Hunting Inflaton at FASER

Nobuchika Okada

University of Alabama

okadan@ua.edu

In collaboration with Digesh Raut (U. of Delaware)

Ref: NO & Raut, arXiv: 1910.09663

PHENO 2020 @ U. of Pittsburgh, May 04, 2020

1

1. Inflationary Universe

- Standard paradigm in modern cosmology
 - Solving Horizon & Flatness problems
 - Generating primordial density fluctuations
- Slow-roll inflation
 - A simple viable model
 - A scalar field (``inflaton") with a flat potential
 - Constraints from CMB data (Planck 2018)

Non-minimal Quartic Inflation: simple & successful scenario

Action in Jordan Frame

See, for example, NO, Rehman & Shafi, PRD 82 (2010) 04352

$$\mathcal{S}_J = \int d^4x \sqrt{-g} \left[-\frac{1}{2} f(\phi) \mathcal{R} + \frac{1}{2} g^{\mu\nu} \left(\partial_\mu \phi \right) \left(\partial_\nu \phi \right) - V_J(\phi) \right],$$

Non-minimal gravitational coupling

$$f(\phi) = (1 + \xi \phi^2)$$
 with a real parameter $\xi > 0$,

Quartic coupling dominates during inflation

$$V_J(\phi) = \frac{1}{4}\lambda\phi^4$$

Inflationary Predictions VS Planck 2018 results

Spectral index: $n_s = 1 - 6\epsilon + 2\eta$,Tensor-to-scalar ratio: $r = 16\epsilon$,Running spectral index: $\alpha = 16\epsilon\eta - 24\epsilon^2 - 2\zeta$

Inflationary Predictions VS Planck 2018 results

ξ	ϕ_0/M_p	ϕ_e/M_p	n_s	r	$\alpha(10^{-4})$	λ
	1					1.43×10^{-13}
0.00333	22.00	2.79	0.961	0.1	-7.03	3.79×10^{-13}
0.00642	21.85	2.76	0.963	0.064	-7.50	3.79×10^{-13}
0.0689	18.9	2.30	0.967	0.01	-5.44	6.69×10^{-12}
1	8.52	1.00	0.968	0.00346	-5.25	4.62×10^{-10}
10	2.89	0.337	0.968	0.00301	-5.24	4.01×10^{-8}

Non-minimal quartic inflation

- Controlled by only one free parameter ξ
- Consistent with Planck 2018 dta for $\xi \ge 0.00642$
- Any scalars with a quartic potential term can be inflaton

Open Question

• Can inflaton play another important role in physics?

We consider a scenario in which inflaton is identified with a Higgs field in New Physics Models

2. Classically Conformal U(1)x extended SM

Generalization of the minimal B-L model

	SU(3) _c	$SU(2)_L$	$U(1)_Y$	$U(1)_X$	
q_L^i	3	2	1/6	$(1/6)x_H + (1/3)$	
u_R^i	3	1	2/3	$(2/3)x_H + (1/3)$	
d_R^i	3	1	-1/3	$(-1/3)x_H + (1/3)$	
ℓ_L^i	1	2	-1/2	$(-1/2)x_H - 1$	
e_R^i	1	1	-1	$-x_{H} - 1$	
H	1	2	-1/2	$(-1/2)x_{H}$	
N_R^i	1	1	0	-1	3 RHNs
Φ	1	1	0	2	U(1)x Higgs

• U(1)x charge: $Q_X = Q_Y x_H + Q_{B-L}$ (xH=0 is the B-L model)

- Anomaly free
- Seesaw Mechanism is automatically implemented

Higgs sector with classical conformal invariance

$$V = \lambda_H (H^{\dagger} H)^2 + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 - \lambda_{\min} (H^{\dagger} H) (\Phi^{\dagger} \Phi)$$

No mass term

- We set $\lambda_{H,\Phi,\mathrm{mix}} > 0$
- No symmetry breaking at the tree-level

Assuming a small mixing quartic coupling, the symmetry breaking occurs in the following way......

<u>1st: Radiative U(1) symmetry breaking by Colemen-Weinberg</u> <u>mechanism</u>

1-loop effective Coleman-Weinberg potential

$$V(\phi) = \frac{\lambda_{\Phi}}{4}\phi^4 + \frac{\beta_{\Phi}}{8}\phi^4 \left(\ln\left[\frac{\phi^2}{v_X^2}\right] - \frac{25}{6}\right),$$

where $\phi = \sqrt{2} \Re[\Phi]$,

$$16\pi^2\beta_{\Phi}\simeq 96\,g_X^4$$

* Here, we set Majorana Yukawa being smaller than the gauge coupling, for simplicity.

Stationary condition relates quartic coupling to gauge coupling

$$dV/d\phi|_{\phi=v_X} = 0 \quad \Rightarrow \quad \overline{\lambda_{\Phi}} = \frac{11}{6}\overline{\beta_{\Phi}} \simeq 176\,\overline{\alpha_X}^4$$

U(1)x Higgs mass relates to gauge coupling & Z' mass

$$m_{\phi}^2 = \left. \frac{d^2 V}{d\phi^2} \right|_{\phi = v_X} = \overline{\beta_{\Phi}} v_X^2 \simeq \underbrace{\frac{6}{\pi} \overline{\alpha_X} m_{Z'}^2}_{\pi}$$

Here, barred quantities are evaluated at VEV

$$\overline{\alpha_X} = \frac{\overline{g_X}^2}{4\pi}$$

$$m_{Z'} = 2\overline{g_X}v_X$$

2nd: Radiative U(1) breaking triggers the EW symmetry breaking

$$V \supset -\lambda_{\min} \left(\Phi^{\dagger} \Phi \right) \left(H^{\dagger} H \right) + \lambda_{H} \left(H^{\dagger} H \right)^{2}$$
$$\rightarrow -\lambda_{\min} \left\langle \Phi^{\dagger} \Phi \right\rangle \left(H^{\dagger} H \right) + \lambda_{H} \left(H^{\dagger} H \right)^{2}$$

Iso, NO & Orikasa, PLB 676 (2009) 81

Negative mass squared generated!

Higgs mass relations

$$m_h^2 = \lambda_{\rm mix} v_X^2 = 2\lambda_H v_h^2$$

$$\mathcal{L} \supset -\frac{1}{2} \begin{bmatrix} h & \phi \end{bmatrix} \begin{bmatrix} m_h^2 & \lambda_{\min} v_X v_h \\ \lambda_{\min} v_X v_h & m_{\phi}^2 \end{bmatrix} \begin{bmatrix} h \\ \phi \end{bmatrix}$$

* mh=125 GeV, vh=246 GeV

- $\frac{d\phi^2}{\phi=v_X} = \frac{d\phi^2}{\phi=v_X} = \frac{\pi}{2} =$
- h reach of other planned/proposed parameters are fixed n (gray shadled) from $\mathcal{O}_{X}^{2} \mathcal{A}_{h} \mathcal{$ es correspondet $\delta \xi = \frac{1}{2}$ is fixed = 0.0642NEX SERVER ENTER Harthout we is a r. a MO Te Vrongensone sterre ar chieblebow mechanism, $f m_{Z'}$, we can obtain a relation lues for $|x_H n_{\bigstar}, 1\theta$ are determined by $\overline{\alpha_X}, m_{Z'}$ bottom. A point on a solid line α_X m_{α_X} , θ $\overline{\alpha_X}$, $m_{Z'}$, η decreases) from left to right. In 13 $\alpha(r)$ which will be covered by

RG evolutions connect $\lambda_{\Phi}(\mu = \phi_0)$ and $\overline{\alpha_X}$

$$\frac{d\lambda_{\Phi}}{d\ln\phi} = \beta_{\lambda} \simeq 96\alpha_X^2$$
$$\frac{d\alpha_X}{d\ln\phi} = \beta_g = \frac{72 + 64x_H + 41x_H^2}{12\pi}\alpha_X^2$$

* For small gauge coupling values, we find the result is almost independent of xH.

Therefore, once

★ The U(1)x Higgs/Inflaton in the classically conformal U(1)x extended SM can be search for by the FASER & other Lifetime Frontier experiments!

Crucial point is that we have a <u>connection</u> among FASER search region, Inflationary predictions & Z'-boson search

Hunting Inflaton at FASER

NO & Raut, arXiv: 1910.09663

17

Best case scenario (discovery)

Cross checked by

- Future CMB measurements
- Z' resonance search at HL-LHC

4. Summary

- We have considered the non-minimal quartic inflation scenario in the minimal U(1)x extended SM with classical conformal invariance
- Inflaton is identified with the U(1)x Higgs
- The recently approved FASER can search for the inflaton
- By virtue of the classical conformal invariance & the radiative U(1)x symmetry breaking by the Coleman-Weinberg mechanism, the inflaton search by FASER, Z' boson resonance search at the LHC, and the future measurement of CMB anisotropy are complementary to test this scenario