Asteroid-Mass Primordial Black Holes as Dark Matter

Nolan Smyth
University of California, Santa Cruz

Pheno 2020
Tuesday, May 5, 2020
Road Map: The whole talk in 20 seconds

- Primordial Black Holes (PBHs): natural dark matter candidates
- Old microlensing constraints rely on invalid assumptions
- We show that asteroid mass PBHs could make up 100% of the dark matter
Properties of Dark Matter

Interacts through gravity

Invisible

Stable on long timescales
Black Hole: A natural candidate

Interacts through gravity

Invisible

Stable on long timescales

The Event Horizon Telescope Collaboration, 2019
Primordial Black Holes

Formed in the early universe from small over-densities, rather than stellar collapse

Well-motivated by various inflation models

Can exist over a very wide range of masses ($10^{-5} \text{g} - 10^{3} M\odot$ and beyond!)

Planck relics

Asteroid-Mass

Many solar masses (LIGO?)
Microlensing
Subaru-HSC

High cadence

Wide field of view

Can see stars as dim as mag ~ 26

Niikura et al. 2019
Placing constraints – Expected # of Events

\[
\frac{d\Gamma}{dt} = 2 \frac{\Omega_{PBH}}{\Omega_{DM}} \int_0^{d_s} dd \int_0^{u_T} du \min \frac{\rho_{DM}(d)}{M_{PBH} \nu_c^2} \sqrt{u_T^2 - u_{\min}^2} \frac{\nu_r^4}{\nu_c^2} e^{-\frac{\nu_r^2}{\nu_c^2}}
\]

Expected rate of events per observation time

Integrate over line-of-sight to source

Proportional to density of dark matter
(large close to MW and M31, small in the middle)

Fraction of DM comprised of PBHs

Minimum impact parameter for detectable event
Placing constraints – Expected # of Events

\[\frac{d\Gamma}{dt} \]

Event Rate [events/star/hour/hour]

\(T_{\text{FWHM}} \) (h)

\(10^{-4} \times 10^8 \text{stars} \times 0.1 \text{hours} \times 10 \text{hours observation} \sim 10^4 \text{events!} \)

Assuming all the PBH are a single specific mass
Constraints

A first pass

Very optimistic constraints! Does not yet consider *finite size effects*

(We now know that all the lower mass constraints have issues)
Finite Size Effects

If the PBH is small compared to the star in the lensing plane, then only a fraction of the star is lensed, suppressing the net magnification!

Diagram:
- Detection Threshold
- Magnification vs. Time
- Large PBH / far from source star
- Small PBH/ close to source star

Courtesy of Michael Richmond
Constraints
Round 2!

Still overly-optimistic constraints! Assumes all stars in M31 have radius R_\odot
Sanity Check: The Sun

How bright would a $1 \, R_{\odot}$ star appear?

HSC sensitive to mag ~26 (best case)

Sun would be mag ~29. Orders of magnitude dimmer in astronomy units. Invisible to HSC!
Relevant stellar population

We compare stars from the Panchromatic Hubble Andromeda Treasury (PHAT) catalog with the Mesa Isochrones and Stellar Tracks (MIST) stellar evolution package

Determine the population of stars for which HSC can resolve microlensing events

Smyth et al. 2020
Assuming the entire population is a single size, we can see how the constraints scale with stellar radius.

Constraints dramatically weaken for larger stars.
Our constraints

Up to 3 orders of magnitude weaker

Opens a large window where PBHs can make up the totality of DM

Smyth et al. 2020
How to probe newly opened parameter space?

Future microlensing (femtolensing) prospects will have diminishing returns due to finite size effects (eg. Katz et al.)

Neutron star capture / quiet kilonovae

Perturbed orbits from capture of light PBHs

Lehmann, Ross, Webber (in preparation)
Primordial Black Holes (PBHs): natural dark matter candidates

We derive the relevant population of source stars and give the finite-size effects a thorough treatment

We show that asteroid mass PBHs could make up 100% of the dark matter
Thank you!

Wonderful Collaborators

Stefano Profumo Tesla Jeltema Sam English Raja Guhathakurta Kevin McKinnon

Our recent paper on this subject:

Smyth, Profumo, Jeltema, Guhathakurta, English, McKinnon, 2020

nwsmyth@ucsc.edu
Bonus Slides
Distance and Size. When can we detect lensing?

\[\frac{d\Gamma}{dt} \sim \int_{0}^{d_{S}} dd \]
Finite Size + Wave effects

Maximum magnification strongly suppressed when $\lambda \sim r_S$