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JHU Generator and MELA package
• JHU Generator

• Designed to simulate a wide range of processes involving spin 0, 1, 2 
particles with a general coupling model

• JHUGen MELA—Matrix Element Likelihood Approach
• Calculate discriminants to optimally isolate processes or operators

• Reweight generated samples from one hypothesis to another

• https://spin.pha.jhu.edu/
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Coupling parameterization
• 𝐴 𝐻𝑉𝑉 =

1

𝑣
𝑔1
𝑉𝑉 +

𝜅1
𝑉𝑉𝑞1

2+𝜅2
𝑉𝑉𝑞2

2

Λ1
𝑉𝑉 2 +

𝜅3 𝑞1+𝑞2
2

Λ𝑄
𝑉𝑉

2 𝑚𝑉1
2 𝜖1 ⋅ 𝜖2 +

2𝑔2
𝑉𝑉 𝑞1 ⋅ 𝑞2 𝜖1 ⋅ 𝜖2 − 𝜖1 ⋅ 𝑞2 𝜖2 ⋅ 𝑞1 − 2𝑔4𝜖

𝜖1𝜖2𝑞1𝑞2

• 𝐴 𝐻𝑓𝑓 = −
𝑚𝑓

𝑣
ത𝜓𝑓 𝜅𝑓 + 𝑖 ǁ𝜅𝑓𝛾5 𝜓𝑓

• General coupling model – easy to relate to other models, e.g. 
Higgs basis of EFT
• See paper for details of the relationship

• E.g., 𝑐𝑧𝑧~ − 𝑔2
𝑍𝑍, 𝑐𝑧□~ − 𝜅1

𝑍𝑍, ǁ𝑐𝑧𝑧~ − 𝑔4
𝑍𝑍

• EFT implies relationships between couplings, e.g. 𝑔2
𝑊𝑊 is a linear 

combination of 𝑔2
𝑍𝑍,𝑍𝛾,𝛾𝛾
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Matrix elements
• Characterize the probability of an event based on 

kinematics Ω
• Based on couplings Ԧ𝑎
• Ԧ𝑎 includes 𝑔𝑖, 𝜅𝑖 for bosons or 𝑐𝑖 in EFT, 𝜅 and ǁ𝜅 for fermions

𝑑𝜎

𝑑Ω
𝑖 → 𝐻 → 𝑓

~
σ𝑖,𝑗 𝑎𝑖 𝑎𝑗𝛼𝑖,𝑗

𝑖
Ω 𝑖 σ𝑖,𝑗 𝑎𝑖 𝑎𝑗𝛼𝑖,𝑗

𝑓
Ω 𝑓

𝑠 − 𝑚𝐻
2 2 +𝑚𝐻

2 Γ2

• Usually components factorize – can calculate each one 
separately

• (Except when calculating interference between signal 
and background)

7
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Decay
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Sample generation and reweighting
• Generate samples according to the coupling model 

presented earlier

• Output in LHE format: can interface to parton
showering and detector simulations

• Use the matrix elements to reweight samples to 
each other to increase statistics
• Not an approximation: if the same matrix element is 

used for generation and reweighting, the results are 
equivalent (in the limit of infinite statistics)

• Also needed for practical reasons when analysis needs 
hundreds of samples, as is the case here

9



Special features: off-shell generation 
and NLO VH production
• Gluon fusion (shown here) and electroweak production 

off-shell (𝑚4𝑓 ≳ 2𝑚𝑉~200 GeV)
• Sensitive to Γ𝐻 and anomalous couplings

• VH production at NLO in both 𝑔𝑔 and 𝑞𝑞 initial states
• See paper for methods to detect and analyze 𝑔𝑔 → 𝑍𝐻
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I’m not doing justice to 
either of these in the 
limited time.  Read the 
paper for more!

Used in analysis: 1 2

http://dx.doi.org/10.1103/PhysRevD.92.072010
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-18-002/index.html


Optimal observables

• Parameterize events in terms of kinematics Ω

• For 𝑉𝑉 → 𝐻 with 2 jets or 𝐻 → 𝑉𝑉 → 4𝑓, 5 angles
and 2 𝑉 invariant masses, plus H invariant mass

• 𝑡𝑡𝐻: even more angles and masses
• also complicated because we can’t tell which jet is 

which, or in the leptonic case we have missing neutrinos

• arXiv: 1606.03107 [hep-ex]

• Can’t deal with so many dimensions: construct 
observables that use all this information

11

𝐷𝑎𝑙𝑡(Ω) =
𝑝𝑠𝑖𝑔 Ω

𝑝𝑠𝑖𝑔 Ω + 𝑝𝑎𝑙𝑡 Ω
𝐷𝑖𝑛𝑡(Ω) =

𝑝𝑖𝑛𝑡 Ω

2 𝑝𝑠𝑖𝑔 Ω 𝑝𝑎𝑙𝑡 Ω

https://arxiv.org/abs/1606.03107


Optimal observables 12

• Example: 𝐷0−
and 𝐷𝐶𝑃 (=𝑝𝑎𝑙𝑡 and 𝑝𝑖𝑛𝑡

for 𝑔1 vs. 𝑔4) in VBF 
with weak 
bosons or gluons

• 𝐷0− separates 
pure hypotheses

• 𝐷𝐶𝑃 measures 
interference sign 
for mixture



Machine learning
• Before NLO and detector effects, MELA contains full 

information: no other observable can do better

• In the limit of perfect training, machine learning (ML) can 
give equivalent results
• Difficult in practice in the case of 𝐷𝐶𝑃

• If detector effects are large or some particles are lost, can 
e.g. integrate or use transfer functions in MELA, or use ML

13
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Statistical framework

𝒫 Ω; Ԧ𝑎 ~
σ𝑖,𝑗 𝑎𝑖 𝑎𝑗𝛼𝑖,𝑗

𝑖
Ω 𝑖 σ𝑖,𝑗 𝑎𝑖 𝑎𝑗𝛼𝑖,𝑗

𝑓
Ω 𝑓

𝑠 − 𝑚𝐻
2 2 +𝑚𝐻

2 Γ2

• Polynomial in Ԧ𝑎

• When we look at only production or decay (e.g. 𝑔𝑔 → 𝐻 →
𝑍𝑍), 𝑁 = 2 powers of 𝑎; when they have the same 
couplings (e.g. VBF → 𝐻 → 𝑍𝑍), 𝑁 = 4

• For 𝐾 couplings, have 
𝑁 + 𝐾 − 1

𝑁
terms to parameterize

• E.g. 𝑁 = 4, 𝐾 = 5 ⇒ 70 terms

• Need to either simulate each one or reweight

15



Parameterization

• Can either float couplings Ԧ𝑎 and width Γ𝐻 directly, or 
reparameterize in terms of Ԧ𝑓𝑎 and 𝜇

• 𝑓𝑎𝑖 =
𝑎𝑖
2𝜎𝑖

σ𝑗 𝑎𝑗
2𝜎𝑗

sgn 𝑎𝑖

• Bounded between -1 and 1

• 𝜎𝑖 depends on the process – have to specify a convention

• By default for 𝐻𝑍𝑍 couplings we use 𝐻 → 𝑍𝑍 → 2𝑒2𝜇

• Ԧ𝑓𝑎 is independent of overall scaling (including Γ𝐻), which is 
absorbed by 𝜇

16
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Example analysis: search for 𝑔4, 𝑔2, Λ1, and Λ1
𝑍𝛾

18

• Floating SM and 4 
anomalous couplings 
simultaneously

• Expected constraints 
at 300 and 3000 fb−1

• Full MELA approach
• Using simplified 

template cross 
section (STXS) 
discriminants

• Use information from 
decay only
• More model 

independent (no 
high 𝑞2 regime)



Example analysis: EFT: 𝛿𝑐𝑧, 𝑐𝑧𝑧, 𝑐𝑧□, ǁ𝑐𝑧𝑧 19



Example analysis: anomalous 𝑔𝑔𝐻
• Can measure CP in 𝑔𝑔𝐻 using the MELA approach 

and discriminants

• Requires events with 2 jets (small fraction of 𝑔𝑔𝐻), 
and even then only VBF-like topology is sensitive

• Electroweak VBF forms a background

• Can start constraining now, tighter constraints at 
HL-LHC

20
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Experimental results using JHUGen
22

arXiv:2003.10866 [hep-ex]
CMS measurement of 
anomalous couplings in 𝑡𝑡𝐻
using 𝐻 → 𝛾𝛾

𝐷0− is calculated here using 
machine learning due to the 
complicated jet correlations 
and missing neutrinos.  
Samples are produced with 
JHUGen

arXiv:2003.10866 
[hep-ex]
CMS measurement of 
anomalous couplings 
in on-shell and off-
shell production and 
decay 𝐻 → 4ℓ

𝐷0− is calculated 
using VBF production 
and 𝐻 → 4ℓ decay 
and provides strong 
separation between 
𝑔1 and 𝑔4

Likelihood scans for 

𝑓𝑎3 = 𝑓𝑔4 using on-

shell production and 
two possible off-shell 
scenarios

https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866


Summary
• Coherent framework for measuring Higgs boson 

anomalous couplings using a general model

• The tools, framework, and methods are general enough to 
build analyses for any convention you like – our anomalous 
couplings, EFT, pseudo-observables, …

• The most general analysis will float more couplings at 
once, and then the results (not only the analysis methods) 
are independent of notation as well
• Limited only by available data and CPU

• Sample analysis and approximate sensitivity for HL-LHC

• Has been used extensively for CMS and ATLAS analyses

• Please see the paper for more
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