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Introduction

= One of the most exciting puzzles 
of cosmology and particle physics

There is NO dark matter candidate 
in the Standard Model!

Need theories beyond the SM

Required properties of DM: 1. electric charge neutral 
2. lifetime > age of the Universe 
3. cold

Dark Matter

In this talk, I’ll discuss 
the minimal U(1)x model with a dark matter candidate
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1. U(1)x gauge extension of the SM

J. C. Pati and A. Salam, Phys. Rev. D8 (1973) 1240 
A. Davidson, Phys. Rev. D20 (1979) 776 
R. N. Mohapatra and R. E. March, Phys. Rev. Lett. 44 (1980) 1316

Minimal B-L model
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1. U(1)x gauge extension of the SM

T.Appelquist, et al., Phys. Rev. D68 (2003) 035012

Minimal B-L model

Minimal U(1)x extended SM

U(1)x charge of a field is given by a linear combination 
of hypercharge and B-L charge

QB−L → QX = xHQY + QB−L

generalization
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R 1 1 0 −1 +

NR 1 1 0 −1 −
Φ 1 1 0 +2 +

TABLE I. The particle content of the minimal U(1)X model with Z2 symmetry (parity). In addition
to the SM particle content (i = 1, 2, 3), three RHNs (N j

R (j = 1, 2) and NR) and the U(1)X Higgs

field (Φ) are introduced. Due to its Z2-parity assignment, the NR is a unique DM candidate. The
U(1)X charge of a field is defined as a linear combination of its U(1)Y and U(1)B−L charges with a

real parameter xH . The minimal B − L model is defined as a limit of xH → 0.

by the future Lifetime Frontier experiments.

This paper is organized as follows: In the next section, we define the minimal U(1)X model

with the Z ′-portal RHN DM. In Sec. III, we investigate the case with a very small U(1)X

gauge coupling, so that the RHN DM had never been in thermal equilibrium with the SM

particles. We calculate the DM relic abundance through the freeze-in mechanism and identify

the parameter region to reproduce the observed DM density. In Sec. IIIA the RHN DM mass

(mDM) is set to be much larger than the Z ′ boson mass (mZ′), and we identify the allowed

parameter regions for various values of xH . We will see an impact of xH values on the search

for a long-lived Z ′ boson at the future Lifetime Frontier experiments. The case mDM < mZ′ is

analyzed in Sec. III B. Sec. IV is devoted to conclusion and discussion.

II. Z ′-PORTAL RHN DM IN THE MINIMAL U(1)X MODEL

The particle content of our model is listed in Table I. The U(1)X charge of a particle is

defined as a linear combination of its U(1)Y and U(1)B−L charges with a real parameter xH .

Note that the minimal B − L model is realized by setting xH = 0, while the U(1)X gauge

interaction becomes similar (up to a sign) to the SM hyper-charge interaction for |xH | # 1

(“hyper-charge oriented” U(1)X [33]). All the gauge and mixed gauge-gravitational anomalies

are canceled by the presence of three RHNs. The parity-odd NR is stable and a unique DM

candidate (RHN DM) in the model.

The U(1)X charge assignments in Table I allow all the SM Yukawa couplings for quarks and

3

Particle content of the minimal U(1)x model

QX = xHQY + QB−L

 :       minimal B-L model 
 :  hyper-charge oriented U(1)x

xH = 0
|xH | ≫ 1

N. Okada, SO and D. Raut, Phys. Rev. D95 (2017) 055030

Anomaly free

i = 1, 2, 3

j = 1, 2
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3

Particle content of the minimal U(1)x model

Stable

Unique DM candidate

QX = xHQY + QB−L

Z2 parity 
Z2-odd for  
Z2-even for the other fields

NR
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Gauge invariant Yukawa couplingcharged leptons. In addition, the following gauge invariant Yukawa couplings are introduced:

LY ⊃ −
3
∑

i=1

2
∑

j=1

Y ij
D !iLHN j

R −
1

2

2
∑

k=1

Y k
NΦN

k C
R Nk

R −
1

2
YNΦN C

R NR + h.c., (1)

where the first term is the neutrino Dirac Yukawa coupling, and the second and third terms

are the Majorana Yukawa couplings for RHNs. Without loss of generality, we work in the

basis where the Majorana Yukawa coupling matrix is already diagonalized. Note that due

to Z2-parity, only two RHNs (N j=1,2
R ) are involved in the neutrino Dirac Yukawa coupling.

Associated with the U(1)X gauge symmetry breaking by a nonzero VEV of Φ, the RHNs

acquire Majorana masses. The minimal seesaw mechanism with only two RHNs operates after

electroweak symmetry breaking, and the desired light neutrino masses are generated naturally.

Even with two RHNs, the Yukawa sector has a sufficient number of free parameters in Y ij
D for

reproducing the neutrino oscillation data and predicting one massless neutrino eigenstate. The

observed baryon asymmetry in the Universe can also be reproduced through leptogensis [34],

with only two RHNs [16] (see, for example, Refs. [35, 36] for detailed analysis of leptogenesis

at the TeV scale in the presence of the B − L gauge interaction).

We introduce the following scalar potential for the SM Higgs doublet (H) and the U(1)X

Higgs field (Φ):

V = λH

(

H†H −
v2

2

)2

+ λΦ

(

Φ†Φ−
v2X
2

)2

+ λmix

(

H†H −
v2

2

)(

Φ†Φ−
v2X
2

)

, (2)

where all quartic couplings are chosen to be positive. At the potential minimum, the Higgs

fields develop their respective VEVs:

〈H〉 =

(

v√
2

0

)

, 〈Φ〉 =
vX√
2
. (3)

In this paper, we assume λmix & 1 and neglect the mass mixing between the SM Higgs boson

and the U(1)X Higgs boson. In this case, the RHN DM communicates with the SM particles

only through the Z ′ boson (Z ′-portal RHN DM). Through the Higgs VEVs, the Majorana

masses of RHNs and Z ′ boson mass are expressed as

mj
N =

Y j
N√
2
vX , mDM =

YN√
2
vX , mZ′ = gX

√

4v2X +
v2

4
' 2gXvX , (4)

where gX is the U(1)X gauge coupling, and we have assumed v2X ( v2. This hierarchy between

the two VEVs is required by the LEP constraint [37, 38]. As we will see below, this hierarchy

is required for our freeze-in DM scenario with a light Z ′ boson that we focus on in this paper.

4

Dirac Yukawa coupling 
for RHNs

Majorana Yukawa coupling 
for RHNs
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4

Minimal seesaw
with only two RHNs

Dark Matter
EW symmetry breaking

U(1)x symmetry breaking 

P. Minkowski, Phys. Lett. B67 (1977) 421 
T. Yanagida, Conf. Proc. C7902131 (1979) 95
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2. Freeze-in RHN Dark Matter

III. FREEZE-IN RHN DM

As has been investigated in Refs. [19, 30], the thermal RHN DM can be viable for a limited

parameter space, namely, mDM ! mZ′/2 and mZ′ = O(TeV). This is because (i) the LHC

constraints from the search for a Z ′ boson resonance are very severe and the U(1) gauge coupling

is restricted to be small (for example, gX ∼ 0.01 − 0.1 for mZ′ = 2 TeV (see Ref. [39])), and

(ii), with such a small gauge coupling, an enhancement of the DM annihilation cross section

through a Z ′ boson resonance is necessary to reproduce the observed DM relic density. On the

other hand, for the freeze-in RHN DM that we focus on in this paper, gX $ 0.01 and both DM

particle and Z ′ boson can be light. Here we first give general formulas that we employ in our

analysis.

As is well-known for a thermal DM scenario, the DM relic density is evaluated by solving

the Boltzmann equation [40]:

dY

dx
= −

s(mDM)

H(mDM)

〈σvrel〉
x2

(Y 2 − Y 2

EQ), (5)

where the temperature of the universe is normalized by the mass of the RHN DM as x =

mDM/T , H(mDM) and s(mDM) are the Hubble parameter and the entropy density of the

universe at T = mDM , respectively, Y is the DM yield (the ratio of the DM number density to

the entropy density), YEQ is the yield of the DM particle in thermal equilibrium, and 〈σvrel〉 is
the thermal average of the DM annihilation cross section times relative velocity (vrel). Explicit

formulas of the quantities involved in the Boltzmann equation are as follows:

s(T ) =
2π2

45
g!T

3, H(T ) =

√

π2

90
g!

T 2

MP
, sYEQ =

gDM

2π2

m3
DM

x
K2(x), (6)

where MP = 2.43× 1018 GeV is the reduced Planck mass, gDM = 2 is the number of degrees of

freedom for the Majorana fermion DM, g! is the effective total number of degrees of freedom

for the particles in thermal equilibrium (in the following analysis, we use g! = 106.75 for the

SM particles), and K2 is the modified Bessel function of the second kind. The thermal averaged

annihilation cross section is given by

〈σv〉 = (sYEQ)
−2 g2DM

mDM

64π4x

∫ ∞

4m2
DM

ds 2(s− 4m2

DM) σ(s)
√
sK1

(

x
√
s

mDM

)

, (7)

where σ(s) is the DM pair annihilation cross section, and K1 is the modified Bessel function of

the first kind.

Although the freeze-in DM particle was never in thermal equilibrium with the SM particle

plasma, we can employ the above Boltzmann equation also for evaluating the freeze-in DM

relic density. This is because the second term on the right-hand side of Eq. (5) is the DM

5

DM relic density is evaluated by solving the Boltzmann equation

Initial condition (freeze-in DM case):   Y(xRH) = 0

xRH =
mDM

TRH

Reheating temperature  after inflationTRH

DM relic density at present universe

 (Planck 2018)ΩDMh2 =
mDMY(∞)s0

ρc /h2
= 0.12

 : yieldY

x ≡
m
T
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mZ′ ≪ mDM 10 MeV ≲ mZ′ ≲ 1 GeV

Main process for the DM pair creation from the SM thermal plasma

f

f̄ NR

NR

Z 0

2. Freeze-in RHN Dark Matter

pair production rate from the annihilations of the SM particles in the thermal plasma. In

solving the Boltzmann equation, a crucial difference between the thermal DM and freeze-in

DM lies in the initial condition. For the thermal DM case, we set the initial condition to

be Y (xRH) = YEQ(xRH) for xRH ! 1 while Y (xRH) = 0 for the freeze-in DM case, where

xRH = mDM/TRH with the reheat temperature (TRH) after inflation, and we have assumed

that the freeze-in DM particle has no direct coupling with the inflaton. Solving the Boltzmann

equation with a suitable initial condition, the DM relic density at present is evaluated by

ΩDMh
2 =

mY (∞) s0
ρc/h2

, (8)

where s0 = 2890/cm3 is the entropy density of the present universe, and ρc/h2 = 1.05 × 10−5

GeV/cm3 is the critical density. This must reproduce the observed DM relic density set by the

Planck 2018 measurements [41]: ΩDMh2 = 0.12.

A. Case (i): mZ′ ! mDM

We first consider the case with mDM $ mZ′ by setting 10 MeV ! mZ′ ! 1 GeV, which is

the mass range of Z ′ boson to be explored by the Lifetime Frontier experiments (see below).

The main process for the DM pair creation from the SM thermal plasma is f f̄ → Z ′ → NN

[21], and the corresponding cross section is give by

σ(s) =
g4X
48π

√

s(s− 4m2
DM)

(s−m2
Z′)2 +m2

Z′Γ2
Z′

F (xH), (9)

where ΓZ′ is the total decay width of Z ′ boson, and

F (xH) = 13 + 16xH + 10x2

H (10)

if all the SM fermions are involved in the process. Since we consider mDM $ mZ′ and the DM

production from thermal plasma practically stops when T becomes lower than mDM due to

kinematics, we can neglect mZ′ and ΓZ′ in Eq. (9) and simplify the cross section formula to be

σ(s) '
g4X
48π

√

s(s− 4m2
DM)

s2
F (xH). (11)

Note that only three parameters, mDM , gX and xH , are involved in our analysis. Substituting

Eq. (11) into Eq. (7) with fixed values of these parameters, we numerically solve the Boltzmann

equation of Eq. (5) with the initial condition Y (xRH) = 0 for xRH ! 1. Our result for Y (x) is

shown Fig. 1, where we have set gX = 3.11 × 10−6, mDM = 1 TeV, xH = 0 (the B − L model

limit), and xRH = 10−10. For the parameter set, the resultant Y (∞) = 4.36× 10−13 reproduces

6
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Z’-portal RHN DM
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Result for Y(x)

10-7 10-5 0.001 0.100 10
10-20

10-18

10-16

10-14

10-12

x=mDM/T

Y
(x
)

gX=3.11×10-6,mDM=1 TeV, and xH=0

FIG. 1. Numerical solution of the Boltzmann equation for mDM ! mZ′ . Here, we have set
gX = 3.11 × 10−6, mDM = 1 TeV, xH = 0, and xRH = 10−10. The resultant Y (∞) reproduces the
observed DM density of ΩDMh2 = 0.12.

the observed DM relic density ΩDMh2 = 0.12. We have checked that our result for the B − L

limit (xH = 0) is consistent with the one obtained in Ref. [26].

In fact, it is easy to show that Y (∞) is independent of xRH % 1 and Y (∞) ∝ 1/mDM so

that ΩDMh2 is independent of mDM . Since Y for the freeze-in DM never reaches YEQ for x ! 1

because of its extremely weak interaction with the SM particles, we can approximately express

the Boltzmann equation of Eq. (5) to be

dY

dx
'

s(mDM)

H(mDM)

〈σvrel〉
x2

Y 2

EQ '
2.8

g3/2∗
mDM MP

〈σvrel〉
x2

(12)

for x ! 1. For a given 〈σvrel〉 as a function of x, it is easy to solve the Boltzmann equation. The

resultant Y (∞) is approximated as Y (∞) ' Y (x = 1) since the production of DM particles

from the thermal plasma stops around x ∼ 1, or equivalently, T ∼ mDM due to kinematics.

We can confirm this behavior in Fig. 1, where the numerical solution Y (x) quickly approaches

Y (∞) at x ∼ 1. For x ! 1, we can approximate 〈σvrel〉 by

〈σvrel〉 '
g4X
384π

x2

m2
DM

F (xH). (13)

7

We numerically solve the Boltzmann equation (xRH = 10−10)

N. Okada, SO and Q. Shafi, arXiv: 2003.02667
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Result for Y(x)
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FIG. 1. Numerical solution of the Boltzmann equation for mDM ! mZ′ . Here, we have set
gX = 3.11 × 10−6, mDM = 1 TeV, xH = 0, and xRH = 10−10. The resultant Y (∞) reproduces the
observed DM density of ΩDMh2 = 0.12.

the observed DM relic density ΩDMh2 = 0.12. We have checked that our result for the B − L

limit (xH = 0) is consistent with the one obtained in Ref. [26].

In fact, it is easy to show that Y (∞) is independent of xRH % 1 and Y (∞) ∝ 1/mDM so

that ΩDMh2 is independent of mDM . Since Y for the freeze-in DM never reaches YEQ for x ! 1

because of its extremely weak interaction with the SM particles, we can approximately express

the Boltzmann equation of Eq. (5) to be

dY

dx
'

s(mDM)

H(mDM)

〈σvrel〉
x2

Y 2

EQ '
2.8

g3/2∗
mDM MP

〈σvrel〉
x2

(12)

for x ! 1. For a given 〈σvrel〉 as a function of x, it is easy to solve the Boltzmann equation. The

resultant Y (∞) is approximated as Y (∞) ' Y (x = 1) since the production of DM particles

from the thermal plasma stops around x ∼ 1, or equivalently, T ∼ mDM due to kinematics.

We can confirm this behavior in Fig. 1, where the numerical solution Y (x) quickly approaches

Y (∞) at x ∼ 1. For x ! 1, we can approximate 〈σvrel〉 by

〈σvrel〉 '
g4X
384π

x2

m2
DM

F (xH). (13)

7

We numerically solve the Boltzmann equation (xRH = 10−10)

Resultant  
reproduces the observed DM relic density 

Y(∞) = 4.36 × 10−13

ΩDMh2 = 0.12
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for x ! 1. For a given 〈σvrel〉 as a function of x, it is easy to solve the Boltzmann equation. The

resultant Y (∞) is approximated as Y (∞) ' Y (x = 1) since the production of DM particles

from the thermal plasma stops around x ∼ 1, or equivalently, T ∼ mDM due to kinematics.

We can confirm this behavior in Fig. 1, where the numerical solution Y (x) quickly approaches

Y (∞) at x ∼ 1. For x ! 1, we can approximate 〈σvrel〉 by

〈σvrel〉 '
g4X
384π
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m2
DM

F (xH). (13)

7

We numerically solve the Boltzmann equation (xRH = 10−10)

 is independent of Y(∞) xRH ≪ 1

Y(∞) ∝
1

mDM

 is independent of ΩDMh2 mDM
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the observed DM relic density ΩDMh2 = 0.12. We have checked that our result for the B − L

limit (xH = 0) is consistent with the one obtained in Ref. [26].

In fact, it is easy to show that Y (∞) is independent of xRH % 1 and Y (∞) ∝ 1/mDM so

that ΩDMh2 is independent of mDM . Since Y for the freeze-in DM never reaches YEQ for x ! 1

because of its extremely weak interaction with the SM particles, we can approximately express

the Boltzmann equation of Eq. (5) to be

dY

dx
'

s(mDM)

H(mDM)

〈σvrel〉
x2

Y 2

EQ '
2.8

g3/2∗
mDM MP

〈σvrel〉
x2

(12)

for x ! 1. For a given 〈σvrel〉 as a function of x, it is easy to solve the Boltzmann equation. The

resultant Y (∞) is approximated as Y (∞) ' Y (x = 1) since the production of DM particles

from the thermal plasma stops around x ∼ 1, or equivalently, T ∼ mDM due to kinematics.

We can confirm this behavior in Fig. 1, where the numerical solution Y (x) quickly approaches

Y (∞) at x ∼ 1. For x ! 1, we can approximate 〈σvrel〉 by

〈σvrel〉 '
g4X
384π

x2

m2
DM

F (xH). (13)

7

We numerically solve the Boltzmann equation (xRH = 10−10)

Resultant Y(∞) ≃ Y(x = 1)
since production of DM particles 
from the thermal plasma 
stops around   
due to kinematics

x ∼ 1 (T ∼ mDM)

x ≃ 1
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gx to reproduce the observed DM relic density

σ(x) =
g4

X

48π

s(s − 4m2
DM)

(s − m2
Z′ )2 + m2

Z′ Γ2
Z′ 

F(xH)

∝ g4
XF(xH)

DM creation cross section:

Observed DM relic density is reproduced by

Substituting this into Eq. (12), we integrate the Boltzmann equation from xRH ! 1 to x = 1

to obtain

Y (∞) # Y (x = 1) # 2.3× 10−3
g4X
g3/2!

MP

mDM
. (14)

Thus, we find Y (∞) ∝ 1/mDM and then

ΩDMh
2 #

mDM Y (x = 1) s0
ρc/h2

# 1.4× 1021
(

106.75

g!

)3/2

g4X F (xH), (15)

which is independent of mDM . For the B − L limit (xH = 0), we obtain gX # 1.6 × 10−6 to

achieve the observed DM relic density of ΩDMh2 = 0.12. Hence, this rough estimate leads to

the gX value to be close to what we have obtained by the numerical analysis, gX = 3.11×10−6.

Considering that the cross section in Eq. (9) is proportional to g4XF (xH) (see also Eq. (15)),

we find that the observed DM relic density is reproduced by

gX = 3.11× 10−6

(

F (0)

F (xH)

)1/4

(16)

for a general xH value.

We now discuss how to test our scenario in the future experiments at the Lifetime Frontier. In

order to reproduce the observed relic density for the RHN DM via the light Z ′-portal interaction,

the U(1)X gauge coupling is found to be very small as shown in Eq. (16). This fact indicates

that the Z ′ boson is long-lived. Such a long-lived particle can be explored at Lifetime Frontier

experiments. The recently approved ForwArd Search Experiment (FASER) [42–44] plans its

operation at the LHC Run-3 and its upgraded version (FASER 2) at the High-Luminosity LHC.

The prospect for the B − L gauge boson search at FASER is summarized in Ref. [43]. FASER

2 can search for a long-lived Z ′ boson with mass in the range of 10 MeV! mZ′ ! 1 GeV for the

B − L gauge coupling in the range 10−8 ! gBL ! 10−4.5. The planned/proposed experiments,

such as Belle-II [45], LHCb [46, 47], SHiP [48] and LDMX [49], which will also search for a

long-lived Z ′ boson, will cover a parameter region complementary to FASER.

To obtain the prospect of our Z ′ boson search by the Lifetime Frontier experiments, we need

to interpret the analysis result for the B − L gauge boson to the U(1)X model case. Since

the results for |xH | ! 1 are expected to be very similar to the one for the B − L case, we are

particularly interested in the hyper-charge oriented case of |xH | ' 1. From Table I, we see

that the Z ′ boson coupling with the SM fermions is controlled by gBL (gX for the B − L limit

of xH = 0), while it is controlled by gX |xH | for |xH | ' 1. Hence, we express a correspondence

between the B − L gauge coupling (gBL) and gX coupling such that

gBL ↔ gX |xH |. (17)

8

for a general  valuexH

Very small Z’ boson is light+

Z’ boson is long-lived
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3. Future experiments at the Lifetime Frontier

How to test the scenario in the future experiments at the Lifetime Frontier?
- LHCb 
- SHiP 
- LDMX

- FASER 
- FASER 2 
- Belle II
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3. Future experiments at the Lifetime Frontier

How to test the scenario in the future experiments at the Lifetime Frontier?

We need to interpret the analysis result for the B-L gauge boson 
to the U(1)x model case

Results for the  are expected to be similar to the one for the B-L case|xH | ≲ 1

Hyper-charge oriented case in |xH | ≫ 1

B-L case

Hyper-charge oriented case

Z’ boson coupling with the SM fermions is controlled by gBL

controlled by gX |xH |

gBL ⟷ gX |xH |

- LHCb 
- SHiP 
- LDMX

- FASER 
- FASER 2 
- Belle II
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3. Future experiments at the Lifetime Frontier

Gauge coupling to reproduce the observed DM relic density ΩDMh2 = 0.12

gX = 3.11 × 10−6 ( F(0)
F(xH) )

1/4

gX ≃
3.32 × 10−6

|xH |
for |xH | ≫ 1

Inferred  :gBL gBL ⟶ gX |xH | ≃ 3.32 × 10−6 |xH |

 value in the analysis of the prospective search for the B-L gauge boson 
can be inferred to be
gBL
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FIG. 2. Inferred gBL values to reproduce the observed DM relic density for various |xH | values
along with the search reach of various planned/proposed experiments at the Lifetime Frontier and

the current excluded region (gray shaded). The horizontal lines from top to bottom correspond to
|xH | = 900, 150, 10 and 0 (the B − L limit), respectively.

Eq. (16) leads to gX " 2.91×10−6√
|xH |

for |xH | $ 1 for reproducing ΩDMh2 = 0.12. Therefore, the

gBL value used in the analysis of the prospective search reach for the B − L gauge boson can

be inferred to be

gBL → gX |xH | " 2.91× 10−6
√

|xH |. (18)

In Fig. 2, we show our results for the inferred B−L gauge coupling as a function ofmZ′ to repro-

duce the observed DM relic density, along with the search reach of various planned/proposed

experiments at the Lifetime Frontier. The current excluded region from the combination of

the searches for a long-lived particle and anomalous neutrino interactions is gray shaded (see

Ref. [50] for details). The horizontal lines from top to bottom, along which ΩDMh2 = 0.12

is reproduced, correspond to |xH | = 900, 150, 10 and 0 (the B − L limit), respectively. The

inferred gBL value shifts upward as |xH | increases. This result shows the impact of xH values

on the future experiments. If a long-lived Z ′ boson is observed in the future, we can determine

|xH | and mZ′ .

9

Inferred gBL to reproduce DM relic abundance

|xH | = 900
100

10

0 (B − L limit)

Current excluded region

Inferred  value shifts 
upward as  increases

gBL
|xH |

- Searches for long-lived particle 
- Anomalous neutrino interactions

N. Okada, SO and Q. Shafi, arXiv: 2003.02667
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we can determine  and Z’!!|xH |

If a long-lived Z’ boson is observed in the future,
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4. Conclusion and discussion

We consider a  gauge symmetry extension of the SM with a Z’-portal 
Majorana fermion DM that allowed for a relatively light gauge boson Z’ 
with mass of 10 MeV-a few GeV and a much heavier DM through 
the freeze-in mechanism.

U(1)X

Motivated by the future Lifetime Frontier experiments, 
we have focused on the parameter space where the DM particle very weakly 
couples to the light Z’ boson. 
In this case, the Z’ boson is long-lived.

For  case, we have identified the model parameter regions to 
reproduce the observed DM relic density .

mZ′ ≪ mDM
ΩDMh2 = 0.12

We have discussed how our scenario can be tested by various future 
Lifetime Frontier experiments. 
We found that the  model with a large  (hyper-charge oriented case) 
dramatically alters the parameter region to be explored by the future 
experiments compared to that for B-L mode.

U(1)X |xH |
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mZ’ >> mDM case
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Y
(x
)

gX=1.80×10-9 , mDM=10 keV, mZ'=10 GeV, and xH=0

FIG. 3. Numerical solutions of the Boltzmann equation for mDM ! mZ′ . Here, we have set

gX = 1.80 × 10−9, mDM = 10 keV, mZ′ = 10 GeV, xH = 0, and xRH = 10−10. The resultant Y (∞)
reproduces the observed DM density of ΩDMh2 = 0.12.

B. Case (ii): mZ′ $ mDM

We next consider the case mZ′ $ mDM . Although the basic formulas that we employ in our

analysis are same as in Case (i), the RHN DM is dominantly produced through the Z ′ boson

resonance in Case (ii). Note that for mZ′ > mDM , the DM pair creation/annihilation cross

section of Eq. (9) includes the resonance point at s = m2
Z′ for s ≥ 4m2

DM . Since the gauge

coupling is very small, we use the narrow width approximation,

ds

(s−m2
Z′)2 +m2

Z′Γ2
Z′

= ds
π

mZ′ΓZ′

δ(s−mZ′), (19)

in calculating the thermal-averaged cross section, where the total decay width is given by2

ΓZ′ =
g2X
24π

mZ′ (F (xH) + 1) . (20)

2 F (xH) in the total decay width formula depends on mZ′ since only the kinematically allowed final states are

involved in the formula. For example, if a Z ′ boson is lighter than the top quark, Eq. (10) must be modified.

However, F (xH) $ 1 is satisfied in our analysis, and our result is almost independent of F (xH). See Eq. (21)

and the discussion below.

10

xRH = 10−10
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mZ’ >> mDM case
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FIG. 4. Inferred gBL values to reproduce the observed DM relic density for various |xH | values
along with the search reach of various planned/proposed experiments at the Lifetime Frontier and the

current excluded region (gray shaded and light green shaded from the SN1987A observation). Here,
we have set mDM = 10 keV. The diagonal lines from top to bottom, along which ΩDMH2 = 0.12 is

reproduced, correspond to |xH | = 105, 104, 103, 100 and 0 (the B − L limit), respectively.

In Fig. 4, we show our results for the inferred B−L gauge coupling as a function ofmZ′ to repro-

duce the observed DM relic density, along with the search reach of various planned/proposed

experiments at the Lifetime Frontier. The current excluded region from the combination of

the searches for a long-lived particle and anomalous neutrino interactions is gray shaded (see

Ref. [50] for details). The observation of Supernova 1987A (SN1987A) [51, 52] excludes the

green shaded region, which causes an extra energy release for the supernova explosion via Z ′

boson emissions [53, 54]. The diagonal lines from top to bottom, along which ΩDMh2 = 0.12 is

reproduced, correspond to |xH | = 105, 104, 103, 100 and 0 (the B − L limit), respectively. The

inferred gBL value shifts upward as |xH | increases. If a long-lived Z ′ boson is observed in the

future, we can determine |xH | and mZ′.

IV. CONCLUSION AND DISCUSSION

The minimal gauged U(1)X extension of the SM is a simple, well-motivated framework to

incorporate the neutrino masses in the SM, where the U(1)X charge of a field is defined as a

12

|xH | = 105

100

104

0 (B − L limit)

103


