New Limits on Coloured Three Jet Resonances

Hassan Easa
Carleton University
May 05, 2020
Based on work with Thomas Gregoire and Daniel Stolarski, arXiv:2003.00014

Motivations

- Why is the the Higgs so much lighter than the other scales?? Such as $M_{\text {Planck }} \approx 10^{19} \mathrm{GeV} \gg m_{H} \approx 125.5 \mathrm{GeV}$
- Higgs mass is unstable from Quantum corrections, at one loop the corrections are:

- Proposed solution includes Supersymmetry (SUSY), composite Higgs, Little Higgs, extra dimensions, and NNaturalness models....

Current Status of Vector-Like Quark ...

- An up-type Vector-Like Quark (VLQs) dubbed Top partner (T) provides an intriguing avenues for experimental searches ${ }^{1}$.
- Left \& right handed components transform the same way under SM gauge group.
- Current collider searches, for Top partner are carried out under the assumption: $T \longrightarrow t Z \quad, T \longrightarrow b W \quad, T \longrightarrow t h$

- However, there are stringent constraints on such models with $m_{T} \geq 1.3-1.66 \mathrm{TeV}$ from the current experimental searches ${ }^{2}$.
${ }^{1} 1812.09768,1805.04758,1710.01539,1808.02343$
${ }^{2}$ arXiv:1808.02343, arXiv:1806.10555, 1812.09768, 1805-04758, 1710.01539,

What to explore?

- We concentrate on two cases:
(1) Top partner decays primarily to three light jets
(2) Top partner decays to a light quark and two b-jets
- Large QCD background associated with the fully hadronic modes and there are no limits.
- Case I: The full process is, $p p \rightarrow T \bar{T} \rightarrow j j \eta \eta \rightarrow 6 j$ (Not counting ISR/FSR)

LHC Benchmark Model Searches

- The analogue model with similar signatures are RPV SUSY with gluino pair production.

- Gluino is a colour octet while the Top Partner is a colour triplet \Rightarrow Larger $\sigma(p p \rightarrow \tilde{g} \tilde{g})$
- On-shell scalar can change the kinematics relative to the gluino.

CMS three-jet resonance search at $\sqrt{s}=13 \mathrm{TeV}$

Table: The selection criteria for the CMS search arXiv:1810.10092. ${ }^{3}$

Gluino mass range $[\mathrm{GeV}]$	Jet $p_{T}[\mathrm{GeV}]$	$H_{T}[\mathrm{GeV}]$	Sixth Jet $p_{T}[\mathrm{GeV}]$	$D_{[(6,3)+(3,2)]}^{2}$	A_{m}	$\Delta[\mathrm{GeV}]$	$D_{[3,2]}^{2}$
$200-400$	>30	>650	>40	<1.25	<0.25	>250	<0.05
$400-700$	>30	>650	>50	<1.00	<0.175	>180	<0.175
$700-1200$	>50	>900	>125	<0.9	<0.15	>20	<0.2
$1200-2000$	>50	>900	>175	<0.75	<0.15	>-120	<0.25

- The symmetry of the jet inside a triplet is defined as:

$$
\begin{equation*}
D_{[3,2]}^{2}=\sum_{i>j}\left(\hat{m}(3,2)_{i j}-\frac{1}{\sqrt{3}}\right)^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{m}(3,2)_{i j}^{2}=\frac{m_{i j}^{2}}{m_{i}^{2}+m_{j}^{2}+m_{k}^{2}+m_{i j k}^{2}} \quad \text { where } i, j, k \in\{1,2,3\} \tag{3}
\end{equation*}
$$

${ }^{3}$ Gluino masses below 1500 GeV are excluded at $95 \% \mathrm{CL}$

Case I Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

Figure: The shaded region is excluded by the CMS three-jet resonance search

Case I Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

- Three-jet resonances search loses sensitivity in two regions where a di-jet topology emerges.

Low scalar pT: $m_{T} \gtrsim m_{\eta}$

Soft Jet

High scalar pT: $m_{T} \gg m_{\eta}$

ATLAS di-jet resonance search at $\sqrt{s}=13 \mathrm{TeV}$

Table: The selection criteria for the di-jet search (Plus a window cut on $\left.m_{\text {avg }}\right)^{4}$.

Jet $p_{T}[\mathrm{GeV}]$	A_{m}	$\left\|\cos \left(\theta^{*}\right)\right\|$	$\Delta R_{\min }$	
>120	<0.05	<0.3	$<-0.002 \cdot\left(\frac{m_{\text {avg }}}{G e V}-225\right)+0.72$,	if $m_{\text {avg }} \leq 225 \mathrm{GeV}$
			$<+0.0013 \cdot\left(\frac{m_{\text {avg }}}{G}-225\right)+0.72$,	if $m_{\text {avg }}>225 \mathrm{GeV}$

- The mass asymmetry is defined as (arXiv:1710.07171):

$$
\begin{equation*}
A_{m}=\frac{\left|m_{i j}-m_{m n}\right|}{m_{i j}+m_{m n}} \tag{4}
\end{equation*}
$$

- The angular distance is:

$$
\begin{equation*}
\Delta R_{\min }=\min \left\{\sum_{i=1}^{2}\left|\Delta R_{i}-1\right|\right\} \tag{5}
\end{equation*}
$$

where $\Delta R_{i}=\sqrt{\Delta \phi_{i}^{2}+\Delta \eta_{i}^{2}}$ is the distance between the two jets in $i^{\text {th }}$ pair.
${ }^{4}$ Top squark mass in the range $100 \mathrm{GeV}<m_{\tilde{t}}<410 \mathrm{GeV}$ are excluded at 95% CL

Case I: Combined Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

Figure: The shaded regions are excluded by the direct searches arXiv:1810.10092, arXiv:1710.07171.

- The di-jet search fills most of the holes left by the three-jet \qquad resonances.

LHC Phenomenology Case II

- Case II: The full process is, $p p \rightarrow T \bar{T} \rightarrow j j \eta \eta \rightarrow 2 j 4 b$
- Scalars tend to decay to heavy fermions
- Possibly stronger limits

- One applicable search was performed by CMS at $\sqrt{s}=8 \mathrm{TeV}^{5}$.
- As well as the ATLAS di-jet search arXiv:1710.07171.

Case II: Combined Constraints $T \longrightarrow j \eta(\eta \longrightarrow b \bar{b})$

Figure: The shaded regions are excluded by the direct searches arXiv:1311.1799, arXiv:1710.071716.
${ }^{6}$ Limits obtained for the light case apply here as well

Case II: Possible Improvements ($\eta \longrightarrow b \bar{b}$)

Table: Imposing b-tagging requirements can improve the limits from the searches.

B-tagging requirement	$\frac{s}{\sqrt{b}}$	Improvement	Mass Sensitivity [GeV]
$N_{b} \geq 0$	0.31	-	900
$N_{b} \geq 1$	0.58	1.86	1000
$N_{b} \geq 2$	1.04	3.33	1050
$N_{b} \geq 3$	2.30	8.36	1200
$N_{b} \geq 4$	4.66	14.89	1300

Summary

- The top partner provides a possible solution to the hierarchy problem.
- Studied the LHC signatures for previously unexplored decay modes of the Top Partner.
- For the light flavour search, the CMS and ATLAS searches have excluded the mass region of at most $m_{T} \approx 900 \mathrm{GeV}$.
- For the Heavy flavour search (include the b-quark) limits are expected to be stronger due to the b-quarks but we have found that they are very similar to the light flavour scenario.
- Constraints are weaker in comparison to the traditional decay channels
- However, searches designed specifically for final states containing b-jets could significantly constrain the parameter space.

Thank You!

Back Up

Motivation

- Option1: There is an incredible fine-tuning cancellation between the quadratic radiative corrections and the bare mass
- Options 2: New physics beyond the SM is introduced. As such, solutions such as Supersymmetry (SUSY), composite Higgs, Little Higgs, extra dimensions, and NNaturalness models has been proposed.
- Most of the BSM models predicts the existence of new particles expected to have masses near TeV scale.
- Top partner (T) provides a possible solution. Contribution to the Higgs mass is: $\delta m_{H}^{2} \propto \frac{1}{16 \pi^{2}} \lambda m_{T}^{2}$.

7 arXiv:1506.0513

Current Status

- Further exotic decay modes studied are : $T \rightarrow t \gamma / g / \gamma_{d}$ arXiv:1808.03649, arXiv:1904.05893, $T \rightarrow t \eta$ stable neutral Particles arXiv:1506.05130
- $T \rightarrow t S$ with $S \rightarrow \gamma \gamma, g g, W W, Z Z, t \bar{t}, b \bar{b}$ arXiv:1907.05929, arXiv:1908.07524, arXiv:1705.03013
- Searches for most of these exotic decays considered in the literature are experimentally very clean.
- Due to the lack of evidence for new particles and many of the obvious possibilities constrained well above TeV , it is of paramount importance to explore new resonances
- As such, we consider the most constraining LHC searches for VLQs matching our topology for unexplored decay channels.

Dalitz variables

- The six jet distance measure is defined as:

$$
\begin{equation*}
D_{[(6,3)+(3,2)]}^{2}=\sum_{i<j<k}\left(\sqrt{\hat{m}(6,3)_{i j k}^{2}+D_{[3,2], i j k}^{2}}-\frac{1}{\sqrt{20}}\right)^{2} \tag{6}
\end{equation*}
$$

- Where $\hat{m}(6,3)_{i j k}^{2}=\frac{m_{i j k}^{2}}{4 \cdot m_{i j k l m n}^{2}+6 \sum_{i} m_{i}^{2}}$ with $i, j, k, l, m, n \in\{1,2, \ldots, 6\}$ and $m_{i j k / m n}$ the invariant mass of the six highest p_{T} jets
- The "Delta cut" defined as:

$$
\begin{equation*}
M_{j j j}<\sum_{i=1}^{3} p_{T}^{i}-\Delta \tag{7}
\end{equation*}
$$

where $M_{j j j}$ is the invariant mass of the triplet and Δ is an adjustable parameter.

- The mass asymmetry is defined as:

$$
A_{m}=\frac{\left|m_{i j k}-m_{l m n}\right|}{m_{i j k}+m_{l m n}}
$$

CMS 8 TeV Three Jet Resonance Search

- Typically in the high mass region, the signal events have a more spherical shape than the background (which generally contain back to back jets thus more linear shape)
- Sphericity variable is defined as:

$$
\begin{equation*}
S=\frac{3}{2}\left(\lambda_{2}+\lambda_{3}\right), \quad \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \tag{9}
\end{equation*}
$$

where λ 's are the eigenvalues of the the sphericity tensor,

$$
\begin{equation*}
S^{\alpha \beta}=\frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i}\left|p_{i}\right|^{2}}, \quad \alpha, \beta=\mathrm{x}, \mathrm{y}, \mathrm{z}, \tag{10}
\end{equation*}
$$

where α and β label separate jets, and the sphericity S is calculated using all jets in each event.

CMS three-jet resonance search at $\sqrt{s}=8 \mathrm{TeV}$

Table: The selection criteria for the 3-jet resonance search

Mass Range $[\mathrm{GeV}]$	$\Delta[\mathrm{GeV}]$	$p_{T, j}^{4 t h}[\mathrm{GeV}]$	$p_{T, j}^{6 t h}[\mathrm{GeV}]$	Sphericity
$200-600$	>110	>80	>60	-
$600-1500$	>110	>110	>110	>0.4

QCD multijet Cross Section

Table: Four partonic hard jets production production cross section using MadGraph5 at $\sqrt{s}=13 \mathrm{TeV}$.

$p_{T, \min }(j)$ Generator Level $[\mathrm{GeV}]$	$\sigma_{4 j}[\mathrm{pb}]$
20	1.79×10^{7}
60	7.64×10^{4}
100	4.68×10^{3}
200	7.216×10^{1}

Case I Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

Figure: The ratio of our model over the RPV benchmark model acceptance as a function of the scalar mass for a few top partner masses recasted for the CMS search

Case I Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

Figure: The $D_{[3,2]}^{2}$ variable distributions for signal triplets with top partner mass of 900 GeV and various scalar masses

Case I Constraints $T \longrightarrow j \eta(\eta \longrightarrow j j)$

Figure: The $D_{[3,2]}^{2}$ variable distributions for signal triplets with top partner mass of 900 GeV and various scalar masses

Pair Production Cross Section

Figure: Next-to-leading order (+NLL) pair production cross section for the top partner, gluino and squarks as a function of $m_{T} / m_{\tilde{g}} / m_{\tilde{q}}$

