

Searches for LFV and LNV with NA62

ABZ

Paolo Massarotti (massarotti@na.infn.it)

Università degli studi di Napoli Federico II and INFN Napoli

on behalf of the NA62 collaboration

PHENO 2020, 4th-6th May 2020 Pittsburgh

Outline

- The NA62 experiment
- Experimental setup
- LNV/LFV
- R_K and LFU
- Conclusions

NA62 experiment at CERN

NA62 is located in the North Area at CERN:

- ✓ Main goal: **BR**(K⁺→ π^+ **vvbar**) with **10% precision**
- ✓ Primary beam: 400 GeV/c protons from SPS
- ✓ Secondary baem: 75 GeV/c positive charged particle (6% K⁺)

NA62 collaboration: ~ 200 participants from ~ 30 institution:

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

Timeline				
2009 - 2014	2014 - 2015	2016 - 2018	2021 - 2023	
Construction and installation	Technical runs	Physics runs	Physics runs	

Paolo Massarotti

NA62 beam and detector

Paolo Massarotti

NA62 Detector

Paolo Massarotti

Search for LNV & LFV

- Neutrino oscillation experiments proved that individual lepton numbers are not conserved but don't necessarily imply the total LNV.
- ➢ BSM via Majorana neutrinos (U) for instance in K⁺→π⁻l⁺l⁺ (l = e, μ) LNV & LFV in ΔL = 2: ΔL_e = 2 or ΔL_μ = 2.

 [JHEP 0905 (2009) 030]

 [Phys. Lett. B491 (2000) 285]

Experimental status @ 90% CL :

BR(K⁺ $\rightarrow \pi^- e^+ e^+) \le 6.4 \ 10^{-10}$ [PRL 85 (2000) 2877]

BR(K⁺ $\rightarrow \pi^- \mu^+ \mu^+$) < 8.6 10⁻¹¹ [PL B769 (2017) 67]

Paolo Massarotti

LNV & LFV in $K^+ \rightarrow \pi^- l^+ l^+ @ NA62$

- ✓ Subset of 2017 data, 3 months of data taking, but 3 times more data still to be analyzed.
- ✓ Collection of di-muon, di-electron and multi-track events simultaneously with $\pi^+ v \bar{v}$ via dedicated and downscaled triggers

Trigger name	Requirements	Data Sample	Downscale factor
Di-Muon	3 tracks, 2 muon candidates	Signal/Norm	2
Multi-track e	3 track, E _{LKr} > 20 GeV	Signal/Norm	8
Multi-track	3 tracks, minimum bias	Control sample for bkg studies	100

✓ Normalization from corresponding SM channels

BR(K⁺ $\rightarrow \pi^+ e^+ e^-$) = (3.00 ± 0.09) 10⁻⁷ [PLB 677 (2009) 246]

BR(K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$) = (9.62 ± 0.25) 10⁻⁸ [PLB 697 (2011) 107]

- ✓ Blind analysis in M(π^{-} l⁺ l⁺): Signal region |M(π^{-} l⁺ l⁺) M_K| < 3 σ (M)
- ✓ Main systematic uncertainties cancel (trigger/ detector efficiency/pileup)

Backgrounds and PID

✓ Major background for 3-track decays: BR(K⁺→ $\pi^+\pi^+\pi^-$) = **5.6%**

Background mechanisms:

- ✓ Single/double misidentification: $\pi^{\pm} \rightarrow e^{\pm}, \pi^{\pm} \rightarrow \mu^{\pm}$
- ✓ Pion decay in flight (9% probability): $\pi^{\pm} \rightarrow \mu^{\pm}$ (99.9%), $\pi^{\pm} \rightarrow e^{\pm}$ (1.2x10⁻⁴)
- Studied with data-driven methods and dedicated simulations
- ✓ Pion/electron identification:
 1) E_{LKr} vs P_{straw} (E/p);
 2) RICH signal

Paolo Massarotti

Normalizzation : $K^+ \rightarrow \pi^+ e^+ e^-$

Auxiliary PID Standard PID Events / (2 MeV/c²) 0_{0}^{1} Events / (2 MeV/c²) 0 0 0 0 0 NA62 NA62 - Data SM $K^+ \rightarrow \pi^+ \pi^+ \pi^ K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ $K^+ \rightarrow e^+ v e^+ e^ K^+ \rightarrow [e^+ e^- \gamma]_{0} e^+ \nu$ $K^+ \rightarrow \pi^+ e^+ e^-$ **SM** $\Lambda^+ \rightarrow \pi^+ \pi^+ \pi^-$ 10 10 1 $K^+ \rightarrow \pi^+ \pi^- e^+ v$ 10⁻¹ 10⁻¹ 350 400 450 300 500 550 350 300 400 450 500 550 $m(\pi^+e^+e^-)$ [MeV/c²] $m(\pi^+e^+e^-)$ [MeV/c²] **2484** SM K⁺ $\rightarrow \pi^+ e^+ e^-$ observed candidates BR (K⁺ $\rightarrow \pi^+ e^+ e^-$) = (3.00 ± 0.09) x 10⁻⁷ K⁺ decays in FV: $N_{K} = (2.14 \pm 0.07) \times 10^{11}$

Search for LNV (a) NA62: $K^+ \rightarrow \pi^- e^+ e^+$

Paolo Massarotti

Search for LNV (a) NA62: $K^+ \rightarrow \pi^- \mu^+ \mu^+$

LKr+MUV3 used for pion/muon identification Background in SM signal mass region ~ 0.07% Background to LNV due to in flight $\pi^{\pm} \rightarrow \mu^{\pm}$ decays and π^{\pm}/μ^{\pm} misidentification

Normalizzation: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

8357 observed candidates

BR(K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$) = (9.62 ± 0.25) 10⁻⁸ N_K = (7.94 ± 0.23) 10¹¹

$K^+ \rightarrow \pi^- \mu^+ \mu^+$ Results

 $N_{K}\,{=}\,(7.94\pm0.23)\;10^{11}$

- Signal Acceptance: 9.81%
- SES = (1.28 ± 0.04) 10⁻¹¹
- Expected background: 0.91 ± 0.41 evt
- Candidates observed: 1

Set upper limit on BR using CLs statistical treatment: BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.2 \times 10^{-11}@90\%$ CL

LFU and R_K

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta R_{K}^{rad.corr.}\right)$$

- very sensitive to new physics
- hadronic uncertainties cancel in the ratio
- $R_{\rm K}$ = (2.477 ± 0.001) 10⁻⁵

Cirigliano and Rosell, Phys. Rev. Lett. 99, 231801

 $R_K = (2.488 \pm 0.009) \times 10^{-5} (PDG 2018)$

Paolo Massarotti

LFU and R_K @ NA62

The goal is to improve the experimental status

New technique in order to use the same trigger and to apply almost the same selection:

The same signature for both channels (kaon in the initial state and only one positron in the final state) leads to have a common selection for K_{e2} and $K_{\mu e}$ samples

Analysis is on going

Conclusions

Set upper limits on BR using CLs statistical treatment: BR(K⁺ $\rightarrow \pi^-e^+e^+$) < 2.2 10⁻¹⁰ at 90% CL BR(K⁺ $\rightarrow \pi^-\mu^+\mu^+$) < 4.2 x 10⁻¹¹ at 90% CL

Phys. Lett. B 797 (2019) 134794 Factor 3-2 improvement over previous results [NA48/2 and BNL-E865]

Other analyses are in progress, none is limited by background

For $\mathbf{K}^+ \to \pi^- \mu^+ \mathbf{e}^+$ [LNV] and $\mathbf{K}^+ \to \pi^+ \mu^- \mathbf{e}^+$ [LFV] SES ~ 5 x10⁻¹¹ (factor ~ 5 improvement on BNL-E865) For $\mathbf{K}^+ \to \mathbf{e}^- \mathbf{v} \mu^+ \mu^+$ [LFV], SES ~ 5 x 10⁻¹¹ (the first search for this mode); For $\mathbf{K}^+ \to \mu^- \mathbf{v} \mathbf{e}^+ \mathbf{e}^+$ [LFV], SES ~ 1 x 10⁻¹⁰ (factor 100 improvement on PDG).

R_K Analysis is in progress