

Measurements of inclusive multi-boson production at ATLAS

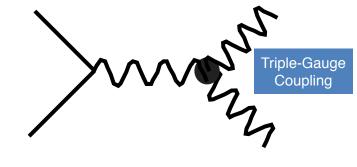
Phenomenology 2020 conference

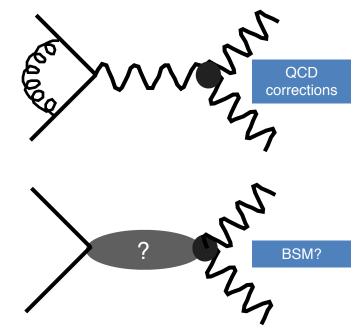
Pittsburgh (virtually), May 2020

Louie Corpe, on behalf of the ATLAS Collaboration

Introduction

SM processes producing multiple bosons :


- test of EW sector in SM (eg TGC)
- sensitive to perturbative QCD
- sensitive to new physics (eg resonances, effective field theories)
- important SM backgrounds in H measurements or BSM searches


Vector-boson scattering signatures not covered in this talk:

See dedicated parallel session talk

This talk will cover:

- 2 brand-new ATLAS results in Zy channel
- signpost to some other ATLAS multi-boson results which have come out in the last year

$Z(\rightarrow I^+I^-)\gamma$ production at 13 TeV

JHEP 03 (2020) 054 https://arxiv.org/abs/1911.04813

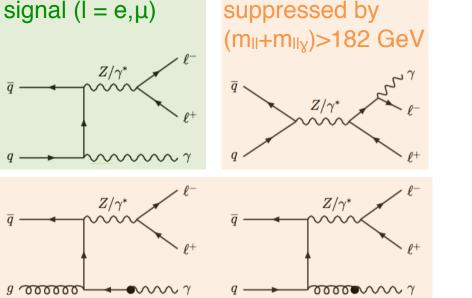
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

JHEP 03 (2020) 054 DOI: 10.1007/JHEP03(2020)054 CERN

CERN-EP-2019-228 19th March 2020

Measurement of the $Z(\rightarrow \ell^+ \ell^-)\gamma$ production cross-section in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration


The production of a prompt photon in association with a Z boson is studied in proton–proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV. The analysis uses a data sample with an integrated luminosity of 139 fb⁻¹ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+ \ell^- \gamma + X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

Z(II) y is particularly clean channel to study EW sector, + dominant SM background in H→Zy or BSM→Zy searches

- This paper:139/fb at 13 TeV. Differential particle-level crosssection measurements, unfolded with Bayesian Iterative Technique (2 iterations) wrt:
 - $E_{T,\gamma}$, $I\eta_{\gamma}I$, $m_{II\gamma}$,
 - $p^{\mathsf{T}_{II}}_{\mathsf{II}}, \ p^{\mathsf{T}_{II}}_{\mathsf{II}}, \ \Delta\varphi(\mathsf{II}, \gamma)$

sensitive to pQCD + measured for 1st time! suppressed with photon isolation

 Data collected with single-e/µ trigger (E_T> 20-26 GeV depending on data period). Efficiency ~99%

ATLAS

$Z(\rightarrow I^+I^-)\gamma$: Selection

Detector-level selection

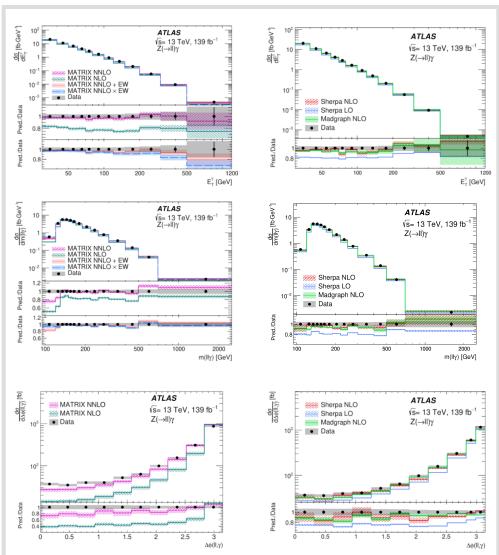
	Photons	Electrons	Muons
Kinematics:	$E_{\rm T} > 30 {\rm ~GeV}$	$p_{\mathrm{T}} > 30, 25~\mathrm{GeV}$	$p_{\rm T} > 30, 25~{\rm GeV}$
	$ \eta < 2.37$	$ \eta < 2.47$	$ \eta < 2.5$
	excl. $1.37 < \eta < 1.52$	excl. $1.37 < \eta < 1.52$	
Identification:	Tight $[55]$	Medium [55]	Medium [56]
Isolation:	FixedCutLoose [55]	FCLoose [55]	FCLoose_FixedRad [56]
	$\Delta R(\ell,\gamma) > 0.4$	$\Delta R(\mu,e) > 0.2$	
Event selection:	$m(\ell\ell) > 40$	$GeV, m(\ell\ell) + m(\ell\ell\gamma)$	> 182 GeV

PhotonsElectrons/Muons $E_{\rm T}^{\gamma} > 30 \,{\rm GeV}$ $p_{\rm T}^{\ell} > 30,25 \,{\rm GeV}$ $|\eta^{\gamma}| < 2.37$ $|\eta^{\ell}| < 2.47$ $E_{\rm T}^{\rm cone0.2}/E_{\rm T}^{\gamma} < 0.07$ dressed leptons $\Delta R(\ell,\gamma) > 0.4$ Event selection

Particle-level selection

 $m(\ell\ell) > 40 \, GeV$ $m(\ell\ell) + m(\ell\ell\gamma) > 182 \, GeV$

- Main backgrounds [Data-driven estimates]:
 - Z+jets: 2-dim sideband method, considering probability that jet passes γ ID and isolation
 - Pile-up: New method based on estimated z-position of y production vertex
 - Pileup: no correlation between z-pos of dilepton and photon
 - Hard Scatter: *z*-pos of dilepton and photon should be the same
 - Use high ∆z events to get pure PU sample, and extrapolate yield back to SR


	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$
N _{obs}	41343	54413
N_{Z+jets}	4130 ± 440	5470 ± 580
(includes N _{PU,jets}	870 ± 170	$1140 \pm 230)$
$N_{\mathrm{PU},\gamma}$	1030 ± 210	1360 ± 270
$N_{t\bar{t}\gamma}$	1650 ± 250	1980 ± 300
N_{WZ}	254 ± 76	199 ± 60
N _{ZZ}	64 ± 19	102 ± 31
$N_{WW\gamma}$	92 ± 28	112 ± 34
$N_{\tau\tau\gamma}$	46 ± 15	39 ± 12
$N_{\rm obs} - N_{\rm bkg}$	34080 ± 590	45150 ± 750

Dominant uncertainties:

Integrated Luminosity [~1.7%] Z+jets and PU backgrounds [~1.4%] Photon ID/Isolation [~1.3%] Total: ~3% syst, ~0.5% stat

$Z(\rightarrow I^+I^-)\gamma$: Results

 MadGraph NLO, Sherpa NLO and MATRIX NNLO underestimate crosssection by 3-6% (within uncertainties)

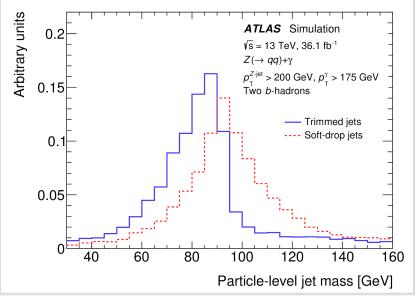
- MATRIX NNLO EW corrections also included (additively / multiplicatively). Reduce prediction by ~1% overall, largest change at high Ex_T, (similar to the difference between NLO / NNLO)
- Spectra shapes in agreement with observation, although some differences in MATRIX NNLO at low m_{II}_γ, Δφ(II,γ)
- Overall, precision of measurement for inclusive cross-section is 2.9%: factor two improvement over ATLAS 8TeV

Boosted Z(→ bb)γ production at 13 TeV

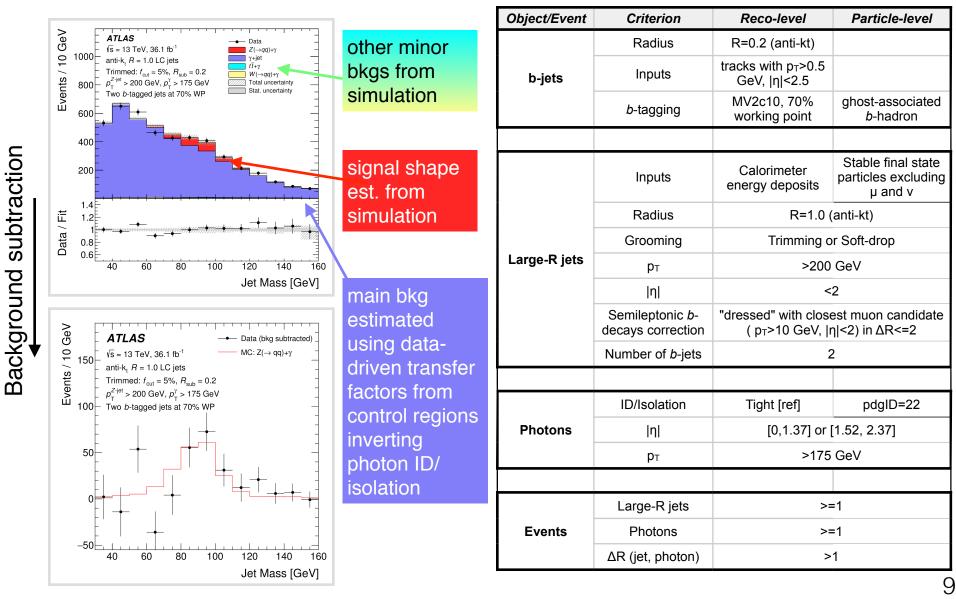
Submitted to PLB https://arxiv.org/abs/1907.07093 EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Measurement of the jet mass in high transverse momentum $Z(\rightarrow b\overline{b})\gamma$ production at $\sqrt{s} = 13$ TeV using the ATLAS detector

The ATLAS Collaboration

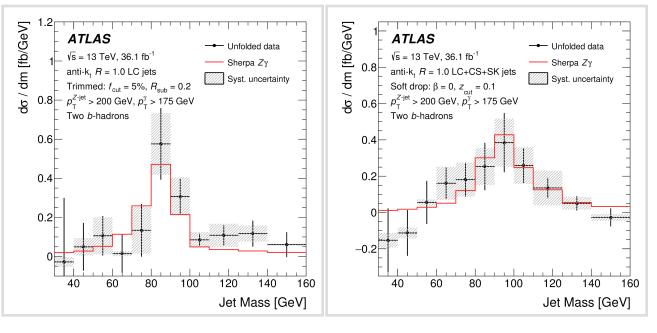

The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum $Z \rightarrow b\overline{b}$ decays are measured in $Z\gamma$ events in proton-proton collisions at $\sqrt{s} = 13$ TeV. The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb⁻¹. Photons are required to have a transverse momentum $p_T > 175$ GeV. The $Z \rightarrow b\overline{b}$ decay is reconstructed using a jet with $p_T > 200$ GeV, found with the anti- k_t R = 1.0 jet algorithm, and groomed to remove soft and wide-angle radiation and to mitigate contributions from the underlying event and additional proton-proton collisions. Two different but related measurements are performed using two jet grooming definitions for reconstructing the $Z \rightarrow b\bar{b}$ decay: trimming and soft drop. These algorithms differ in their experimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identify Z bosons, b-tagged R = 0.2 track-jets matched to the groomed large-R calorimeter jet are used as a proxy for the b-quarks. The signal yield is determined from fits of background templates extracted from the data to the different jet mass distributions for the two grooming methods. Integrated fiducial cross-sections and unfolded jet mass spectra for each grooming method are compared with leading-order theoretical predictions. The results are found to be in good agreement with Standard Model expectations within the current statistical and systematic uncertainties.

- $Z(bb)\chi$: well-defined channel to measure boosted Z to high- p_T jets
- important for systematics + identification in H->bb at high-p_T
- also sensitive to potential TeV-scale resonances to di-bosons
- The γ is useful trigger handle, highp_T requirement enhances signal over dominant γ +jet background
- This result: 36.1/fb at 13 TeV to make particle-level measurements of jet mass spectrum using 2 different jet grooming definitions: "Trimming" and "Soft Drop"


Trimmed Jets: designed for mass resolution and stability versus pileup. Re-cluster components of initial R=1.0 anti-kt jet, into R=0.2 k_t sub-jets and removing those with p_T less than 5% of parent jet.

Soft-drop jets: designed to remove soft/wideangle radiation in IR-safe way, by re-clustering initial R=1.0 anti-kt jet using Cambridge-Aachen algorithm, and removing softer subjets unless certain conditions met 8

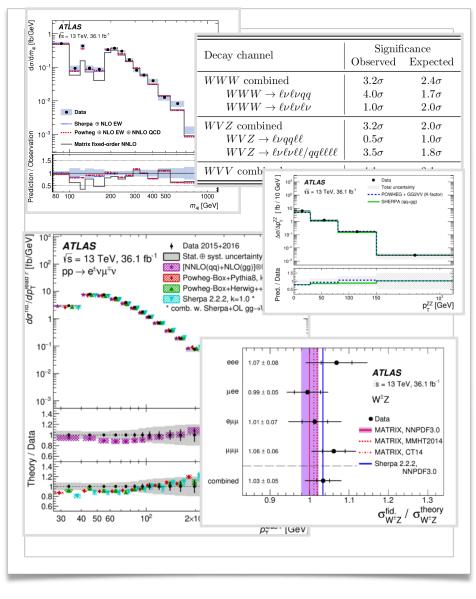
Z(→bb)γ : Selection


Z(→bb)γ : Results

Jet definition	$\sigma \; (Z(\rightarrow b\bar{b})\gamma, p_{\rm T}^{Z\text{-jet}} > 200 \; {\rm GeV}, p_{\rm T}^{\gamma} >$	175 GeV, $30 < m^{Z-\text{jet}} < 160 \text{ GeV}$) [fb]
Trimmed jets	Data Sherpa $Z\gamma$ prediction MadGraph+Pythia 8 $Z\gamma$ prediction	$17.0 \pm 5.0 \text{ (stat.)} \pm 3.6 \text{ (syst.)}$ $13.4 \pm 0.2 \text{ (stat.)}$ $9.1 \pm 0.1 \text{ (stat.)}$
Soft-drop jets	Data Sherpa $Z\gamma$ prediction MadGraph+Pythia 8 $Z\gamma$ prediction	$12.5 \pm 4.9 \text{ (stat.)} \pm 3.1 \text{ (syst.)}$ $15.4 \pm 0.1 \text{ (stat.)}$ $10.2 \pm 0.1 \text{ (stat.)}$

Dominant uncertainties: Stat uncertainty in fit [30-39%] Zy modelling [12-15%] Backgrounds [10-13%] Jet energy/mass scale/res [9%] Unfolding [6-9%]

Total: 37-46%



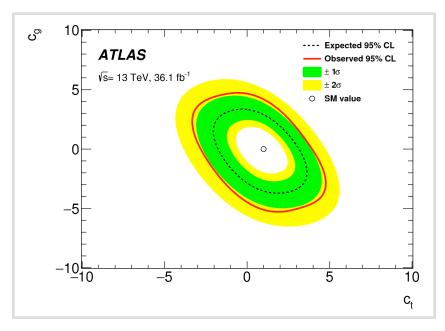
Fiducial cross-section measurements and differential jet mass cross-section found to be in agreement with the LO predictions from Sherpa/MG+Py8

Other ATLAS multi-boson results *Highlights*

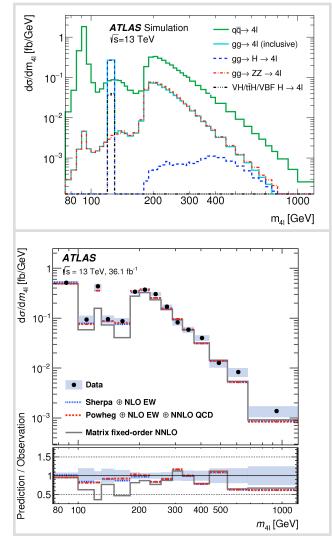
https://arxiv.org/abs/1902.05759 Eur. Phys. J. C 79 (2019) 535

eee 1.07 ± 0.08 ATLAS s = 13 TeV, 36.1 fb μee 0.99 ± 0.05 W[±]7 Data euu 1.01 ± 0.07 MATRIX, NNPDF3.0 MATRIX, MMHT2014 μμμ 1.06 ± 0.06 MATRIX, CT14 Sherpa 2.2.2. NNPDF3.0 combined 1.03 ± 0.05 0.9 1.1 1.2 1.3 $\sigma^{\text{fid.}}$ $\sigma^{\text{theory}}_{W^{\pm}Z}$ W[±]7

•	36/fb	at	13	TeV	


- Exploit leptonic decay modes of W and Z
- Cross-sections for W+Z and W-Z, their ratios, and differential measurements
- Measures helicity fractions in the fiducial phase space

		f_0		$f_{\rm L} - f_{ m R}$			
	Data	Powheg+Pythia	MATRIX	Data	Powheg+Pythia	MATRIX	
W^+ in W^+Z	$0.26\pm~0.08$	$0.233 \hspace{.1in} \pm \hspace{.1in} 0.004$	0.2448 ± 0.0010	-0.02 ± 0.04	0.091 ± 0.004	0.0868 ± 0.0014	
W^- in W^-Z	$0.32\pm~0.09$	0.245 \pm 0.005	0.2651 ± 0.0015	-0.05 \pm 0.05	-0.063 ± 0.006	-0.034 ± 0.004	
W^{\pm} in $W^{\pm}Z$	$0.26\pm~0.06$	0.2376 ± 0.0031	0.2506 ± 0.0006	-0.024 ± 0.033	0.0289 ± 0.0022	0.0375 ± 0.0011	
Z in W^+Z	$0.27 \pm \ 0.05$	$0.225 \hspace{.1in} \pm \hspace{.1in} 0.004$	0.2401 ± 0.0014	-0.32 \pm 0.21	-0.297 ± 0.021	-0.262 ± 0.009	
Z in W^-Z	$0.21\pm~0.06$	$0.235 \ \pm \ 0.005$	0.2389 ± 0.0015	-0.46 \pm 0.25	$0.052 \hspace{.1in} \pm \hspace{.1in} 0.023$	0.0468 ± 0.0034	
$Z \text{ in } W^{\pm}Z$	$0.24\pm~0.04$	0.2294 ± 0.0033	0.2398 ± 0.0014	-0.39 ± 0.16	-0.156 ± 0.016	-0.135 ± 0.006	

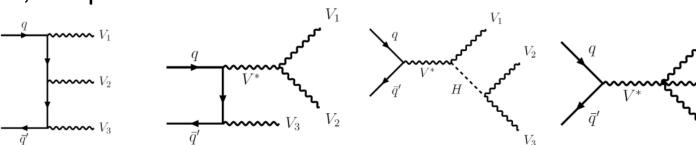


Measurement of the 4 lepton invariant mass distribution at 13 TeV with the ATLAS detector

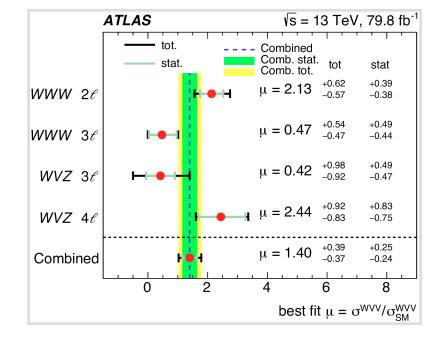
- 36/fb at 13 TeV
- Rich spectrum of SM processes
- Differential in m4l
- Double-differential in m4l vs several observables
- Constraints on anomalous Higgs couplings

https://arxiv.org/abs/1902.05892 JHEP 04 (2019) 048

Evidence for the production of three massive vector bosons with the ATLAS detector

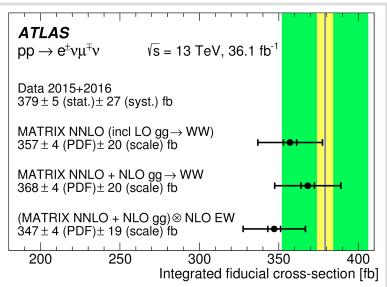

- 79.8/fb at 13 TeV
- Covers WWW, WWZ, WZZ in 2-, 3-, 4-lepton channels

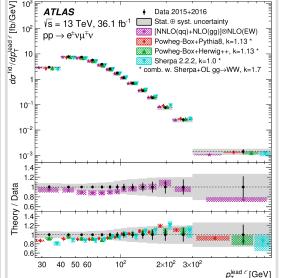
https://arxiv.org/abs/1903.10415 Phys. Lett. B 798 (2019) 134913


 V_1

 $\sim V_2$

 V_3


Decay channel	0	icance Expected
$WWW \text{ combined} \\ WWW \to \ell \nu \ell \nu q q \\ WWW \to \ell \nu \ell \nu \ell \nu \ell \nu$	$\begin{array}{c} 3.2\sigma \\ 4.0\sigma \\ 1.0\sigma \end{array}$	$\begin{array}{c} 2.4\sigma \\ 1.7\sigma \\ 2.0\sigma \end{array}$
$ \begin{array}{c} WVZ \text{ combined} \\ WVZ \to \ell \nu q q \ell \ell \\ WVZ \to \ell \nu \ell \nu \ell \ell \ell / q q \ell \ell \ell \ell \end{array} $	$\begin{array}{c} 3.2\sigma \ 0.5\sigma \ 3.5\sigma \end{array}$	2.0σ 1.0σ 1.8σ
WVV combined	4.1σ	3.1σ



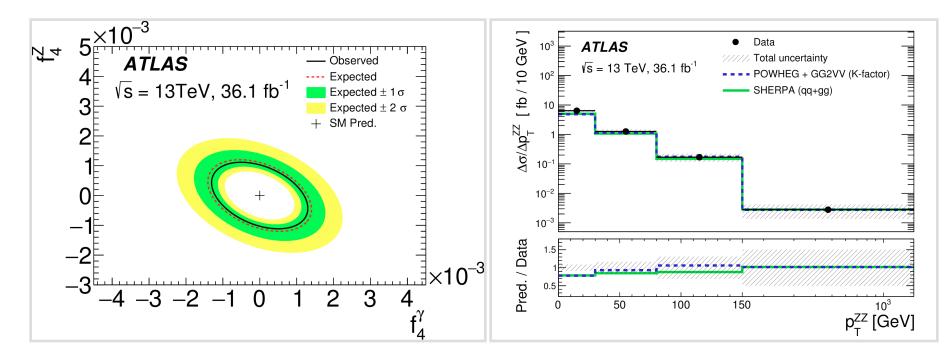
Measurement of fiducial and differential WW production cross-sections at 13 TeV with ATLAS

- 36.1/fb at 13 TeV
- Selects opposite-flavour-lepton events to target WW-> evµv
- events with high-p⊤ jets are excluded to suppress top background
- Fiducial and differential cross-sections
- EFT interpretation on anomalous gauge couplings [more info in backup]

https://arxiv.org/abs/1905.04242 Eur. Phys. J. C 79 (2019) 884

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4,4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21,18]	[-18,17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{\tilde{W}}/\Lambda^2$	[-76 , 76]	[-91,91]

I.corpe@ucl.ac.uk



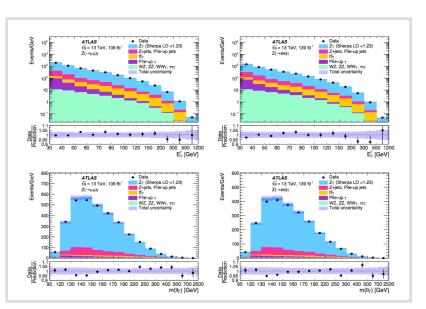
xiv.org/abs/1905.0716

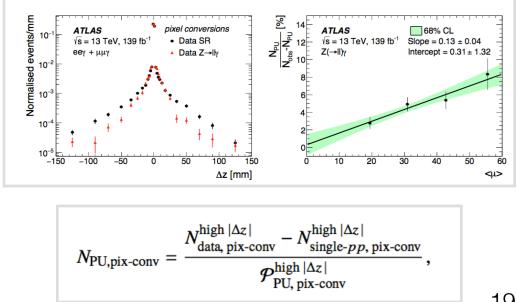
• 36.1/fb at 13 TeV

https://arxiv.org/abs/1905.07163 JHEP 10 (2019) 127

- Integrated cross-sections measured with an uncertainty of 7%, along with differential measurements
- Constraints on anomalous TGC

Thank you! *Questions?*


Extra material



$Z(\rightarrow I^{+}I^{-})\gamma$: Backgrounds ΔUC

	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$
N _{obs}	41343	54413
N_{Z+jets}	4130 ± 440	5470 ± 580
(includes N _{PU,jets}	870 ± 170	1140 ± 230
$N_{\mathrm{PU},\gamma}$	1030 ± 210	1360 ± 270
$N_{t\bar{t}\gamma}$	1650 ± 250	1980 ± 300
N _{WZ}	254 ± 76	199 ± 60
N _{ZZ}	64 ± 19	102 ± 31
$N_{WW\gamma}$	92 ± 28	112 ± 34
$N_{\tau\tau\gamma}$	46 ± 15	39 ± 12
$N_{\rm obs} - N_{\rm bkg}$	34080 ± 590	45150 ± 750

- Main backgrounds [Data-driven estimates]:
 - Z+jets: 2-dim sideband method, considering probability that jet passes y ID and isolation
 - Pile-up: Method based on estimated z-position of y production vertex

$Z(\rightarrow bb)\gamma$: Backgrounds \perp

- Background templates from MC/ from Data are fitted to the observed jet mass spectrum
- Dominant backgrounds:
 - y + jets with gluon to bb splitting [data-driven templates: MC not reliable]
 - Calculate transfer factors from Control Regions with modified N_{b-jet} and inverted photon ID/isolation requirements
 - tty, Wy [templates from MC]
 - Multijet / V+jets / Hy (negligible)

	$N_{b-jet} = 0$	$N_{b-\text{jet}} = 1$	$N_{b-jet} = 2$
Non-tight γ	CR-A	CR-C	CR-E
Non-tight γ Tight γ	CR-B	CR-D	SR

$$N_{\mathrm{CR},i}^{\gamma+\mathrm{jets}} = N_{\mathrm{CR},i} - N_{\mathrm{CR},i}^{t\bar{t}+\gamma} - N_{\mathrm{CR},i}^{W\gamma}$$

$$N_{\mathrm{SR},i}^{\gamma+\mathrm{jets}} = \left(\frac{N_{\mathrm{CR}-\mathrm{D},i}^{\gamma+\mathrm{jets}}}{N_{\mathrm{CR}-\mathrm{C},i}^{\gamma+\mathrm{jets}}}\right) N_{\mathrm{CR}-\mathrm{E},i}^{\gamma+\mathrm{jets}},$$

Z(→ I+I⁻)y and Z(→ bb)y : Uncertainties

Source	Uncertainty [%]		Correlation Source		Uncertainty [%]	
	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$			Trimmed jets	Soft-drop jets
Trigger efficiency	_	0.2	no	Luminosity	2.1	2.1
Photon identification efficiency	1	.0	yes	Photon trigger	0.4	0.4
Photon isolation efficiency		.9	yes	Photon related	1.3	1.2
•		.)	-	<i>b</i> -tagging	5.3	5.8
Electron identification efficiency	1.4	-	no	Muon related	0.1	< 0.1
Electron reconstruction efficiency	0.3	_	no	Jet energy resolution	0.4	< 0.1
Electron-photon energy scale	0.9	0.6	partial	Jet mass resolution	5.1	6.0
Muon isolation efficiency	_	0.4	no	Jet energy and mass scale	7.2	7.4
Muon identification efficiency		0.7	no	$t\bar{t} + \gamma$ related	1.7	2.8
•	-			$W\gamma$ related	< 0.1	< 0.1
Z + jets background	1	.3	yes	$Z\gamma$ modelling	12	15
Pile-up background	0	.6	yes	Transfer factor: 0-tag vs 1-tag	7.5	4.0
Other backgrounds	0.8	0.7	partial	Transfer factor: statistical	2.9	1.5
Monte Carlo event statistics	0.4	0.4	no	Unfolding non-closure	9.4	5.8
		.7		Signal MC response: statistical	3.9	6.0
Integrated luminosity			yes	Background template: statistical	5.9	13
Systematic uncertainty	3.2	2.9		Fit statistical uncertainty	30	39
Statistical uncertainty	0.6	0.5				
Total uncertainty	3.2	3.0		Total uncertainty	37	46

WW production EFT interpretation

- Self-coupling of EW bosons can be probed by WWZ when Ws are produced in s-channel
- New physics at scale Λ can alter WW production, and can be described by an EFT with dimension 6 -> anomalous TGC
- Constraints on EFT coeffs determined one at a time using leading I pT unfolded fiducial cross-section (most sensitive observable)
- Alternative pT distributions generated at LO for each Ci (SM, BSM + interference) in MG_aMC@NLO
- Construct likelihood function, and calculate 95%CL intervals
- Improvements wrt previous results due to increase CoM

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]	$c_{WWW}, c_W, c_B, c_{\tilde{W}WW}$ and $c_{\tilde{W}}$
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]	
c_W/Λ^2	[-7.4 , 4.1]	[-6.4, 5.1]	
c_B/Λ^2	[-21,18]	[-18 , 17]	$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum \frac{c_i}{\Lambda^2} O_i$.
$c_{ ilde WWW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]	$\approx - \approx M + \sum_{\Lambda^2} \Lambda^2 $
$c_{ ilde W}/\Lambda^2$	[-76 , 76]	[-91 , 91]	<i>i</i>