

Latest measurement of $K^+ \longrightarrow \pi^+ \overline{\nu} \overline{\nu}$ with the NA62 experiment at CERN

Roberta Volpe for the NA62 Collaboration <u>roberta.volpe@cern.ch</u> Comenius University Bratislava (SK)

Pittsburg, 4-6 May 2020

NA62 Collaboration

~ 200 participants

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC)

NA62

The main aim is the measurement of **BR(K->**πνν)

The physics program is much broader. Follow the talks by S. Ghinescu and P.Massarotti

K-> $\pi\nu\nu$ in the SM

Measuring both $K^+ \rightarrow \pi^+ \nu \nu$ and $KL \rightarrow \pi^0 \nu \nu$ provides the CKM unitarity triangle independently from measurements in B mesons sector.

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$

E949, Phys. Rev. D 77, 052003 (2008) Phys. Rev D 79, 092004 (2009)]

roberta.volpe@cern.ch

K-> $\pi\nu\nu$ for new physics

roberta.volpe@cern.ch

PHENO 2020

Measurement strategy

roberta.volpe@cern.ch

PHENO 2020

NA62 experiment

About 20% of K⁺ decay inside the fiducial volume
<u>2 years running at high intensity we collected:</u>
O(10¹³) K⁺ decays in fiducial volume

<u>K->πνν at NA62</u>

Same analysis strategy:

∑2016 run: published result

Phys. Lett. B 791 (2019) 156-166, arXiv.1811.08508

⊠2017 run: result presented Paper in preparation

□ 2018 run:

Analysis ongoing Preliminary studies in SPSC NA62 status report: CERN-SPSC-2020-007 ; SPSC-SR-266 https://cds.cern.ch/record/2713499

roberta.volpe@cern.ch

NA62 apparatus

Analysis principle

- Control data collected with a different trigger
- Data-driven background estimation
- Control regions to validate it
- Normalization to
 K->π⁺π⁰ decay

Normalization

signal efficiency due to accidental activity

Summary of expected Sig and Bkg

 Result from analysis of 2016 dataset:
 Phys. Lett. B 791, 156 (2019)

 $N_{\pi\nu\nu}^{exp}(SM) = 0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ 1 event observed

 Total background
 $0.152_{-0.033}^{+0.092}|_{stat} \pm 0.013_{syst}$ $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ at 95% CL.

Results with 2016 and 2017 data Paper in preparation

2016 and 2017:

 $BR_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \times 10^{-10}$

Grossman-Nir bound

Observed UL at 90% CL: $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$

roberta.volpe@cern.ch

PHENO 2020

Exotics with $K^+ \rightarrow \pi^+ + inv$

NA62

 $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow inv$

CERN-SPSC-2020-007 ; SPSC-SR-266

- $\pi^0 \rightarrow \nu \nu$ is not forbidden because of neutrino non-zero masses, but in the SM: BR($\pi^0 \rightarrow \nu \nu$) ~ O(10⁻²⁴), so any observation ==> **BSM physics**
- The present experimental limit is 2.7 10-7 at 90% C.L., from BNL experiments

The hermetic photon veto in NA62, essential for $\pi \nu \nu$ analysis, allows for the search in the Kaon decay <u>Analysis strategy:</u> $BR(\pi^0 \rightarrow \text{invisible}) = BR(\pi^0 \rightarrow \gamma \gamma) \times \frac{N_s}{N_{\pi^0} \times \epsilon_{\text{sel}} \times \epsilon_{\text{trig}}}$

The main background is $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma \gamma$ with undetected photons

roberta.volpe@cern.ch

 $K^+ \rightarrow \pi^+ X$, X invisible

Motivation: feebly interacting new particle foreseen in several models

Pseudo-scalar

Dark scalar: mixing with the Higgs $\mathcal{L}_{scalar} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - (\mu S + \lambda S^2) H^{\dagger} H$

 $\mu = \sin \theta \quad \lambda = 0$ JHEP05(2010)010, JHEP02(2014)123 Axion-like particles (ALPs) JHEP 03 (2015) 171 QCD axion, Axiflavon (m~0)

Phys. Rev. D16 (1977) 1791-1797.

Phys. Rev. D 95, 095009 (2017) arxiv:1612.05492

Analysis strategy:

Use exactly the same selection, normalization and background evaluation of $\pi\nu\nu$ analysis Generate signal with two body decay for 200 mass hypotheses to compute acceptance

roberta.volpe@cern.ch

A 5 $K^+ \rightarrow \pi^+ X$, X invisible Paper in preparation Bump hunting in m_{miss}^2 0.8×10^{-9} BR(K⁺ $\rightarrow \pi^+$ X) at 90% C.L No deviation from the SM have 2017 Data ···· Exp UL NA62 Preliminary 0.7 been observed, so: *setting upper limit* Obs UL Exp UL $\pm 1 \sigma$ 0.6 Exp UL $\pm 2 \sigma$ Shape analysis on m_{miss}^2 0.5 Fully frequentist approach Profiled likelihood test statistic 0.4 0.3 **Background model** 0.2 • shape: Parameterized with polynomial functions in R1 and R2 0.1 • **Bkg yield** from $\pi\nu\nu$ analysis, including K-> $\pi\nu\nu$ from simulation 100 50 150 200 250

Signal model

• shape: Gaussian

and with SM BR

• Ns from efficiency and normalization obtained in bins of p and intensity, as in $\pi\nu\nu$ analysis Sensitivity degrades at small m_X because of resolution.

In particular, for axion models, half of the signal is cut away

 $m_x [MeV/c^2]$

Prospects with 2018 data: Improvements are expected from a dedicated analysis exploiting the two-body kinematics, and extending the signal regions, especially at low masses

roberta.volpe@cern.ch

PHENO 2020

Conclusions

With 2016 and 2017 data the upper limit at 90% CL Preliminary Preliminary Papers in preparation

 $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$

2018 data analysis is ongoing

The same analysis principle with 2017 dataset

has been exploited to search for exotic physics:

 $BR(\pi^0 \rightarrow invisible) \le 4.4 \times 10^{-911} \text{ at } 90\% \text{ CL}$

 $BR(K^+ \to \pi^+ X) < (0.5 - 2) \cdot 10^{-10}$ $BR(K^+ \to \pi^+ X) < (0.4 - 1.4) \cdot 10^{-10}$ at 90% CL for m_X in [0,100] MeV at 90% CL for m_X in [160,260] MeV

2018 data analysis is ongoing Stay tuned and safe! Thank you

roberta.volpe@cern.ch

Spares

Dark scalar, Higgs mixing

F. Bezrukov, D. Gorbunov, JHEP05(2010)010 Jackson D. Clarke, Robert Foot and Raymond R. Volkas, JHEP02(2014)123

PHENO 2020

NA62 apparatus

CHOD

background rejection:
$$K^+ \rightarrow \pi^+ \pi^0$$

Hermetic photon veto system (LAV,SAV,LKr)

Large Angle Veto (LAV)

12 stations (lead glass blocks)

Multiplicity rejection (LAV, SAV, LKr, CHOD, STRAW)

0 100 m 160 m LKr calorimeter **Photon detection Small Angle Veto (SAV)** $\mathbf{v} \epsilon(\pi^0) = 3 \ 10^{-8}$ Covering angles $1 < \theta < 8.5$ mrad **IRC:** Inner Ring Calorimeter Small Angle Calorimeter Covering angles <1 mrad

Ρ

NA62 apparatus

Particle identification: To separate $\pi/\mu/e$

The RICH is used also to obtain

RICH

Ring Imaging Cherenkov detector

Neon 1 Atm $\pi/\mu/e$ separation

MUV Muon veto system

A 62

MUV1 & MUV2:

Hadronic calorimeters for the μ/π separation

MUV3: Efficient fast Muon Veto used in the hardware trigger level.

Multivariate analysis with MUV1, MUV2 and LKr info

2 algorithm for the RICH variables

100 m

160 m

LKr calorimeter **Photon detection**

$$\mathbf{N} \epsilon(\mu^+) = 10^{-8} \epsilon(\pi^+) = 64\%$$

Upstream background

roberta.volpe@cern.ch

PHENO 2020

Bkg: K+ $\rightarrow \pi^+\pi^-e^+\nu$

MC simulation validated using data

Validation in the control region

