Measurements of isospin amplitudes in Λ_b^0 and Ξ_b^0 decays at LHCb

Arvind Venkat (arvenkat@syr.edu)

On behalf of the LHCb Collaboration

Phenomenology Symposium 2020 5 May 2020

- $K \to \pi\pi$ decays: $\Delta I = 1/2$ rule is a well known disparity in the isospin amplitudes A_0 and A_2
 - $R = Re A_2/Re A_0$

Experimental Measurement [1]	22.45 ± 0.06
Analytical Calculation [2]	16.0 ± 0.15
Lattice Calculation [1]	$19.9 \pm 2.3 \pm 2.4$
"no QCD" limit [2]	$\sqrt{2}$

Note A_i is notated with final state isospin in subscript, on all slides

 \leftarrow 31.1 ± 10.9 (OLD)

- $\Delta I = 1/2$ rule doesn't translate easily to heavy flavour mesons (obtained from fits to data):
 - D $\to \pi \pi^{[3]}$: $|A_0/A_2| \approx 2.5$ (O(1) enhancement)
 - B $\rightarrow \pi\pi^{[4]}$: $|A_0/A_2| \approx 1.5$ (Close to "no QCD" limit)

[1] <u>arXiv:2004.09440</u> – RBC, UKQCD

[2] <u>arXiv:1401.1385</u> – Buras et. al.

[3] <u>arXiv:1203.3131</u> – Franco et. al.

[4] <u>arXiv:1402.1164</u> – Grinstein et. al.

- The Λ_b is predicted to be an iso-scalar by the quark model
 - Needs experimental support
- Isospin suppression commonly assumed in past analyses of Λ_b decays
 - Pentaquark analysis in $\Lambda_b \to J/\psi \ p \ K^-$ assumed suppression of $\Lambda_b \to J/\psi \ \Sigma^*$ w.r.t. $\Lambda_b \to J/\psi \ \Lambda^*$
 - Measurement of V_{ub} from $\Lambda_b \to p \mu \nu$ assumed suppression of $\Lambda_b \to N^* \mu \nu$
- Diquark structure of Λ_b
 - Baryons hypothesized to be built from a light diquark (ud) and a heavy quark.
 - If present, would be another suppression of isospin violation.
 - Commonly, isospin breaking is seen at ~1% in rate.

$\Lambda_{\rm b} \to J/\psi \Lambda(\Sigma^0)$, $\Xi_{\rm b}^0 \to J/\psi \Xi^0(\Lambda)$

- Quark model assumes Λ_b as isospin 0, and Ξ_b^0 as isospin 1/2
- \rightarrow ccs is purely isospin 0
 - Naively, isospin breaking cannot be generated at tree level, if light quarks are just spectators
 - Isospin 1 final state could be generated through $\Lambda \Sigma$ mixing, an exchange diagram, or through NP amplitudes
 - Tree diagram $\propto V_{ch}^* V_{cs} \sim \lambda^2$
 - Exchange diagram $\propto V_{uh}^* V_{us} \sim \lambda^4$
- b \rightarrow c \overline{c} d changes isospin in Ξ_{b}^{0} decay
- According to the quark model,
 - $\Lambda_b \to J/\psi \Lambda$ is purely $\Delta I = 0$ (Λ_0 amplitude)
 - $\Lambda_b \to J/\psi \Sigma^0$ is purely $\Delta I = 1$ (A₁ amplitude)
 - $\Xi_b^0 \to J/\psi \Xi^0$ is purely $\Delta I = 0$ (A_{1/2} amplitude) $\Xi_b^0 \to J/\psi \Lambda$ is purely $\Delta I = 1/2$ (A₀ amplitude)
- Neither $\Lambda_b \to J/\psi \Sigma^0$ nor $\Xi_b^0 \to J/\psi \Lambda$ had been observed before.

[5] arXiv:2001.05397 – Dery et. al.

- Our Λ_b signal decays are:
 - $\Lambda_b \rightarrow J/\psi \Lambda$
 - $\Lambda_b \rightarrow J/\psi \Sigma^0, \Sigma^0 \rightarrow \Lambda \gamma$

Not reconstructed

- Our Ξ_b^0 signal decays are
 - $\Xi_{\rm b}^0 \to J/\psi \Xi^0$, $\Xi^0 \to \Lambda \overline{\tau^0}$
 - $\Xi_b^0 \to J/\psi \Lambda$
- All four signal modes are reconstructed as $J/\psi \; \Lambda$
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\Lambda \rightarrow p\pi^-$
- We perform selections involving multivariate classifiers that exploit the isolation of the J/ψ in all our signal decays, using the full LHCb data-set (Run 1 + Run2)

- Our Λ_b signal decays are:
 - $\Lambda_b \rightarrow J/\psi \Lambda$
 - $\Lambda_b \to J/\psi \Sigma^0, \Sigma^0 \to \Lambda \psi$

Not reconstructed

- Our Ξ_b^0 signal decays are
 - $\Xi_b^0 \to J/\psi \Xi^0$, $\Xi^0 \to \Lambda \pi^0$
 - $\Xi_b^0 \to J/\psi \Lambda$
- All four signal modes are reconstructed as $J/\psi \; \Lambda$
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\Lambda \rightarrow p\pi^-$
- We perform selections involving multivariate classifiers that exploit the isolation of the J/ψ in all our signal decays , using the full LHCb data-set (Run 1 + Run2)

• In the Λ_b decays:

•
$$\mathcal{R}_{\Lambda_b} \equiv \frac{|A_1|^2}{|A_0|^2} = \frac{\mathcal{B}(\Lambda_b \to J/\psi \Sigma^0)}{\mathcal{B}(\Lambda_b \to J/\psi \Lambda)} \cdot \Phi_{\Lambda_b} = \frac{N_{corr}(\Lambda_b \to J/\psi \Sigma^0)}{N_{corr}(\Lambda_b \to J/\psi \Lambda)} \cdot \Phi_{\Lambda_b}$$

• In the $\Xi_{\rm b}^0$ decays:

•
$$\mathcal{R}_{\Xi_{b}} \equiv \frac{\mathcal{B}(\Xi_{b}^{0} \to J/\psi \Lambda)}{\mathcal{B}(\Xi_{b}^{0} \to J/\psi \Xi^{0})} = \frac{N_{corr}(\Xi_{b}^{0} \to J/\psi \Lambda)}{N_{corr}(\Xi_{b}^{0} \to J/\psi \Xi^{0})}$$

$$\bullet \left| \frac{A_0}{A_{1/2}} \right| = \frac{1}{\lambda} \sqrt{\mathcal{R}_{\Xi_b} / \Phi_{\Xi_b}}$$

N_{corr} - efficiency corr. yield

 Φ_{Λ_b} , Φ_{Ξ_b} — Phase space corr. factors

 $\lambda = |V_{us}|/|V_{ud}| - CKM$ suppression

- We do not measure $\Xi_b^0 \to J/\psi \ (\Xi^0 \to \Lambda \pi^0)$ directly.
 - Instead we measure $\Xi_b^-\to J/\psi~(\Xi^-\to\Lambda\pi^-)$ and use isospin to relate it to the $~\Xi_b^0$ decay

Fits and Upper Limit

arXiv:1912.0211

• $\mathcal{R}_{\Lambda_{\rm b}} < 2.1 \cdot 10^{-3} @ 95\% \text{ C. L.}$

$$\Rightarrow |A_1/A_0| = \sqrt{R} < 1/21.8$$
 @ 95% C.L.

- $\Xi_b^0 \to J/\psi \Lambda$: First observation of Cabibbo suppressed mode
 - Significance of observation : **5.** 6 σ

•
$$\mathcal{R}_{\Xi_{b}} \equiv \frac{\mathcal{B}(\Xi_{b}^{0} \to J/\psi \Lambda)}{\mathcal{B}(\Xi_{b}^{0} \to J/\psi \Xi^{0})} = (8.2 \pm 2.1 \pm 0.9) \cdot 10^{-3}$$

$$\Rightarrow |A_0/A_{1/2}| = 0.37 \pm 0.06 \pm 0.02$$

Interpretation – SU(3)_F Analysis [5]

arXiv:1912.02

• Dery et. al. perform a general SU(3)_F analysis of baryonic $b \to c\overline{c}q$ (q = s, d)

• b
$$\rightarrow$$
 ccs decays: $\Lambda_b \rightarrow \Lambda J/\psi$

$$\Lambda_b \to \Sigma^0 J/\psi \qquad \Xi_b^0 \to \Xi^0 J/\psi$$

$$\Xi_b^0 \to \Xi^0 J/\psi$$

$$\Xi_b^- \to \Xi^- J/\psi$$

• b
$$\rightarrow$$
 c \overline{c} d decays: $\Xi_b^0 \rightarrow \Lambda J/\psi$

$$\Xi_b^0 \to \Sigma^0 J/\psi$$
 $\Lambda_b \to n J/\psi$

$$\Lambda_b \rightarrow n J/\psi$$

$$\Xi_{\rm b}^- \to \Sigma^- J/\psi$$

From three separate assumptions:

- 1. Working in the SU(3)_F limit
- 2. Λ and Σ^0 are isospin eigenstates (i.e. don't mix)
- 3. $|V_{uh}^*V_{us}/V_{ch}^*V_{cs}| \to 0$

Predictions:

•
$$A(\Lambda_b \to J/\psi \Sigma^0) = 0$$

•
$$\left| \frac{A(\Xi_b^0 \to \Lambda J/\psi)}{A(\Xi_b^0 \to \Xi^0 J/\psi)} \right| = \frac{1}{\sqrt{6}} \left| \frac{V_{cb}^* V_{cd}}{V_{cb}^* V_{cs}} \right|$$

[5] arXiv:2001.05397 – DGGS

Interpretation – SU(3)_F Analysis ^[5]

arXiv:1912.0211

• Isospin and SU(3)_F breaking effects would lead at the same time to a deviation in $A(\Lambda_b \to \Sigma^0 J/\psi)$ and $A(\Xi_b^0 \to \Lambda J/\psi)/A(\Xi_b^0 \to \Xi^0 J/\psi)$

- $\Sigma^0 \Lambda$ mixing:
 - $|\Lambda_{\text{phys}}^{0}\rangle = \cos \theta_{\text{m}} |\Lambda^{0}\rangle \sin \theta_{\text{m}} |\Sigma^{0}\rangle$
 - $\left|\Sigma_{\text{phys}}^{0}\right\rangle = \sin\theta_{\text{m}}\left|\Lambda^{0}\right\rangle + \cos\theta_{\text{m}}\left|\Sigma^{0}\right\rangle$

$$\bullet \ \mathcal{R}_{\Lambda_b} \equiv \frac{ \frac{A \left(\Lambda_b \to J/\psi \ \Sigma_{phys}^0 \right)}{A \left(\Lambda_b \to J/\psi \ \Lambda_{phys}^0 \right)} = \frac{ \left\langle J/\psi \ \Sigma_{phys}^0 \middle| H \middle| \Lambda_b \right\rangle }{ \left\langle J/\psi \ \Lambda_{phys}^0 \middle| H \middle| \Lambda_b \right\rangle } = \theta_m + \frac{ \left\langle J/\psi \ \Sigma^0 \middle| H_1 \middle| \Lambda_b \right\rangle }{ \left\langle J/\psi \ \Lambda^0 \middle| H_0 \middle| \Lambda_b \right\rangle } = \theta_m + \theta_f^{dyn} = \theta_f$$

• $\theta_{\rm m} \sim \theta_{\rm f} \sim 1^{\circ} \Rightarrow \mathcal{R}_{\Lambda_{\rm b}} = |\theta_{\rm f}| \sim 0.02$

[5] <u>arXiv:2001.05397</u> – DGGS

- DGGS prediction for $\left|\frac{A_0(\Xi_b^0 \to \Lambda J/\psi)}{A_{\frac{1}{2}}(\Xi_b^0 \to \Xi^0 J/\psi)}\right| \approx 0.41$ agrees very well with our measurement of $(0.37 \pm 0.06 \pm 0.02)$.
 - DGGS expect a 20% correction from SU(3)_F breaking effects.
 - Our measurement is not yet sensitive enough to probe size of these corrections.
- DGGS prediction for $\left|\frac{A_0(\Lambda_b \to \Lambda J/\psi)}{A_1(\Lambda_b \to \Sigma^0 J/\psi)}\right| \sim 0.02$ is close to our upper limit of 1/21.8 = 0.046.
 - DGGS stress that a deviation from predicted value would point to isospin violation in the dynamical contribution to mixing.

- We have provided more support for the iso-scalar status of the Λ_b .
 - An isospin 1 component would be seen through the $\Delta I=1$ channel.
 - In principle, could mix with the isospin 1 Σ_b^0 .
- Experimental verification provided for the assumption of isospin suppression made in past analyses involving Λ_b .

- No isospin or SU(3)_F breaking effects seen yet in Λ_b and Ξ_b decays.
 - With increasing statistics expected from Run 3 datasets, and additional channels to be probed, LHCb is well poised to make a first observation of isospin breaking in baryonic decays.

THANK YOU!!