Hunting Inflaton at FASER

Nobuchika Okada

University of Alabama
okadan@ua.edu

In collaboration with Digesh Raut (U. of Delaware)

$$
\text { Ref: NO \& Raut, arXiv: } 1910.09663
$$

PHENO 2020 @ U. of Pittsburgh, May 04, 2020

1. Inflationary Universe

- Standard paradigm in modern cosmology
- Solving Horizon \& Flatness problems
- Generating primordial density fluctuations
- Slow-roll inflation
- A simple viable model
- A scalar field ("iinflaton") with a flat potential
- Constraints from CMB data (Planck 2018)

Non-minimal Quartic Inflation: simple \& successful scenario

Action in Jordan Frame

See, for example,
NO, Rehman \& Shafi, PRD 82 (2010) 04352

$$
\left.\mathcal{S}_{J}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} f(\phi) \mathcal{R}+\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right)-V_{J}(\phi)\right]\right]
$$

- Non-minimal gravitational coupling

$$
f(\phi)=\left(1+\xi \phi^{2}\right) \text { with a real parameter } \xi>0
$$

- Quartic coupling dominates during inflation

$$
V_{J}(\phi)=\frac{1}{4} \lambda \phi^{4}
$$

Inflationary Predictions VS Planck 2018 results

Spectral index:

$$
n_{s}=1-6 \epsilon+2 \eta
$$

Tensor-to-scalar ratio: $\quad r=16 \epsilon$,
Running spectral index: $\quad \alpha=16 \epsilon \eta-24 \epsilon^{2}-2 \zeta$

$$
\begin{aligned}
& \Delta_{\mathcal{R}}^{2}=2.099 \times 10^{-9} \\
& k_{0}=0.05 \mathrm{Mpc}^{-1}
\end{aligned}
$$

Inflationary Predictions VS Planck 2018 results

ξ	ϕ_{0} / M_{p}	ϕ_{e} / M_{p}	n_{s}	r	$\alpha\left(10^{-4}\right)$	λ
0	22.1	2.83	0.951	0.262	-8.06	1.43×10^{-13}
0.00333	22.00	2.79	0.961	0.1	-7.03	3.79×10^{-13}
0.00642	21.85	2.76	0.963	0.064	-7.50	3.79×10^{-13}
0.0689	18.9	2.30	0.967	0.01	-5.44	6.69×10^{-12}
1	8.52	1.00	0.968	0.00346	-5.25	4.62×10^{-10}
10	2.89	0.337	0.968	0.00301	-5.24	4.01×10^{-8}

Non-minimal quartic inflation

- Controlled by only one free parameter ξ
- Consistent with Planck 2018 dta for $\xi \geq 0.00642$
- Any scalars with a quartic potential term can be inflaton

Open Question

Can inflaton play another important role in physics?

We consider a scenario in which inflaton is identified with a Higgs field in New Physics Models

2. Classically Conformal U(1)x extended SM

Generalization of the minimal B-L model

	$\mathrm{SU}(3)_{c}$	$\mathrm{SU}(2)_{L}$	$\mathrm{U}(1)_{Y}$	$\mathrm{U}(1)_{X}$
q_{L}^{i}	$\mathbf{3}$	$\mathbf{2}$	$1 / 6$	$(1 / 6) x_{H}+(1 / 3)$
u_{R}^{i}	$\mathbf{3}$	$\mathbf{1}$	$2 / 3$	$(2 / 3) x_{H}+(1 / 3)$
d_{R}^{i}	$\mathbf{3}$	$\mathbf{1}$	$-1 / 3$	$(-1 / 3) x_{H}+(1 / 3)$
ℓ_{L}^{i}	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$	$(-1 / 2) x_{H}-1$
e_{R}^{i}	$\mathbf{1}$	$\mathbf{1}$	-1	$-x_{H}-1$
H	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$	$(-1 / 2) x_{H}$
N_{R}^{i}	$\mathbf{1}$	$\mathbf{1}$	0	-1
Φ	$\mathbf{1}$	$\mathbf{1}$	0	2

3 RHNs
U(1)x Higgs

- $\mathrm{U}(1) \mathrm{x}$ charge: $Q_{X}=Q_{Y} x_{H}+Q_{B-L} \quad(\mathrm{xH}=0$ is the B-L model)
- Anomaly free
- Seesaw Mechanism is automatically implemented

Higgs sector with classical conformal invariance

$$
V=\lambda_{H}\left(H^{\dagger} H\right)^{2}+\lambda_{\Phi}\left(\Phi^{\dagger} \Phi\right)^{2}-\lambda_{\text {mix }}\left(H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right)
$$

- No mass term
- We set $\lambda_{H, \Phi, \operatorname{mix}}>0$
- No symmetry breaking at the tree-level

Assuming a small mixing quartic coupling, the symmetry breaking occurs in the following way.........

1st: Radiative $\mathrm{U}(1)$ symmetry breaking by Colemen-Weinberg

 mechanism1-loop effective Coleman-Weinberg potential

$$
V(\phi)=\frac{\lambda_{\Phi}}{4} \phi^{4}+\frac{\beta_{\Phi}}{8} \phi^{4}\left(\ln \left[\frac{\phi^{2}}{v_{X}^{2}}\right]-\frac{25}{6}\right),
$$

where $\phi=\sqrt{2} \Re[\Phi]$,

$$
16 \pi^{2} \beta_{\Phi} \simeq 96 g_{X}^{4}
$$

* Here, we set Majorana Yukawa being smaller than the gauge coupling, for simplicity.

Stationary condition relates quartic coupling to gauge coupling

$$
d V /\left.d \phi\right|_{\phi=v_{X}}=0 \rightarrow \overline{\overline{\lambda_{\Phi}}=\frac{11}{6} \overline{\beta_{\Phi}} \simeq 176{\overline{\alpha_{X}}}^{4}}
$$

$\underline{U(1) x}$ Higgs mass relates to gauge coupling \& Z' mass

$$
m_{\phi}^{2}=\left.\frac{d^{2} V}{d \phi^{2}}\right|_{\phi=v_{X}}=\overline{\beta_{\Phi}} v_{X}^{2} \simeq \frac{6}{\pi} \overline{\alpha_{X}} m_{Z^{\prime}}^{2}
$$

Here, barred quantities are evaluated at VEV

$$
\begin{aligned}
\overline{\alpha_{X}} & =\frac{{\overline{g_{X}}}^{2}}{4 \pi} \\
m_{Z^{\prime}} & =2 \overline{g_{X}} v_{X}
\end{aligned}
$$

2nd: Radiative U(1) breaking triggers the EW symmetry breaking

$$
\begin{aligned}
V & \supset-\lambda_{\operatorname{mix}}\left(\Phi^{\dagger} \Phi\right)\left(H^{\dagger} H\right)+\lambda_{H}\left(H^{\dagger} H\right)^{2} \\
& \rightarrow-\lambda_{\operatorname{mix}}\left\langle\Phi^{\dagger} \Phi\right\rangle\left(H^{\dagger} H\right)+\lambda_{H}\left(H^{\dagger} H\right)^{2}
\end{aligned}
$$

Negative mass squared generated!

Higgs mass relations

$$
\begin{aligned}
& m_{h}^{2}=\lambda_{\text {mix }} v_{X}^{2}=2 \lambda_{H} v_{h}^{2} \\
& \mathcal{L} \supset-\frac{1}{2}\left[\begin{array}{ll}
h & \phi
\end{array}\right]\left[\begin{array}{cc}
m_{h}^{2} & \lambda_{\text {mix }} v_{X} v_{h} \\
\lambda_{\text {mix }} v_{X} v_{h} & m_{\phi}^{2}
\end{array}\right]\left[\begin{array}{l}
h \\
\phi
\end{array}\right]
\end{aligned}
$$

* mh=125 GeV, vh=246 GeV

Diagonalizing the scalar mass matrix

$$
\left[\begin{array}{l}
h \\
\phi
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
\tilde{h} \\
\tilde{\phi}
\end{array}\right]
$$

Here, we consider a very light U(1)x Higgs boson

$$
\begin{gathered}
m_{\phi}^{2} \ll m_{h}^{2} \text { and } \lambda_{\text {mix }} \ll 1 \\
\rightarrow \\
\theta \simeq \frac{v_{h}}{v_{X}}=\frac{\sqrt{16 \pi \overline{\alpha_{X}}} v_{h}}{m_{Z^{\prime}}} \ll 1
\end{gathered}
$$

In Classically Conformal U(1)x extended SM,

$$
m_{\phi}, \theta \text { are determined by } \overline{\alpha_{X}}, m_{Z^{\prime}}
$$

3. Search for Inflaton at FASER

- Now we identify the $U(1) x$ Higgs as inflaton in Non-minimal U(1)x Inflation
- From the structure of non-minimal quartic inflation,

All parameters are fixed

$$
\text { Once } \xi \text { is fixed } \rightarrow \quad \begin{aligned}
& \phi_{0}, \lambda_{\Phi}\left(\mu=\phi_{0}\right) \\
& n_{s}, r, \alpha
\end{aligned}
$$

- From the structure of the CW mechanism,

$$
m_{\phi}, \theta \text { are determined by } \overline{\alpha_{X}}, m_{Z^{\prime}}
$$

RG evolutions connect $\lambda_{\Phi}\left(\mu=\phi_{0}\right)$ and $\overline{\alpha_{X}}$

$$
\begin{aligned}
\frac{d \lambda_{\Phi}}{d \ln \phi} & =\beta_{\lambda} \simeq 96 \alpha_{X}^{2} \\
\frac{d \alpha_{X}}{d \ln \phi} & =\beta_{g}=\frac{72+64 x_{H}+41 x_{H}^{2}}{12 \pi} \alpha_{X}^{2}
\end{aligned}
$$

* For small gauge coupling values, we find the result is almost independent of xH .

Therefore, once ξ is fixed
m_{ϕ}, θ are determined by only $m_{Z^{\prime}}$

FASER Search for Dark Scalar

Upcoming FASER experiment will search for a light "Dark Scalar" mainly produced from rare B-meson decays through the mixing with the SM Higgs boson

- FASER at LHC Run-3
- FASER-2 at HL-LHC

$$
\left[\begin{array}{l}
h \\
\phi
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
\tilde{h} \\
\tilde{\phi}
\end{array}\right]
$$

* Gray shaded region is already excluded by CHRAM, Belle \& LHCb
\star The $\mathrm{U}(1) \mathrm{x}$ Higgs/Inflaton in the classically conformal $\mathrm{U}(1) \mathrm{x}$ extended SM can be search for by the FASER \& other Lifetime Frontier experiments!
\star Crucial point is that we have a connection among FASER search region, Inflationary predictions \& Z'-boson search
m_{ϕ}, θ : Lifetime Frontier Exps. Search region
$\alpha_{X}, m_{Z^{\prime}}: Z^{\prime}$ boson resonance search

: Inflationary predictions

Hunting Inflaton at FASER

Best case scenario (discovery)

$$
m_{Z^{\prime}}[\mathrm{TeV}]=1.3
$$

Cross checked by

- Future CMB measurements
- Z' resonance search at HL-LHC

4. Summary

- We have considered the non-minimal quartic inflation scenario in the minimal $U(1) x$ extended SM with classical conformal invariance
- Inflaton is identified with the $U(1) x$ Higgs
- The recently approved FASER can search for the inflaton
- By virtue of the classical conformal invariance \& the radiative $\mathrm{U}(1) \mathrm{x}$ symmetry breaking by the ColemanWeinberg mechanism, the inflaton search by FASER, Z' boson resonance search at the LHC, and the future measurement of CMB anisotropy are complementary to test this scenario

