΦ ≃ 176αX

4 , (10)

where the barred quantities are evaluated at ⟨φ⟩ = vX . The mass of φ is given by

m2
φ =

d2V

dφ2

∣∣∣∣
φ=vX

= βΦv
2
X ≃ 6

π
αXm2

Z′ (11)

where αX = g2X/(4π). The condition for the stability of U(1)X vacuum, m2
φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by ⟨Φ⟩ = vX/
√
2 induces a negative mass squared for the SM Higgs doublet

(−λmix|⟨Φ⟩|2) in Eq. (4) and triggers the electroweak symmetry breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (12)

where vh = 246 GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of λmix ≪ 1 by considering
the LEP constraint on vX ! 10 TeV [15–18].

mφ, θ αX mZ′ (13)
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The U(1)X gauge symmetry breaking by ⟨Φ⟩ = vX/
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2 induces a negative mass squared for the SM Higgs doublet
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GeV) is described as

m2
h = λmixv

2
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mφ, θ αX , mZ′ (13)

3
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3. Search	for	Inflaton	at	FASER

•Now	we	identify	the	U(1)x	Higgs	as	inflaton	
in	Non-minimal	U(1)x	Inflation

‣ From	the	structure	of	non-minimal	quartic	inflation,

Once								is	fixed    à  

All	parameters	are	fixed

‣ From	the	structure	of	the	CW	mechanism,	

 are determined  by 

23 

		Ø  From	the	structure	of	non-minimal	quartic	inflation,	

Once							is	fixed				à			
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FIG. 2. The inflaton search reach at the FASER and the relation with other observables.

In Fig. 2, we show our results in (mφ, θ)-plane, together with the FASER search reach, the search reach of other planned/proposed
experiments (contours with the names of experiments indicated), and the current excluded region (gray shaded) from CHARM
[24], Belle [25] and LHCb [26] experiments, as shown in Ref. [3]. The diagonal dashed lines correspond to ξ = 0.00642
(r = 0.064) and ξ = 0.00689 (r = 0.01), respectively, from left to right. The cyan shaded region (r > 0.064) is excluded by the
Planck 2018 results. We find that the parameter region corresponding to the inflationary prediction r ∼ 0.01 can be searched by
the FASER 2 in the future, a part of which is already excluded the Planck 2018 result. For a fixed mZ′ , we can obtain a relation
between mφ and θ through αX (recall, again, that this relation is almost independent of xH values for |xH | < 10). In Fig. 2,
the diagonal solid lines correspond to mZ′ [TeV] = 0.7, 1.0, 1.3, 2.6, 5.0, and 10, from top to bottom. A point on a solid line
corresponds to a fixed value of ξ, or equivalently, r. Along each line, the ξ (r) value increases (decreases) from left to right. In
Table III, for various mZ′ values, we have listed the range of the predicted tensor-to-scalar ratio (r) which will be covered by
the FASER. The blue shaded region (labeled ATLAS) is excluded by the ATLAS result of the Z ′ boson search for xH = 10,
corresponding to the bottom solid line in Fig. 1. The excluded regions for xH = −0.8 and xH = 0 (the B − L model limit)
correspond to θ > 10−3, and thus they are covered by the gray shaded region.

mZ′ [TeV] The range covered by FASER
0.7 5.7× 10−3 ≤ r ≤ 6.0× 10−3

1.0 5.3× 10−3 ≤ r ≤ 1.0× 10−2

1.3 6.1× 10−3 ≤ r ≤ 1.4× 10−2

2.6 7.7× 10−3 ≤ r ≤ 6.4× 10−2

5.0 4.7× 10−3 ≤ r ≤ 6.4× 10−2

10 7.0× 10−3 ≤ r ≤ 6.4× 10−2

TABLE III. The ranges of r which will be covered by the FASER.

In conclusion, we have considered the nonminimal quartic inflation scenario in the minimal U(1)X model with classical
conformal invariance, where the inflaton is identified with the U(1)X Higgs field. The FASER can search for the inflaton when
its mass and mixing angle with the SM Higgs field are in the range of 0.1 ! mφ[GeV] ! 4 and 10−5 ! θ ! 10−3. By virtue
of the classical conformal invariance and the radiative U(1)X symmetry breaking via the Coleman-Weinberg mechanism, the
infalton search by the FASER, the Z ′ boson resonance search at the LHC, and the future measurement of r are complementary
to test our inflationary scenario.

Acknowledgements: This work is supported in part by the United States Department of Energy grant DE-S0012447 (N.O),
DE-SC0013880 (D.R) and Bartol Research Grant BART-462114 (D.R).
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φ0, λΦ(µ = φ0), (14)
ns, r, α (15)

The mass matrix for the Higgs bosons, φ and h, is given by

L ⊃ −1

2

[
h φ

] [ m2
h λmixvXvh

λmixvXvh m2
φ

][
h

φ

]
. (16)

We diagonalize the mass matrix by
[
h

φ

]
=

[
cos θ sin θ

− sin θ cos θ

][
h̃

φ̃

]
, (17)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (18)

Since we are interested in the case with m2
φ ≪ m2

h and λmix ≪ 1, we find

θ ≃ vh
vX

=

√
16παXvh
mZ′

≪ 1. (19)

The mass eigenvalues are given by

m2
φ̃
= m2

φ +
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

φ −m2
hθ

2,

m2
h̃
= m2

h −
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

h. (20)

For the parameter region which will be searched by the FASER, we find mφ̃,h̃ ≃ mφ,h and φ̃, h̃ ≃ φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
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where φ is a real scalar field (inflaton), f(φ) = (1 + ξφ2) with a real parameter ξ > 0,

VJ(φ) =
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4
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is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as
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All	parameters	are	fixed	

Ø  From	the	structure	of	the	CW	mechanism,		

the U(1)X gauge coupling.

αX =
gX

2

4π
mZ′ = 2gXvX (1)

The Yukawa sector of the SM is extended to include

LY ⊃ −
3∑

i,j=1

Y ij
D ℓiLHN j

R − 1

2

3∑

k=1

Y k
MΦNk C

R Nk
R, (2)

⟨H⟩ ⟨Φ⟩ ℓL (3)

where YD (YM ) is a Dirac (Majorana) type Yukawa coupling. Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the RHNs are generated by the U(1)X gauge symmetry breaking. For
simplicity, we fix Y 1,2,3

M = YM and thus RHNs have a degenerate mass spectrum, mN = YMvX/
√
2. After the electroweak

symmetry breaking, the light neutrino masses are generated via the type-I seesaw mechanism [14].
Imposing the classical conformal invariance, the Higgs potential of our model is given by

V = λH

(
H†H

)2
+ λΦ

(
Φ†Φ

)2 − λmix

(
H†H

)(
Φ†Φ

)
, (4)

V ⊃ −λmix

(
Φ†Φ

) (
H†H
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+ λH

(
H†H

)2
(5)

→ −λmix⟨Φ†Φ⟩
(
H†H

)
+ λH

(
H†H

)2
(6)
(7)

where we set λH,Φ,mix > 0. Assuming λmix ≪ 1 (this will be justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the 1-loop level is given by [8]

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(
ln

[
φ2

v2X

]
− 25

6

)
, (8)

where φ =
√
2ℜ[Φ], vX is chosen as a renormalization scale, and the coefficient of the 1-loop corrections is approximately given

by

16π2βΦ ≃ 96g4X − 3Y 4
M ≃ 96g4X (9)

The stationary condition, dV/dφ|φ=vX
= 0, leads to

λΦ =
11

6
βΦ ≃ 176αX

4 , (10)

where the barred quantities are evaluated at ⟨φ⟩ = vX . The mass of φ is given by

m2
φ =

d2V

dφ2

∣∣∣∣
φ=vX

= βΦv
2
X ≃ 6

π
αXm2

Z′ (11)

where αX = g2X/(4π). The condition for the stability of U(1)X vacuum, m2
φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by ⟨Φ⟩ = vX/
√
2 induces a negative mass squared for the SM Higgs doublet

(−λmix|⟨Φ⟩|2) in Eq. (4) and triggers the electroweak symmetry breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (12)

where vh = 246 GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of λmix ≪ 1 by considering
the LEP constraint on vX ! 10 TeV [15–18].
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mφ, θ αX , mZ′ (13)
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RG evolutions connect                            and   

* For	small	gauge	coupling	values,	we	find	the	result	is		
almost	independent	of	xH.	

Therefore, once          is  fixed                        

 are determined by only 
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FASER	Search	for	Dark	Scalar	

Upcoming	FASER	experiment	will	search	for	a	light	``Dark	Scalar’’	
mainly	produced	from	rare	B-meson	decays	through	the	mixing	
with	the	SM	Higgs	boson

21 

We diagonalize the mass matrix by
[
h

φ

]
=

[
cos θ sin θ

− sin θ cos θ

][
h̃

φ̃

]
, (14)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (15)

Since we are interested in the case with m2
φ ≪ m2

h and λmix ≪ 1, we find

θ ≃ vh
vX

=

√
16παXvh
mZ′

≪ 1. (16)

The mass eigenvalues are given by

m2
φ̃
= m2

φ +
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

φ −m2
hθ

2,

m2
h̃
= m2

h −
(
m2

φ −m2
h

) sin2 θ

1− 2 sin2 θ
≃ m2

h. (17)

For the parameter region which will be searched by the FASER, we find mφ̃,h̃ ≃ mφ,h and φ̃, h̃ ≃ φ, h. For notational simplicity,
we will refer to the mass eigenstates without using tilde in the rest of this letter. Note that for a fixed value of mN/mZ′ , the
inflaton mass (mφ) and its mixing angle with the Higgs field (θ) are uniquely determined by αX and mZ′ with Eqs. (11) and
(16).

Nonminimal quartic inflation: We here give a brief review on nonminimal quartic inflation with the action in the Jordan
frame:

SJ =

∫
d4x

√
−g

[
−1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)− VJ(φ)

]
, (18)

where φ is a real scalar field (inflaton), f(φ) = (1 + ξφ2) with a real parameter ξ > 0,

VJ(φ) =
1

4
λφ4 (19)

is the inflaton quartic potential, and the reduced Planck mass of MP = 2.44× 1018 GeV is set to be 1 (Planck unit). Using the
transformation of f(φ)gµν = gEµν , the action in the Einstein frame is described as

SE =

∫
d4x

√
−gE

[
−1

2
RE +

1

2
gµνE (∂µσ) (∂νσ)− VE(φ(σ))

]
, (20)

where

VE(φ(σ)) =
VJ(φ)

f(φ)2
=

1
4λφ

4

(1 + ξφ2)2
→ λ

4ξ2
(21)

, and σ is a canonically normalized scalar field (inflaton in the Einstein frame) which is related to the original field φ by
(
dσ

dφ

)2

=
1 + ξ(6ξ + 1)φ2

(1 + ξφ2)2
. (22)

Using Eq. (22), we can express the slow-roll inflation parameters in the Einstein frame as

ϵ(φ) =
1

2

(
V ′
E

VE σ′

)2

,

η(φ) =
V ′′
E

VE (σ′)2
− V ′

E σ′′

VE (σ′)3
,

ζ(φ) =

(
V ′
E

VE σ′

)(
V ′′′
E

VE (σ′)3
− 3

V ′′
E σ′′

VE (σ′)4
+ 3

V ′
E (σ′′)2

VE (σ′)5
− V ′

E σ′′′

VE (σ′)4

)
, (23)

4

Diagonalizing	the	scalar	mass	matrix	

In	terms	of	FASER	Search	of	the	exotic	scalar,	we	are	interested	
in	the	case:			
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inflaton mass (mφ) and its mixing angle with the Higgs field (θ) are uniquely determined by αX and mZ′ with Eqs. (11) and
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4
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After	all,	in	Classically	Conformal	U(1)x	extended	SM,				

the U(1)X gauge coupling.

αX =
gX

2

4π
mZ′ = 2gXvX (1)

The Yukawa sector of the SM is extended to include

LY ⊃ −
3∑

i,j=1

Y ij
D ℓiLHN j

R − 1

2

3∑

k=1

Y k
MΦNk C

R Nk
R, (2)

⟨H⟩ ⟨Φ⟩ ℓL (3)

where YD (YM ) is a Dirac (Majorana) type Yukawa coupling. Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the RHNs are generated by the U(1)X gauge symmetry breaking. For
simplicity, we fix Y 1,2,3

M = YM and thus RHNs have a degenerate mass spectrum, mN = YMvX/
√
2. After the electroweak

symmetry breaking, the light neutrino masses are generated via the type-I seesaw mechanism [14].
Imposing the classical conformal invariance, the Higgs potential of our model is given by

V = λH

(
H†H

)2
+ λΦ

(
Φ†Φ

)2 − λmix

(
H†H

)(
Φ†Φ

)
, (4)

V ⊃ −λmix

(
Φ†Φ

) (
H†H

)
+ λH

(
H†H

)2
(5)

→ −λmix⟨Φ†Φ⟩
(
H†H

)
+ λH

(
H†H

)2
(6)
(7)

where we set λH,Φ,mix > 0. Assuming λmix ≪ 1 (this will be justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the 1-loop level is given by [8]

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(
ln

[
φ2

v2X

]
− 25

6

)
, (8)

where φ =
√
2ℜ[Φ], vX is chosen as a renormalization scale, and the coefficient of the 1-loop corrections is approximately given

by

16π2βΦ ≃ 96g4X − 3Y 4
M ≃ 96g4X (9)

The stationary condition, dV/dφ|φ=vX
= 0, leads to

λΦ =
11

6
βΦ ≃ 176αX

4 , (10)

where the barred quantities are evaluated at ⟨φ⟩ = vX . The mass of φ is given by

m2
φ =

d2V

dφ2

∣∣∣∣
φ=vX

= βΦv
2
X ≃ 6

π
αXm2

Z′ (11)

where αX = g2X/(4π). The condition for the stability of U(1)X vacuum, m2
φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by ⟨Φ⟩ = vX/
√
2 induces a negative mass squared for the SM Higgs doublet

(−λmix|⟨Φ⟩|2) in Eq. (4) and triggers the electroweak symmetry breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (12)

where vh = 246 GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of λmix ≪ 1 by considering
the LEP constraint on vX ! 10 TeV [15–18].
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GeV) is described as
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where vh = 246 GeV is the Higgs doublet VEV. From this formula, we can justify our assumption of λmix ≪ 1 by considering
the LEP constraint on vX ! 10 TeV [15–18].

mφ, θ αX , mZ′ (13)

3

* Gray	shaded	region	is				
already	excluded	by	
CHRAM,	Belle	&	LHCb	

• FASER	at	LHC	Run-3	
• FASER-2	at	HL-LHC

5 

FASER	Search	for	Dark	Scalar		

A	light	Dark	Scalar	is	mainly	produced	through	rare	B-meson	decay	
through	its	mixing	with	the	SM	Higgs	boson:		

SU(3)c SU(2)L U(1)Y U(1)X

qiL 3 2 1/6 (1/6)xH + (1/3)

ui
R 3 1 2/3 (2/3)xH + (1/3)

diR 3 1 −1/3 (−1/3)xH + (1/3)

ℓiL 1 2 −1/2 (−1/2)xH − 1

eiR 1 1 −1 −xH − 1

H 1 2 −1/2 (−1/2)xH

N i
R 1 1 0 −1

Φ 1 1 0 2

TABLE I. The particle content of the minimal U(1)X model. i =
1, 2, 3 is the generation index.

anomalies. Once the U(1)X Higgs field (Φ) develops a vac-
uum expectation value (VEV), ⟨Φ⟩ = vX/

√
2, the U(1)X

gauge symmetry is broken and the Z ′ boson becomes mas-
sive, mZ′ = 2gXvX , where gX is the U(1)X gauge coupling.

The Yukawa sector of the SM is extended to include

LY ⊃ −
3
∑

i,j=1

Y ij
D ℓiLHN j

R −
1

2

3
∑

k=1

Y k
MΦNk C

R Nk
R, (1)

where YD (YM ) is a Dirac (Majorana) type Yukawa coupling.
Without a loss of generality, we chose the Majorana Yukawa
couplings to be flavor diagonal. The Majorana masses for the
RHNs are generated by the U(1)X gauge symmetry break-
ing. For simplicity, we fix Y 1,2,3

M = YM and thus RHNs have

a degenerate mass spectrum, mN = YMvX/
√
2. After the

electroweak symmetry breaking, the light neutrino masses are
generated via the type-I seesaw mechanism [14].

Imposing the classical conformal invariance, the Higgs po-
tential of our model is given by

V = λH

(

H†H
)2

+ λΦ

(

Φ†Φ
)2 − λmix

(

H†H
)(

Φ†Φ
)

, (2)

where we set λH,Φ,mix > 0. Assuming λmix ≪ 1 (this will be
justified later), we can separately analyze the Higgs potential
for Φ and H . The CW potential for the Higgs field Φ at the
1-loop level is given by [8]

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(

ln

[

φ2

v2X

]

−
25

6

)

, (3)

where φ =
√
2ℜ[Φ], vX is chosen as a renormalization scale,

and the coefficient of the 1-loop corrections is approximately
given by

16π2βΦ ≃ 96g4X − 3Y 4
M . (4)

The stationary condition, dV/dφ|φ=vX
= 0, leads to

λΦ =
11

6
βΦ, (5)

where the barred quantities are evaluated at ⟨φ⟩ = vX . The

mass of φ is given by

m2
φ =

d2V

dφ2

∣

∣

∣

∣

φ=vX

= βΦv
2
X

=
6

π
αXm2

Z′

(

1− 2

(

mN

mZ′

)4
)

, (6)

where αX = g2X/(4π). The condition for the stability of
U(1)X vacuum, m2

φ > 0, requires mZ′ > 21/4mN .

The U(1)X gauge symmetry breaking by ⟨Φ⟩ = vX/
√
2

induces a negative mass squared for the SM Higgs doublet
(−λmix|⟨Φ⟩|2) in Eq. (2) and triggers the electroweak symme-
try breaking [9]. The SM(-like) Higgs boson mass (mh = 125
GeV) is described as

m2
h = λmixv

2
X = 2λHv2h, (7)

where vh = 246 GeV is the Higgs doublet VEV. From this
formula, we can justify our assumption of λmix ≪ 1 by con-
sidering the LEP constraint on vX ! 10 TeV [15–18].

The mass matrix for the Higgs bosons, φ and h, is given by

L ⊃ −
1

2

[

h φ
]

[

m2
h λmixvφvh

λmixvφvh m2
φ

] [

h

φ

]

. (8)

We diagonalize the mass matrix by
[

h

φ

]

=

[

cos θ sin θ

− sin θ cos θ

][

h̃

φ̃

]

, (9)

where h̃ and φ̃ are the mass eigenstates, and the mixing angle
θ is determined by

2vXvhλmix = (m2
h −m2

φ) tan 2θ. (10)

Since we are interested in the case with m2
φ ≪ m2

h and
λmix ≪ 1, we find

θ ≃
vh
vX

=

√
16παXvh
mZ′

≪ 1. (11)

The mass eigenvalues are given by

m2

φ̃
= m2

φ +
(

m2
φ −m2

h

) sin2 θ

1− 2 sin2 θ
≃ m2

φ −m2
hθ

2,

m2

h̃
= m2

h −
(

m2
φ −m2

h

) sin2 θ

1− 2 sin2 θ
≃ m2

h. (12)

For the parameter region which will be searched by the
FASER, we find mφ̃,h̃ ≃ mφ,h and φ̃, h̃ ≃ φ, h. For nota-
tional simplicity, we will refer to the mass eigenstates without
using tilde in the rest of this letter. Note that for a fixed value
of mN/mZ′ , the inflaton mass (mφ) and its mixing angle with
the Higgs field (θ) are uniquely determined by αX and mZ′

with Eqs. (6) and (11).
Nonminimal quartic inflation: We here give a brief re-

view on nonminimal quartic inflation with the action in the
Jordan frame:

SJ =

∫

d4x
√
−g

[

−
1

2
f(φ)R+

1

2
gµν (∂µφ) (∂νφ)

−VJ(φ)] , (13)

2

•  FASER	will	be	operational	
in	2021	at	LHC	Run-3	

•  FASER	2	at	HL-LHC	

Gray	shaded	region	is	
already	excluded	by	
CHRAM,	Belle	&	LHCb		 10-1 1 10
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FIG. 10. Benchmark Model S1. The decay length (top left panel), decay branching fractions
(bottom left panel), and FASER’s reach (right panel) for the dark Higgs boson with negligible
trilinear coupling to the SM Higgs. The gray shaded regions are excluded, and the colored contours
are the projected sensitivities of other proposed experiments; see text for details.

bosons. For the latter mechanism, SM Higgs bosons can decay through h ! ��, yielding a
signal of invisible Higgs decays that can be discovered at ATLAS or CMS or Higgs bosons
decaying to LLPs, which can be discovered by MATHUSLA, for example. However, the
trilinear coupling also yields a new production mechanism for FASER, namely, rare B

decays to strange hadrons and an o↵-shell Higgs boson, leading to B ! Xsh
⇤
! Xs��.

The corresponding decay branching fraction is given by [72, 73]

B(B ! Xs��) =
C

2
�
2

�B

m
5
b

256⇡3
f

✓
m�

mb

◆
, (19)

where C = 4.9⇥ 10�8 GeV�2, and f is given by [26]

f(x) =
1

3

p
1� 4x2(1 + 5x2

� 6x4)� 4x2(1� 2x2 + 2x4) log


1

2x

⇣
1 +

p
1� 4x2

⌘�
. (20)

Decay and Lifetime: If ✓ > 0, the dark Higgs can decay into SM fermions, and its decay
width and branching fractions are as discussed in Sec. VA.

Results: The expected reach of FASER 2 for dark Higgs bosons with sizable trilinear cou-
plings is shown in the right panel of Fig. 11. The shaded contours show results, the reach
obtained from the dark Higgs pair production process only, for � = 0.0046, 0.0015 cor-
responding to B(h ! ��) ⇡ 4700�2 = 10%, 1%. The larger value is currently allowed.
The smaller value will be very challenging to probe through invisible Higgs decays even
at the HL-LHC, but could be probed by other future colliders, such as the ILC [74] and
FCC [75].

As can be seen, the additional production mechanism through o↵-shell SM Higgs boson
B ! Xs�� allows FASER to probe parameter space reaching to lower values of the

22
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★ The	U(1)x	Higgs/Inflaton	in	the	classically	conformal	U(1)x	
extended	 SM	 can	 be	 search	 for	 by	 the	 FASER	 &	 other	
Lifetime	Frontier	experiments!	

★ Crucial	 point	 is	 that	 we	 have	 a	 connection	 among	 FASER	
search	region,		Inflationary	predictions	&	Z’-boson	search

mϕ, θ

αX, mZ′�

ξ

:	Lifetime	Frontier	Exps.	Search	region	

:	Z’	boson	resonance	search

:	Inflationary	predictions	
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Hunting	Inflaton	at	FASER
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NO	&	Raut,	arXiv:	1910.09663

as a function of φ, αX , mZ′ and xH . On the other hand,
in the inflation analysis, the inflationary predictions are con-
trolled by only one parameter ξ. Once we fix a ξ value, φ0 and
λΦ(φ0) are completely fixed as listed in Table II. Hence, by
using Eq. (24) we can express αX as a function of mZ′ and
xH for a fixed value of ξ. In fact, for ξ ! 10, we find that
αX is almost independent of xH , so that the xH dependence
for inflationary predictions effectively drops off. Therefore,
the inflationary predictions, αX , mZ′ , mφ and θ are directly
related with each other through Eqs. (6), (11) and (24).

Planck 2018 !r ! 0.064"

500 1000 2000 5000
10!4

0.001

0.01

0.1

1

mZ ' !GeV"

g X

FIG. 1. The upper bounds on gX from the ATLAS result for xH =
−0.8, 0 and 10 (the diagonal lines from top to bottom), respectively.

The ATLAS and the CMS collaborations have been search-
ing for a narrow resonance at the LHC, and the most severe
constraint on the Z ′ boson of our model has been obtained
by the search with dilepton final states. The ATLAS col-
laboration has recently reported their final result of the LHC
Run-2 with a 139 fb−1 integrated luminosity [21]. Following
the analysis in Ref. [22], we interpret the ATLAS result into
an upper bound on gX as a function of mZ′ for a fixed xH

value. In Fig. 1, we show our results for xH = −0.8, 0, and
10 (the solid diagonal lines from top to bottom). The upper
bounds depend on xH values and roughly scale as gX/|xH |
for |xH | " 3, while we find the LHC bound becomes weak
for xH ∼ −1 [23]. In the figure, we also plot the contours for
fixed ξ values. For xH = 0, the horizontal solid lines from
top to bottom correspond to ξ = 10, 1.0, 6.9 × 10−2, and
6.4 × 10−3 or equivalently, r =0.1, 0.01, 3.4 × 10−3, and
3.0× 10−3, respectively. The cyan shaded region is excluded
by the Planck 2018 measurement r > 0.064. As discussed
above, the inflationary predictions are almost independent of
xH for |xH | < 10 and the horizontal lines represent the re-
sults for any values of xH for |xH | < 10. Fig. 1 indicates
a complementarity between the LHC search for the Z ′ boson
resonance and the inflationary predictions.

Searching for the inflaton at the FASER: We are now
ready to discuss the inflaton search at the FASER and its com-
plementarity to the cosmological constraints on the inflation-
ary predictions. For a fixed ξ value, the inflationary predic-
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FIG. 2. The inflaton search reach at the FASER and the relation with
other observables.

tions are fixed and αX is determined as a function of mZ′ , in-
dependently of xH for |xH | < 10. As a result, both the mass
of inflaton (mφ) and its mixing angle with the SM Higgs field
(θ) are uniquely determined by the CW relations in Eqs. (6)
and (11), respectively.

In Fig. 2, we show our results in (mφ, θ)-plane, together
with the FASER search reach, the search reach of other
planned/proposed experiments (contours with the names of
experiments indicated), and the current excluded region (gray
shaded) from CHARM [24], Belle [25] and LHCb [26] ex-
periments, as shown in Ref. [3]. The diagonal dashed lines
correspond to ξ = 0.00642 (r = 0.064) and ξ = 0.00689
(r = 0.01), respectively, from left to right. The cyan shaded
region (r > 0.064) is excluded by the Planck 2018 results. We
find that the parameter region corresponding to the inflation-
ary prediction r ∼ 0.01 can be searched by the FASER 2 in
the future, a part of which is already excluded the Planck 2018
result. For a fixed mZ′ , we can obtain a relation between mφ

and θ through αX (recall, again, that this relation is almost
independent of xH values for |xH | < 10). In Fig. 2, the diag-
onal solid lines correspond to mZ′ [TeV] = 0.7, 1.0, 1.3, 2.6,
5.0, and 10, from top to bottom. A point on a solid line cor-
responds to a fixed value of ξ, or equivalently, r. Along each
line, the ξ (r) value increases (decreases) from left to right.
In Table III, for various mZ′ values, we have listed the range
of the predicted tensor-to-scalar ratio (r) which will be cov-
ered by the FASER. The blue shaded region (labeled ATLAS)
is excluded by the ATLAS result of the Z ′ boson search for
xH = 10, corresponding to the bottom solid line in Fig. 1.
The excluded regions for xH = −0.8 and xH = 0 (the B−L
model limit) correspond to θ > 10−3, and thus they are cov-

4



!18

Best	case	scenario	(discovery)

Cross checked by

• Future	CMB	
measurements	

• Z’	resonance	
search	at	HL-LHC
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4.	Summary

‣ We	 have	 considered	 the	 non-minimal	 quartic	 inflation	
scenario	in	the	minimal	U(1)x	extended	SM	with	classical	
conformal	invariance	

‣ Inflaton	is	identified	with	the	U(1)x	Higgs			

‣ The	recently	approved	FASER	can	search	for	the	inflaton		

‣ By	 virtue	 of	 	 the	 classical	 conformal	 invariance	 &	 the	
radiative	 U(1)x	 symmetry	 breaking	 by	 the	 Coleman-
Weinberg	 mechanism,	 the	 inflaton	 search	 by	 FASER,	 Z’	
boson	 resonance	 search	 at	 the	 LHC,	 and	 the	 future	
measurement	of	CMB	anisotropy	are	 complementary	 to	
test	this	scenario


