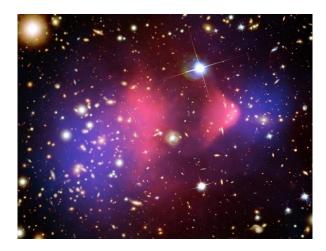
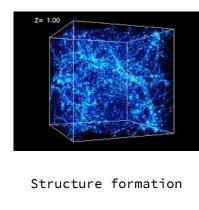
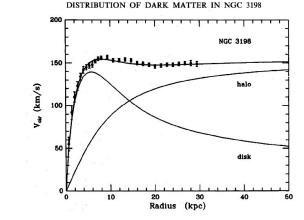
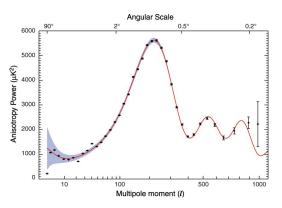
Constraining atomic dark matter with white dwarfs


Jack Setford University of Toronto arXiv:2005.????, ... with David Curtin

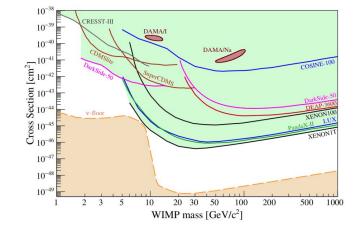

Phenomenology 2020 Symposium May 5th

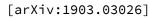


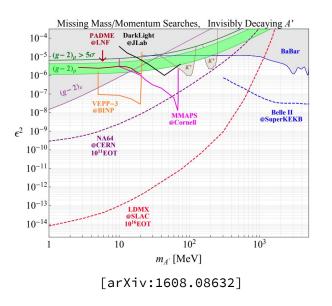
Dark matter exists...

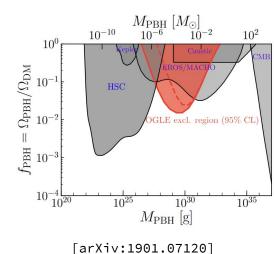

Evidence for dark matter is overwhelming.

Galactic rotation curves



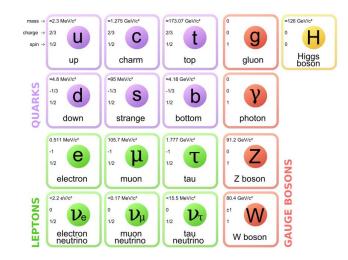

CMB power spectrum


Bullet cluster


...but we haven't found it yet

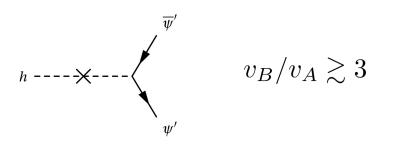
Ongoing searches for WIMPs, axion-like particles, dark photons, millicharged particles, primordial black holes, the list goes on...

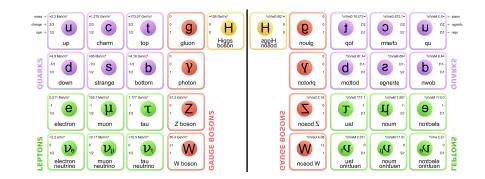
Dark sector could be non-minimal

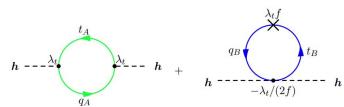

The Standard Model is a very non-minimal model:

- Bound states, confinement,
- Multiple interactions.

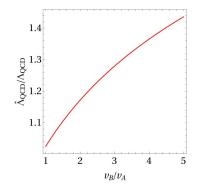
Should we expect the dark sector to be any simpler?


Dark sector could be composite with multiple stable relics: confinement, and/or atomic dark matter.


New physics could be related to Standard Model via symmetry, e.g. supersymmetry, Twin Higgs.


Mirror Twin Higgs

Raise twin Higgs VEV by a factor of a few to get around collider / cosmological constraints...

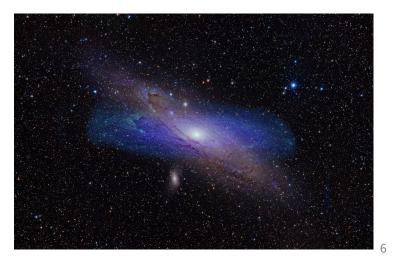


Raises the masses of the fundamental mirror sector particles by a factor of a few.

[arXiv:0506256, arXiv:0510273, image from arXiv:1411.3310]

- Proton, neutron masses
 - $\propto \Lambda_{QCD}'$

5


Complex = interesting!

Complex dark matter can behave in radically different ways.

Atomic dark matter can form complex structures, cooling from a halo into a dark disk structure

Constraints on self-interactions (structure formation and others) < around 5-10% of total dark matter abundance.

[Fan, Katz, Randall, Reece: arXiv:1303.1521, arXiv:3271]

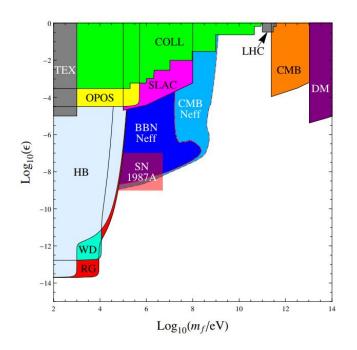
(Mirror) stellar probes

Ways to probe this kind of dark sector?

- Direct detection
- Look for mirror stars!
- Other constraints from stellar physics.

Stars would *accumulate* atomic dark matter, which can radiate to produce a signature.

Can lead deviations from known physics.

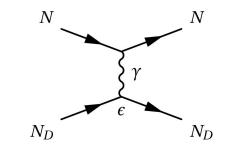

Kinetic mixing

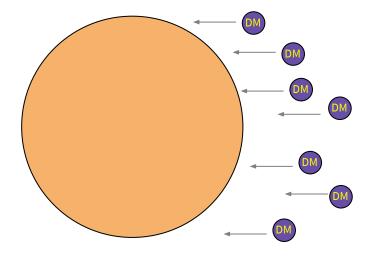
Parameter constrained to be very small. Very small cross sections.

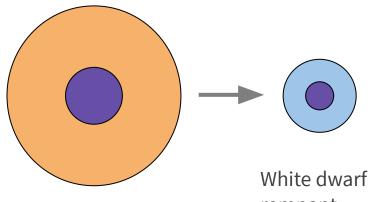
All these probes are in spite of very tiny interactions.

In MTH, kinetic mixing not generated at up to 3-loop — small values can be obtained naturally.

 $\Delta\epsilon\sim 10^{-13}$ contribution from *graviton* loops. [Gherghetta, Pospelov, et al. arXiv:1909.00696]




[Vogel, Redondo, arXiv:1311.2600]


$\mathcal{L} \supset rac{\epsilon}{2} F_{\mu u} F'^{\mu u}$			$U(1)_{SM}$	$U(1)_{mirror}$		$U(1)_{SM}$	$U(1)_{mirror}$
	\rightarrow	SM	1	e	SM	1	0
		Mirror	0	1	Mirror	ϵ	1

Dark matter capture

Ordinary stars will accumulate atomic dark matter.

remnant

Capture calculation

Standard capture calculation:

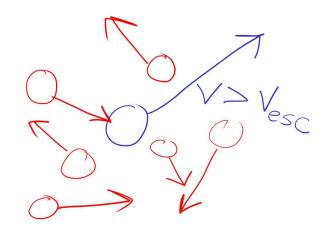
$$\Omega_{+}(w,r) = \sum_{i} n_{i}(r)w(r)\,\Theta(E_{R}^{max} - E_{R}^{min})\int_{E_{R}^{min}}^{E_{R}^{max}} dE_{R}\frac{d\sigma_{i}}{dE_{R}}$$

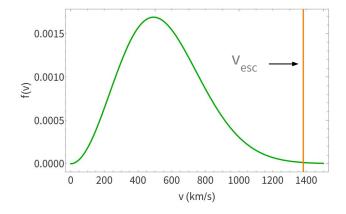
Integrate over velocity distribution of incoming matter/dark matter and volume of the star.

Incoming particles scatter off *both* the stellar material, and the already-captured material.

Capture cross section cannot exceed GEOMETRIC LIMIT:

$$\sigma_{cap} \sim \pi R^2$$
 where $R = R_{star}$ or R_{nugget}

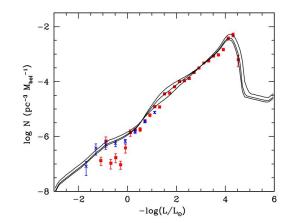

Evaporation

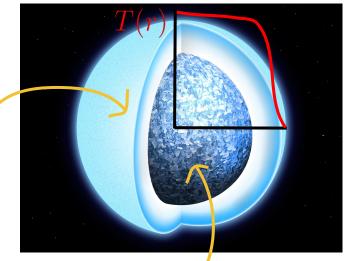

Depending on mass and cross section, captured matter/dark matter can be ejected via evaporation.

Define local evaporation rate $\Omega_{-}(v_{esc}, r)$, has a very sensitive (exponential) dependence on captured mass.

True rate is suppressed by the mean free path of "evaporated" particles through the nugget:

 $\int_{v_{esc}(r)}^{\infty} dv \ n_{cap}(r) \ P_{esc}(v,r) \ \Omega_{-}(v,r)$

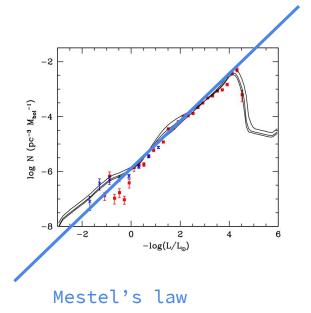



White dwarf cooling

Compared to main sequence stars, white dwarfs are relatively simple astronomical objects.

- No nuclear fusion.
- Slowly radiates away internal thermal energy.
- Cooling rate slows over time.

Insulating "blanket", high temperature gradient


Degenerate, nearly isothermal core

White dwarf cooling

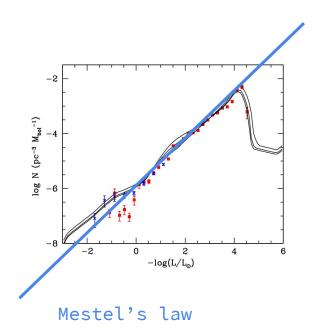
Approximate power-law luminosity function given by Mestel's law.

dwarfs,

$$\frac{dN}{dL} \propto \frac{dt}{dL} = \frac{dt}{dU} \frac{dU}{dL} = -C_{WD} \frac{1}{L} \frac{dT}{dL}$$
$$L \propto T^m \rightarrow \frac{dT}{dL} \propto L^{\frac{1-m}{m}}$$
$$\rightarrow \frac{dN}{dL} \propto -L^{\frac{1-2m}{m}}$$
For white dwa m = 7/2

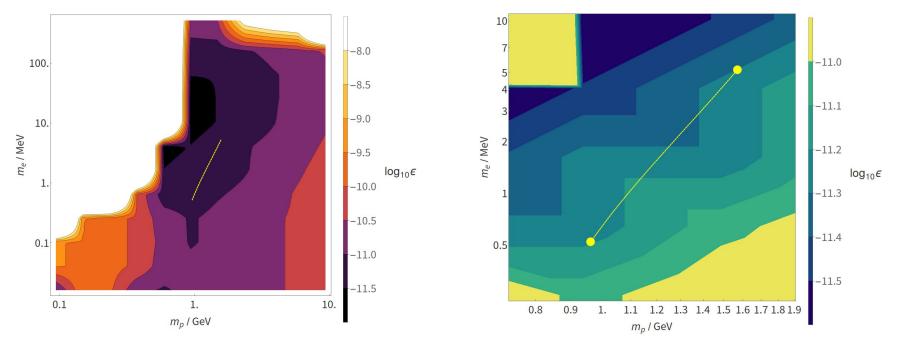
White dwarf cooling

Approximate power-law luminosity function given by Mestel's law.

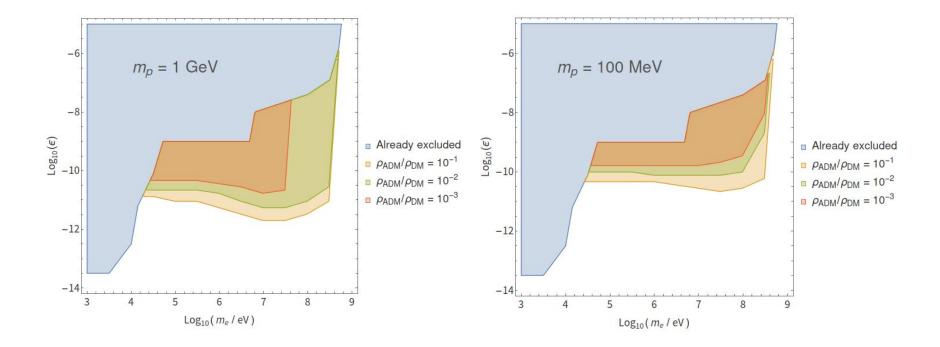

$$\log_{10} \left(\frac{dN}{dM_{\text{bol}}} \right) = A + \frac{2}{7} M_{\text{bol}}$$

$$\downarrow$$

$$\log_{10} \left(\frac{dN}{dM_{\text{bol}}} \right) = A + \frac{2}{7} M_{\text{bol}} + \log_{10} \left(\frac{L_{\gamma}}{L_{\gamma} + L_{dark}} \right)$$


White dwarfs also used to constrain e.g. axions, 5th force...

Assume that we can exclude $L_{dark} = L_{\gamma}$ at low-luminosity tail of the distribution.



White dwarf constraints

Assuming $ho_{ADM}/
ho_{DM} = 0.1$, average velocity ~ 220 km/s

White dwarf constraints

Conclusion

- Non-minimal dark sectors well motivated.
- Atomic dark matter interesting possibility predicted in various models of neutral naturalness.
- Stars capture dissipative / atomic dark matter, which could lead to deviations from predicted stellar physics.
- We use the white dwarf luminosity function to constrain accumulation -> current best constraints on atomic dark matter!