Latest measurement of $K^+ \rightarrow \pi^+ \bar{\nu} \bar{\nu}$ with the NA62 experiment at CERN

Roberta Volpe for the NA62 Collaboration
roberta.volpe@cern.ch
Comenius University Bratislava (SK)

PHENO 2020
FROM THE INFRARED TO THE ULTRAVIOLET

Pittsburg, 4-6 May 2020
The main aim is the measurement of $\text{BR}(K\rightarrow\pi\nu\nu)$.

The physics program is much broader. Follow the talks by S. Ghinescu and P. Massarotti.
K→πνν in the SM

Measuring both $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $KL \rightarrow \pi^0 \nu \bar{\nu}$ provides the CKM unitarity triangle independently from measurements in B mesons sector.

BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$)

<table>
<thead>
<tr>
<th>Error budget:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(68%)$</td>
</tr>
<tr>
<td>$c(29%)$</td>
</tr>
<tr>
<td>$u(3%)$</td>
</tr>
</tbody>
</table>

Experimental result before NA62:

$$B(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$

$K\rightarrow\pi\nu\nu$ for new physics

Search for New Physics at the EW scale with sizable coupling to SM particles via indirect effects in loops

- Custodial Randall-Sundrum
 [JHEP 0903 (2009) 108]
- LFU violation models
- MSSM scenarios:
 [JHEP 0608 (2006) 064]
 [Int.J.Mod.Phys A29 (2014) no.27, 1450162]
- Simplified Z, Z' models
 [JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity
Measurement strategy

Decay in flight technique:

\[m_{miss}^2 = (p_K - p_\pi)^2 \]

- very good kinematic reconstruction
- time measurements
- \(K, \pi, \mu \) identification
- Hermetic detection of muons
- Hermetic detection of photons

Decay Rates and Rejection Tools

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR</th>
<th>Main Rejection Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^+ \to \mu^+ \nu_\mu (\gamma))</td>
<td>63%</td>
<td>(\mu)-ID + kinematics</td>
</tr>
<tr>
<td>(K^+ \to \pi^+ \pi^0 (\gamma))</td>
<td>21%</td>
<td>(\gamma)-veto + kinematics</td>
</tr>
<tr>
<td>(K^+ \to \pi^+ \pi^+ \pi^-)</td>
<td>6%</td>
<td>multi-track + kinematics</td>
</tr>
<tr>
<td>(K^+ \to \pi^+ \pi^0 \pi^0)</td>
<td>2%</td>
<td>(\gamma)-veto + kinematics</td>
</tr>
<tr>
<td>(K^+ \to \pi^0 e^+ \nu_e)</td>
<td>5%</td>
<td>(e)-ID + (\gamma)-veto</td>
</tr>
<tr>
<td>(K^+ \to \pi^0 \mu^+ \nu_\mu)</td>
<td>3%</td>
<td>(\mu)-ID + (\gamma)-veto</td>
</tr>
</tbody>
</table>
About 20% of K^+ decay inside the fiducial volume
2 years running at high intensity we collected:
• $O(10^{13})$ K^+ decays in fiducial volume
NA62 apparatus

LAV: photon veto at large angles lead-glass blocks

STRAW: Downstream tracking

RICH: Ring imaging Cherenkov kinematics and particle ID

GTK: kaon tracking: 3 stations of silicon sensors

KTAG: Kaon identification Cherenkov counter filled with N2

CHOD: charged hodoscope

LKr: quasi-homogenous ionization chamber 27X0 deep

MUV0, MUV3 plastic scintillators

IRC, SAC: lead and scintillator plates Shashlyk configuration

400 GeV protons

Robert Volpe, University of Rome "Tor Vergata"
Analysis principle

- Control data collected with a different trigger
- Data-driven background estimation
- Control regions to validate it
- Normalization to $K \rightarrow \pi^+ \pi^0$ decay
Normalization

Efficiencies not in common with $K \rightarrow \pi^+\pi^0$

$$N_{\pi\nu\nu} = N_{\pi\pi} \epsilon_{\text{trig}} \epsilon_{\text{RV}} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{BR(\pi\nu\nu)}{BR(\pi\pi)}$$

ϵ_{RV}, Random Veto efficiency:
signal efficiency due to accidental activity

efficiency and normalization have been computed in bins of pion momentum and intensity

$N_{\pi\nu\nu} = 2.16 \pm 0.12 \pm 0.26_{\text{ext}}$
Background from K^+ decays

\[K^+ \rightarrow \mu^+\nu \text{ and } K^+ \rightarrow \pi^+\pi^0 \]

\[N_{\mu\nu}^{exp}(region) = \sum_j \left[N(\mu\nu)_j \cdot f_j^{kin}(region) \right] \]

N\text{exp in the Signal (control) region}

Sample selected on background region with $\nu\nu$ trigger data to get the shape

Fraction of events in the signal (control) region, measured in control data

Validation in control regions

\[N_{\pi\pi}^{exp}(region) = \sum_j \left[N(\pi^+\pi^0)_j \cdot f_j^{kin}(region) \right] \]
Upstream background

Not only Kaon decays in decay region:

- K^+ decays/interacts in the achromat
- Secondary π^+ downstream
- Beam elements block additional particles
- π^+ scattering in straw chamber 1
- Pileup beam particle tagged as $K^+

Count events on data with inverted $K-\pi$ matching

Estimate the probability to occur from data/simulation
Summary of expected Sig and Bkg

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu}$</td>
<td>$2.16 \pm 0.12_{stat} \pm 0.26_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0(\gamma)$ IB</td>
<td>$0.29 \pm 0.03_{stat} \pm 0.03_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu_\mu(\gamma)$ IB</td>
<td>$0.11 \pm 0.02_{stat} \pm 0.03_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu_\mu (\mu^+ \rightarrow e^+ decay)$</td>
<td>$0.04 \pm 0.02_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$</td>
<td>$0.12 \pm 0.05_{stat} \pm 0.03_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^+ \pi^-$</td>
<td>$0.02 \pm 0.02_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \gamma \gamma$</td>
<td>$0.005 \pm 0.005_{syst}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow l^+ \pi^0 \nu_l (l = e^+, \mu^+)$</td>
<td>negligible</td>
</tr>
<tr>
<td>Upstream background</td>
<td>$0.9 \pm 0.2_{stat} \pm 0.2_{syst}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$1.5 \pm 0.2_{stat} \pm 0.2_{syst}$</td>
</tr>
</tbody>
</table>

$N_{\pi\nu\nu} = 2.16 \pm 0.12 \pm 0.26_{ext}$

Result from analysis of 2016 dataset:

$$N_{\pi\nu\nu}^{exp}(SM) = 0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$$

Total background: $0.152^{+0.092}_{-0.033}|_{stat} \pm 0.013_{syst}$

1 event observed

$\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ at 95% CL
Results with 2016 and 2017 data

2016 and 2017:

\[BR_{SM}(K^+ \rightarrow \pi^+\nu\bar{\nu}) = (0.84 \pm 0.10) \times 10^{-10} \]

Observed UL at 90% CL:
\[BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 1.85 \times 10^{-10} \]

Grossman-Nir bound

Note:

Paper in preparation

roberta.volpe@cern.ch

PHENO 2020
Exotics with $K^+ \rightarrow \pi^+ + \text{inv}$

Search for $K^+ \rightarrow \pi^+\pi^0$, $\pi^0 \rightarrow \text{inv}$

Search for $K^+ \rightarrow \pi^+X$, X invisible

hidden sector searches
$K^+ \rightarrow \pi^+\pi^0, \ \pi^0 \rightarrow \text{inv}$

- $\pi^0 \rightarrow \nu\nu$ is not forbidden because of neutrino non-zero masses, but in the SM:
 $\text{BR}(\pi^0 \rightarrow \nu\nu) \sim O(10^{-24})$, so any observation \Rightarrow BSM physics
- The present experimental limit is 2.7×10^{-7} at 90% C.L., from BNL experiments

The hermetic photon veto in NA62, essential for $\pi\nu\nu$ analysis, allows for the search in the Kaon decay

$K^+ \rightarrow \pi^+\pi^0(\gamma), \ \pi^0 \rightarrow \text{invisible}$

Analysis strategy:

$$\text{BR}(\pi^0 \rightarrow \text{invisible}) = \text{BR}(\pi^0 \rightarrow \gamma\gamma) \times \frac{N_s}{N_{\pi^0} \times \epsilon_{\text{sel}} \times \epsilon_{\text{trig}}}$$

The main background is $K^+ \rightarrow \pi^+\pi^0, \ \pi^0 \rightarrow \gamma\gamma$ with undetected photons

Using a counting experiment approach in the region:
25 < p < 40 GeV and m^2_{miss} in [0.012, 0.021] GeV2/c4

$$\text{BR}(\pi^0 \rightarrow \text{invisible}) \leq 4.4 \times 10^{-9} \text{ at 90% C.L.}$$

An improvement by a factor 60 wrt the previous experimental result
\[K^+ \rightarrow \pi^+ X, \ X \text{ invisible} \]

Motivation: feebly interacting new particle foreseen in several models

Dark scalar: mixing with the Higgs

\[\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^\dagger H \]

\[\mu = \sin \theta \quad \lambda = 0 \]

JHEP05(2010)010, JHEP02(2014)123

Pseudo-scalar

Axion-like particles (ALPs)
QCD axion, Axiflavon (m~0)

arxiv:1612.05492

Analysis strategy:

Use exactly the same selection, normalization and background evaluation of \(\pi \nu \nu \) analysis
Generate signal with two body decay for 200 mass hypotheses to compute acceptance

Few mass points after the full selection, normalized to unity

- R1
- R2

\[m^2_{\text{miss}} \quad \text{[GeV}^2/\text{c}^4] \]

\[m_X = 70 \text{ MeV}/c^2 \quad m_X = 154 \text{ MeV}/c^2 \]
\[m_X = 168 \text{ MeV}/c^2 \quad m_X = 182 \text{ MeV}/c^2 \]
\[m_X = 196 \text{ MeV}/c^2 \quad m_X = 210 \text{ MeV}/c^2 \]
\[m_X = 224 \text{ MeV}/c^2 \quad m_X = 238 \text{ MeV}/c^2 \]
\[m_X = 252 \text{ MeV}/c^2 \]

Paper in preparation
\[K^+ \rightarrow \pi^+ X, \ X \text{ invisible} \]

Bump hunting in \(m^2_{\text{miss}} \)

No deviation from the SM have been observed, so: *setting upper limit*

- Shape analysis on \(m^2_{\text{miss}} \)
- Fully frequentist approach
- Profiled likelihood test statistic

Background model
- **shape**: Parameterized with polynomial functions in R1 and R2
- **Bkg yield** from \(\pi\nu\nu \) analysis, including \(K \rightarrow \pi\nu\nu \) from simulation and with SM BR

Signal model
- **shape**: Gaussian
- **Ns** from efficiency and normalization obtained in bins of \(p \) and intensity, as in \(\pi\nu\nu \) analysis

Sensitivity degrades at small \(m_X \) because of resolution.

In particular, for axion models, half of the signal is cut away
$K^+ \rightarrow \pi^+ X$, with X decaying

If X decays to visible SM particles

Probability that X does not decay within the NA62 apparatus:

$$P = e^{-\left(\frac{\Delta L}{\beta\gamma c\tau}\right)}$$

Comparison with BNL result
A. V. Artamonov et al. (E949 Collaboration)
Phys. Rev. D 79, 092004

Small improvement for m_X in 40-80 MeV
Improved of ~1 order of magnitude in Region2

Prospects with 2018 data: Improvements are expected from a dedicated analysis exploiting the two-body kinematics, and extending the signal regions, especially at low masses

roberta.volpe@cern.ch
Conclusions

- With 2016 and 2017 data the upper limit at 90% CL
 \[BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 1.85 \times 10^{-10} \]

- 2018 data analysis is ongoing

- The same analysis principle with 2017 dataset has been exploited to search for exotic physics:
 \[BR(\pi^0 \rightarrow \text{invisible}) \leq 4.4 \times 10^{-9} \text{ at 90\% CL} \]

\[BR(K^+ \rightarrow \pi^+X) < (0.5 - 2) \times 10^{-10} \text{ at 90\% CL for } m_X \text{ in [0,100] MeV} \]
\[BR(K^+ \rightarrow \pi^+X) < (0.4 - 1.4) \times 10^{-10} \text{ at 90\% CL for } m_X \text{ in [160,260] MeV} \]

- 2018 data analysis is ongoing

Stay tuned and safe! Thank you

roberta.volpe@cern.ch
Spares
Dark scalar, Higgs mixing

\[\text{BR}(K^+ \rightarrow \pi^+ X) = f \times \frac{2|p_X|}{m_X} \times \sin^2 \theta \]

F. Bezrukov, D. Gorbunov, JHEP05(2010)010
Jackson D. Clarke, Robert Foot and Raymond R. Volkas, JHEP02(2014)123
NA62 apparatus

- very good kinematic reconstruction
- Precise time measurements

33x10^{11} ppp on T10 (750 MHz at GTK3)
Secondary beam: 75 GeV/c momentum
K^+ (6%)/\pi^+ (70%)/p(24%)

FV: Fiducial decay volume

\[m^2_{\text{miss}} = (p_K - p_\pi)^2 \]

Target (T10)

CHANTI
Vetoing bkg from beam-GTK interactions

Kaon identification
Differential Cherenkov detector
\(\sigma(t) = 70 \text{ ps} \)

GTK
Kaon tracking
Si pixel, 3 stations
\(\sigma(t) = 200 \text{ ps}, \sigma(p)/p = 0.2\% \)

KTAG

120 m tube in vacuum
(500 m^3 at 10^{-6} mbar)

100 m
160 m

STRAW
Downstream tracking:
Dipole spectrometer
4 straw-tracker stations
\(\sigma(p)/p = 0.3\% \)

\(\checkmark \) Time resolution \(\sim 100 \text{ ps} \)
\(\checkmark \) \(\sigma(m^2_{\text{miss}}) = 10^{-3} \text{ GeV}^2/c^4 \)

roberta.volpe@cern.ch

PHENO 2020
NA62 apparatus

background rejection: $K^+ \rightarrow \pi^+\pi^0$

Hermetic photon veto system (LAV, SAV, LKr)

Multiplicity rejection (LAV, SAV, LKr, CHOD, STRAW)

Large Angle Veto (LAV)
12 stations (lead glass blocks)
Covering angles $8.5 < \theta < 50 \text{ mrad}$

Small Angle Veto (SAV)
IRC: Inner Ring Calorimeter
Small Angle Calorimeter
Covering angles $< 1 \text{ mrad}$

LKr calorimeter
Photon detection
Covering angles $1 < \theta < 8.5 \text{ mrad}$

$\varepsilon(\pi^0) = 3 \times 10^{-8}$
NA62 apparatus

background rejection: $K \rightarrow \mu^+ \nu$

Particle identification:
To separate $\pi/\mu/e$

The RICH is used also to obtain an independent p momentum measurement.

RICH
Ring Imaging Cherenkov detector

- Neon 1 Atm
- $\pi/\mu/e$ separation

MUV
Muon veto system

- MUV1 & MUV2: Hadronic calorimeters for the μ/π separation
- MUV3: Efficient fast Muon Veto used in the hardware trigger level.

Multivariate analysis
with MUV1, MUV2 and LKr info

2 algorithm for the RICH variables

- $\varepsilon(\mu^+) = 10^{-8}$
- $\varepsilon(\pi^+) = 64\%$

roberta.volpe@cern.ch
JINST 12 P05025 (2017), arxiv:1703.08501
PHENO 2020
Upstream background

\[N_{upstream}^{bg} = N_{\pi^+}^{upstream} \cdot P_{preco\ pileup} \cdot P_{matching \ K-\pi} \]

Upstream enriched sample

NA62 Preliminary

NA62 Preliminary

NA62 Preliminary

NA62 Preliminary

data
Bkg: $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$

MC simulation validated using data

Validation in the control region